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ABSTRACT

The concept of the direct product of finite family of B-algebras is introduced by Lingcong and
Endam in 2016. In this thesis, we introduce the concept of the direct product of infinite family of UP (BCC)-
algebras, we call the external direct product. We find the result of the external direct product of special
subsets of UP (BCC)-algebras. Also, we introduce the concept of the weak direct product UP (BCC)-
algebras. Moreover, we provide the fundamental theorem of (anti-)UP (BCC)-homomorphisms in view of
the external direct product UP (BCC)-algebra. In addition, we apply the concept of the internal direct
product of a groupoid to a UP (BCC)-algebra in which we introduce four new concepts of internal direct
products of UP (BCC)-algebras: the internal direct product, the anti-internal direct product, the internal
direct product of type 2, and the anti-internal direct product of type 2. We explore the properties of
four concepts and find the necessary and important properties for concluding the study. Finally, we prove
the important theorem that for a UP (BCC)-algebra, there can only be one form of the internal direct
product and only one form of the anti-internal direct product, and finally there can only be the zero UP

(BCC)-algebra that satisfies of internal direct product and the anti-internal direct product of type 2.



LIST OF CONTENTS

Chapter Page
I INTRODUCTION .......ooitiiet i i
II PRELIMINARIES .......o.oiuimieiiie i !
IIT MAIN RESULTS ..ottt e

External direct products of BCC-algebras.........................
External direct products of dual BCC-algebras....................

E
£
i
Internal direct products of BCC-algebras. . ................ovov.... bl
i
Z
b1

Anti-internal direct products of BCC-algebras.....................
Internal direct products of type 2 of BCC-algebras ................
Anti-internal direct products of type 2 of BCC-algebras............
V. CONCLUSIONS . ..ot 108
BIBLIOGRAPHY . ..ot

BIOGRAPHY ..o 119



Figures

1

LIST OF FIGURES

Special subsets of BCC-algebras ............... .. ... ... ... g



CHAPTER 1

INTRODUCTION

Algebraic structures are important in mathematics, whose applications
have been widely used in many fields. For example, theoretical physics, com-
puter sciences, control engineering, information sciences, coding theory, topolog-
ical space, etc. Among many algebraic structures, algebras of logic form an im-
portant class of algebras. Examples of these are BCK-algebras [16], BCI-algebras
[17], UP-algebras [L1], fully UP-semigroups [12], topological UP-algebras [35],
UP-hyper-algebras [14], extension of KU/UP-algebras [34] and others. They are
strongly connected with logic. For example, BCl-algebras were introduced by
Iséki [17] in 1966 and have connections with BCl-logic, being the BCI-system
in combinatory logic, which has application in the language of functional pro-
gramming. BCK and BCl-algebras are two classes of logical algebras. They
were introduced by Imai and Iséki [16, 17] in 1966 and have been extensively

investigated by many researchers.

A UP-algebra is a new type of algebraic logic that has been published in
international academic journals. In 2017, Iampan [[11] introduced the concept of
a UP-algebra. Thai researchers were interested in studying UP-algebra structures
to define new structures. For example, fully UP-semigroup [12], topological UP-
algebra [17], UP-hyperalgebra [14], and extension of KU/UP-algebra [34]. In
2022, Jun et al. [19] have shown that the concepts of UP-algebras and BCC-
algebras are the same concept (see [11, 27]). Therefore, in this thesis and future
research, our research team will use the name BCC instead of UP in honor of

Komori, who first defined it in 1984.

The concept of the direct product [41] was first defined in the group and

obtained some properties. For example, a direct product of the group is also a



group, and a direct product of the abelian group is also an abelian group. Then,
direct product groups are applied to other algebraic structures. In 2016, Ling-
cong and Endam [29, B0] discussed the notion of the direct product of B-algebras,
0-commutative B-algebras, and B-homomorphisms, respectively. Then, they ex-
tended the concept of the direct product of B-algebra to finite family B-algebra.
In the same year, Endam and Teves [§] defined the direct product of BF-algebras,
0-commutative BF-algebras, and BF-homomorphism and obtained related prop-
erties. In 2018, Abebe [L] introduced the concept of the finite direct product of
BRK-algebras and proved that the finite direct product of BRK-algebras is a
BRK-algebra. In 2019, Widianto et al. [45] defined the direct product of BG-
algebras, O-commutative BG-algebras, and BG-homomorphism, including related
properties of BG-algebras. In 2020, Setiani et al. [41] defined the direct product of
BP-algebras, which is equivalent to B-algebras. They obtained the relevant prop-
erty of the direct product of BP-algebras and then defined the direct product of
BP-algebras as applied to finite sets of BP-algebras, finite family 0-commutative
BP-algebras, and finite family BP-homomorphisms. In 2021, Kavitha and Gowri
[25] defined the direct product of GK algebra. They derived the finite form of
the direct product of GK algebra. They investigated and applied the concept
of the direct product of GK algebra in GK kernel. In 2022, Chanmanee et al.
introduced the concept of the direct product of an infinite family of B-algebras
[4] and IUP-algebras [7], they called them the external direct product. Further-
more, in 2023, Chanmanee et al. [§] introduced the concept of the external direct

products of BP- algebras.

The internal direct products [44] is type of “direct product”; that is to
say a group is isomorphic to the direct product of two of its subgroups. Its is con-
tinually applied to other algebraic structures. In 1992, Makamba [31] shown that
the internal direct product of two fuzzy subgroups is isomorphic to their external

direct product. In 1999, Pledger [33] generalized the internal direct product from



groups to all groupoids (binary systems). Then, it develops what seems to be
a natural basic definition of the internal direct product. In 2000, Jakubik and
Csont6ova [18] introduced two-factor internal direct product decompositions of a
connected partially ordered set. In 2012, Kamuti [23] introduced the cycle index
of semidirect products, namely Frobenius groups, and discussed a very special
case of semidirect products called internal direct products. In 2015, Karacgal and
Khadjiev [24] introduced some relations between an external direct product and
an internal direct product of a family of integral V-distributive binary aggrega-
tion functions. In 2017, Lingcong [28] introduced the internal direct product of
normal subalgebras. In the same year, Nama [32] introduced the concept of a
fuzzy internal direct product of fuzzy subgroups of group. In 2019, Shalla and
Olgun [42] introduced neutrosophic extended triplet internal direct product and
neutrosophic extended triplet external direct products of NET group. Then, they
defined NET internal and external semidirect products for NET group by utilizing

the notion of NET set theory of Smarandache.

From the concept of the direct product and the internal direct product
mentioned above. The researcher is interested and motivated to study the direct
product of an infinite family of BCC-algebras, called the external direct product.
Then, we apply the concept of the internal direct product of an algebra to a
BCC-algebra, called the internal direct products of BCC-algebras. The content
is divided into 4 chapters: Introduction, Preliminaries, Main results, and Con-
clusions. Chapter 2 introduces the definitions, properties, and examples required
in this thesis. In Chapter 3, we divided into 5 sections as follows: external di-
rect products of BCC-algebras, external direct products of dual BCC-algebras,
internal direct products of BCC-algebras, anti-internal direct products of BCC-
algebras, and internal direct products of type two of BCC-algebras. In the final

thesis chapter, we summarize and reflect on the main findings of this thesis.



CHAPTER II

PRELIMINARIES

In this chapter, we introduce the definitions, properties, and examples

of BCC-algebras and dBCC-algebras required in this thesis as follows:

The concept of BCC-algebras (see [27]) can be redefined without the

condition () as follows:

Definition 2.0.1 [10] An algebra X = (X;*,0) of type (2,0) is called a BCC-

algebra if it satisfies the following axioms:

(Va,y, 2 € X)((y*2) * ((x % y) * (z % 2)) = 0), (BCC-1)
(Vo € X)(0 %2 =), (BCC-2)
(Vo € X)(z %0 = 0), (BCC-3)
(Vo,y € X)(wsy=0y*z=0=2=y). (BCC-4)

If the BCC-algebra has only one element 0, then we call it the zero BCC-

algebra.

Example 2.0.2 Let X = {0,1,2,3,4,5,6} be a set with the Cayley table as

follows:
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Then X = (X;%,0) is a BCC-algebra.

For more examples of BCC-algebras, see [2, B, [7, 12, 15, 26, B6, 87, B9, 40].

Let A = (A;%4,04) and B = (B;xp,05) be BCC-algebras. A map

¢ : A — Bis called a BCC-homomorphism if

(Va,y € A)(p(z*xay) = ¢(x) *5 ©(y))

and an anti-BCC-homomorphism, if

(Va,y € A)(p(x*ay) = ©(y) *B p(z)).

The kernel of ¢, denoted by ker ¢, is defined to be the {z € A | p(x) = 0p}.
The ker ¢ is a BCC-ideal of A, and ker o = {04} if and only if ¢ is injective.
A (anti-)BCC-homomorphism ¢ is called a (anti-)BCC-monomorphism, (anti-)
BCC-epimorphism, or (anti-)BCC-isomorphism if ¢ is injective, surjective, or

bijective, respectively.

In a BCC-algebra X = (X;%,0), the following assertions are valid (see
11, 12)).

(Vz € X)(z*z =0), (2.0.1)
(Va,y,z2 € X)(zxy=0,yxz=0=z%2z=0),

(Va,y,2€ X)(@xy=0= (z%z) % (zxy) =0),

(Va,y,2 € X)(@xy=0= (y*2z)x(z%2)=0),

(Vo,y € X)(z = (yx2) =0),

Vr,ye X)((yxx)xz =02 =yx*x),

(Va,y € X)(z = (yxy) =0),

(Vu,z,y, 2z € X)((z* (y*2)) * (z*x (u*xy)* (uxz))) =0),



Vu,z,y,2 € X)(((uxz) * (u*xy)) *2)* ((x*xy)x2z) =0),
(Vz,y,2 € X)(((z xy) x 2) * (y * 2) = 0),

(Vo,y,z € X)(xxy=0= 2z (2xy) =0),

(Vo,y, 2 € X)(((z xy) x 2) * (x % (y x 2)) = 0),

Vu,z,y,2 € X)(((x*xy) x2) * (y * (uxz2)) =0).

According to [11], the binary relation < on a BCC-algebra X = (X; x,0)

is defined as follows:

Vz,ye X)(x <yeaxxy=0).

Definition 2.0.3 A BCC-algebra X = (X;x,0) is said to be

(1) bounded if there is an element 1 € X such that 1 < x for all z € X, that is,

(Vo e X)(1xx=0), (Bounded)

(17) meet-commutative [38] if it satisfies the identity

Ve,ye X)(x ANy=yAx), (Meet-commutative)

where

(Ve,y € X)(x Ay = (y*x)*x). (Meet)



Example 2.0.4 Let X = {0, 1,2,3} be a set with the Cayley table as follows:

*(0 1 2 3
0/0 1 2 3
10 0 2 3
2/0 1 0 3
3/0 0 00

Then X = (X;*,0) is a bounded BCC-algebra.

Example 2.0.5 Let X = {0,1,2,3,4} be a set with the Cayley table as follows:

*x10 1 2 3 4
0(0 1 2 3 4
110 0 2 3 4
2/0 1 0 3 4
3/0 1 2 0 4
410 1 2 3 0

Then X = (X;*,0) is a meet-commutative BCC-algebra.

Definition 2.0.6 A nonempty subset S of a BCC-algebra X = (X x,0) is called

(1) a BCC-subalgebra [11] of X if it satisfies the following condition:

(Vz,y € S)(zxy € .9), (2.0.2)

(17) a near BCC-filter [13] of X if it satisfies the following condition:

Ve,ye X)(ye S=xzxye€l), (2.0.3)



(i1) a BCOC-filter [43] of X if it satisfies the following conditions:
the constant 0 of X is in S, (2.0.4)

Ve,ye X)(xxye S,z eS=yel), (2.0.5)

(iv) an implicative BCC-filter [21] of X if it satisfies the condition () and

the following condition:

(Vo y,2 € X)(w* (y*z) € S,xxy € S=z%2€5), (2.0.6)

(v) a comparative BCC-filter [20] of X if it satisfies the condition () and

the following condition:

(Vo,y,z € X)(z* ((y*x2)*xy) € S,z € S=yel), (2.0.7)

(vi) a shift BCC-filter [22] of X if it satisfies the condition () and the

following condition:

(Ve,y,ze€ X)(zx(y*x2) e S,eeS=((zxy)xy)x2z€S5), (2.0.8)

(vii) a BCC-ideal [11] of X if it satisfies the condition () and the following

condition:

(Vz,y,z€e X)(z*x(yxz) € S,ye S=zxx2z€59), (2.0.9)

(viii) a strong BCC-ideal [9] of X if it satisfies the condition () and the

following condition:

(Vo,y,2 € X)((z*xy)x(zx2) € S,ye S=z€08). (2.0.10)



We know that the concept of BCC-subalgebras is a generalization of
near BCC-filters, near BCC-filters is a generalization of BCC-filters, BCC-filters
is a generalization of BCC-ideals, BCC-filters is a generalization of implicative
BCC-filters, BCC-filters is a generalization of comparative BCC-filters, BCC-
filters is a generalization of shift BCC-filters, BCC-ideals is a generalization of
implicative BCC-filters, implicative BCC-filters is a generalization of strong BCC-
ideals, comparative BCC-filters is a generalization of strong BCC-ideals, shift
BCC-filters is a generalization of strong BCC-ideals. Moreover, a BCC-algebra
X is the only strong BCC-ideal. We get the diagram of the special subsets of

BCC-algebras, which is shown in Figure lil

BCC-subalgebra
near BCT:C filter
BCC filter
BCC ideal

comparative BCC-filter |mpI|cat|ve BCC-filter  shift BCC-filter

\ strong BCC ideal /

Figure 1: Special subsets of BCC-algebras

Definition 2.0.7 An algebra X = (X;*,0) of type (2,0) is called a dual BCC-
algebra (ABCC-algebra) if it satisfies () and the following axioms:

(Vo,y,z € X)(((zxx) x (y*xx)) * (2 xy) =0), (dBCC-1)
(Ve € X)(x*0=x), (dBCC-2)

(Ve e X)(0xx =0). (dBCC-3)
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The binary relation < on a dBCC-algebra X = (X;%,0) is defined as

follows:

Ve,ye X)(x <y axxy=0).

Example 2.0.8 Let X = {0,1,2,3,4,5,6} be a set with the Cayley table as

follows:
x[0 1 2 3 45 6
0(0 OO O0O0O0 O
11 011111
2(2 00 3 3 3 2
3/3 00 0 3 3 3
414 0 0 0 0 4 4
5(5 0 0 0 0 0 5
6/6 00 00 0 O

Then X = (X;*,0) is a dBCC-algebra.

Definition 2.0.9 A dBCC-algebra X = (X;*,0) is said to be

(i) bounded if there is an element 1 € X such that < 1 for all z € X, that is,

(Vo e X)(z*1=0), (Bounded)

(13) join-commutative if it satisfies the identity

(Ve,y € X)(xVy=yVuzx), (Join-commutative)

where

(Vz,y e X)(xVy=zx*(z*xy)). (Join)
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Example 2.0.10 Let X = {0,1,2,3,4} be a set with the Cayley table as follows:

*x10 1 2 3 4
0/0 00 0 O
111 0 1 11
212 0 0 3 2
313 00 0 3
414 0 0 0 0

Then X = (X;%,0) is a bounded dBCC-algebra.

Example 2.0.11 Let X = {0,1,2,3,4} be a set with the Cayley table as follows:

*x0 1 2 3 4
0({0 0 0 00
1110 3 2 1
212 00 2 2
3(3 0 3 0 3
414 4 4 40

Then X = (X;%,0) is a join-commutative dBCC-algebra.

Definition 2.0.12 A nonempty subset S of a dBCC-algebra X = (X;x*,0) is
called

(1) a dBCC-subalgebra of X if it satisfies the condition ()

(77) a near dBCC-filter of X if it satisfies the following condition:

(Vz,ye X)(ye S=>y*xxe€l), (2.0.11)
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(1ii) a dBCC-filter of X if it satisfies the following conditions:
the constant 0 of X is in S, (2.0.12)

Ve,ye X)(yxx e S,z e S=yel), (2.0.13)

(iv) an implicative dBCC-filter of X if it satisfies the condition () and the

following condition:

(Vz,y,z€ X)(z*x(y*x2) € S,zxye S=axz€9), (2.0.14)

(v) a comparative dBCC-filter of X if it satisfies the condition () and the

following condition:

(Vz,y,ze€ X)(zx((y*x2)xy) € S, ze S=yef), (2.0.15)

(vi) a shift dBCC-filter of X if it satisfies the condition () and the following

condition:

(Vz,y,ze€ X)(z*x(yx2) € S,xe S=((zxy)*xy)*x2z€S5), (2.0.16)

(vii) a dBCC-ideal of X if it satisfies the condition () and the following

condition:

(Ve,y,z€ X)(zx(y*xz2) e S,ye S=z*xze€9), (2.0.17)

(viii) a strong dBCC-ideal of X if it satisfies the condition () and the fol-

lowing condition:

(Vo,y,2 € X)((z*xy)x(zx2) € S,ye S=z€08). (2.0.18)



CHAPTER I11

MAIN RESULTS

3.1 External direct products of BCC-algebras

Lingcong and Endam [29] discussed the notion of the direct product
of B-algebras, 0-commutative B-algebras, and B-homomorphisms and obtained
related properties, one of which is a direct product of two B-algebras, which is
also a B-algebra. Then, they extended the concept of the direct product of B-
algebras to a finite family of B-algebras, and some of the related properties were

investigated as follows:

Definition 3.1.1 [29] Let (Xj;*;) be an algebra for each i € {1,2, ..., k}. Define
the direct product of algebras X, X,,..., X} to be the structure (Hf:1 X;; ®),

where

k
[I% =X x Xo x o x X = {(@1, 02, ) | s € X3, Vi=1,2,..,k}

i=1

and whose operation ® is given by
($1,3327 ,l“k) ® (ybyz, 7yk:) = (5131 *1 Y1, T2 *2 Y2, .-y T ¥ yk)
for all (1,9, ..., k), (Y1, Y2, -, Y) € Hle X;.

Now, we extend the concept of the direct product to an infinite family

of BCC-algebras and provide some of its properties.

Definition 3.1.2 Let X; be a nonempty set for each ¢ € I. Define the external

direct product of sets X; for all i € I to be the set [[,.; X, where

[[Xi={f1-UXi|f()e X, Viel}

i€l el
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For convenience, we define an element of [[,., X; with a function (z;)ies : I —

Uies Xi, where i — x; € X; for all i € I.

Remark 3.1.3 Let X; be a nonempty set and S; a subset of X; for all i € I.

Then [],.,; S; is a nonempty subset of the external direct product [[,.; X; if and

iel

only if S; is a nonempty subset of X; for all i € I.

Definition 3.1.4 Let X; = (X;; *;) be an algebra for all ¢ € . Define the binary

operation ® on the external direct product [[,.; Xi = ([ [,c; Xi; ®) as follows:

(V(@i)ier, (Yi)ier € H Xa)((xi)ier ® (Yi)ier = (wi *; Yi)ier)-

el

We shall show that  is a binary operation on [ [,.; Xi. Let (2;)icr, (¥i)ier €
Hie[ X;. Since *; is a binary operation on X;, we have z; x; y; € X, for all ¢ € I.

Then (x; *; y;)ier € [ [;c; Xi such that
(@i)ier @ (Yi)ier = (Ti % Yi)ier-

Let (sz‘)z‘eb(yi)iela(x;)ieb(y;)iel € Hie[ X; be such that (%’)z’el = (?Ji)ie[ and

(})ier = (y;)ier. We shall show that (z;)icr ® (27)ier = (¥i)ier ® (y;)ier. Then
xr; =y; and o, =y, for all i € I.
Since #; is a binary operation on X;, we have x; x; 2} = y; %; y, for all i € I. Thus

(z3)ier @ (27)ier = (T % T})ier
= (Yi *i yz/‘)iel

= (Yi)ier ® (Yj)ier-

Hence, ® is a binary operation on [[..; X.
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Let X; = (Xj;*;,0;) be a BCC-algebra for alli € I. Fori € I, let z; € X;.
We define the function f,, : I = |J,c; X; as follows:

| R ET
Vjiel)| fo.(h) = : (3.1.1)
0; otherwise
Then f,, € [[;c; Xi-
Remark 3.1.5 Let X; = (Xj;*;,0;) be a BCC-algebra for all i € I. For i € I,

we have fOi = (Oi)iel-

Lemma 3.1.6 Let X; = (X;;%;,0;) be a BCC-algebra for alli € 1. Fori € I, let
Ti,Yi € Xi- Then fxz ® fyi = fxz*lyz

Proof. Now,

rix oy ifg=1
(Vjel) | (fo ® f,)0) =

0; *; 0; otherwise
By (), we have

ikiy ity =1
wieD | (nofm =4 "% T

0; otherwise

By ()» we have fu; ® fy, = [y O

The following theorem shows that the direct product of BCC-algebras in

terms of an infinite family of BCC-algebras is also a BCC-algebra.
Theorem 3.1.7 X; = (X;;%;,0;) is a BCC-algebra for all i € I if and only if

[Lc; Xi = (ILie; Xis ®, (0i)ier) is a BCC-algebra, where the binary operation ®
is defined in Definition .
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Proof. Assume that X; = (Xj;*;,0;) is a BCC-algebra for all 7 € I.

(BCC-1) Let (xi)ier, (Yi)ier» (zi)ier € [1;e; Xi- Since X satisfies (),

we have (y; #; z;) *; ((z; *; y;) *; (x; %; z;)) = 0; for all 4 € I. Thus

((Wi)ier ® (2i)ier) ® ((zi)ier ® (yi)ier) ® (zi)ier @ (2i)ier))
= (i % Zi)ier ® (i *i Yi)ier @ (i % 2i)ier)

= (Yi % 2i)ier ® (i *; Yi) *i (Ti % %) )ier

= (i i 20) %3 (s %3 4) *i (@3 % 2)) )ier

= (04)ier-

(BCC-2) Let (wi)ier € [l;e; Xi- Since X; satisfies (B 2), we have

0; *; x; = x; for all ¢ € I. Thus

(0i)ier ® (xi)ier = (0; *; T3)ier = (T4)ier-

(BCC-3) Let (x)ier € [[;c; Xs. Since X; satisfies (B }), we have
xT; *; Oz = 01 for all © € I. Thus

(7i)ier ® (03)ier = (@i *; 0;)ier = (04)ier-

(BCC-4) Let (zi)ier, (vi)ier € [lie; Xi be such that (z:)ier ® (yi)ier =
(0;)ier and (y;)ier @ (zi)icr = (0;)icr. Then (z;%;Yi)icr = (0;)icr and (y; *; x;)icr =
(0;)ier, 50 ; *; y; = 0; and y; *; ¢; = 0; for all 4 € I. Since X; satisfies (B 4),

we have x; = y; for all i € I. Therefore, (x;)icr = (Yi)icr-
Hence, [],c; Xi = ([Lic; Xi: ®, (04)ier) is a BCC-algebra.

Conversely, assume that [[,.; Xi = ([L;ic; Xi: ®, (05)icr) is a BCC-algebra,
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where the binary operation ® is defined in Definition . Let 72 € I.

(BCC-1) Let x4, y;, 2z € X;. Then f,., fy,, f2, € [1;c; Xi, which is defined
by (B.L1). Since [T,., X; satisfies (BOC-1), we have (£, £-)@ (£, @ f,,) @ (f,@
f2)) = (0i)ier. By Remark and Lemma ’ we get f(yi*izz‘)*i((xi*iyi)*z‘(fﬂi*izz‘)) =
fo,- Tt follows from () that (y; #; ;) *; (i %; yi) *; (25 %; 2;)) = 0;.

(BCC-2) Let z; € X;. Then f,, € [[,.; X;, which is defined by ()
Since [[,c; X; satisfies (B 2), we have (0;)ie; ® fz, = frz,- By Remark
and Lemma , we get fo,uiz; = fo,- It follows from () that 0; x; z; = ;.

(BCC-3) Let z; € X;. Then f,, € [[,.; X;, which is defined by ()
Since [[,.; X; satisfies (), we have f,, ® (0;)ier = (0;);er. By Remark
and Lemma , we get fi.x.0, = fo,. It follows from () that z; *; 0; = 0;.

(BCC-4) Let z;,y; € X; be such that z; *; y; = 0; and y; *; x; = 0; for all
i€ 1. Then f,,, f,, € [[,c; Xi, which are defined by () Now,

rix Yy, if g =1
(Vjiel) ] (fo ® fu,)(J) = ,

0; ¥; 0; otherwise

and

ik ifj =i
Wien | Unef@m=14" " 7"

0; ¥, 0; otherwise
By assumption and (), we have
0; ifj=1i

(Vi elD) | (for ® f,)0) = ,
0; otherwise
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and
| o =
(Viel) | (fy® f2)d) =
0; otherwise
Thus fi, ® fy, = (0i)ier and fy, ® fa, = (0;)ier. Since [],.; X; satisfies (),
we have f,, = f,,. Therefore, z; = y;. Hence, X; = (X;;%;,0;) is a BCC-algebra
forall i € I. O

We call the BCC-algebra [[,.; X; = ([[;c; Xi: ®, (0i)ier) in Theorem
the external direct product BCC-algebra induced by a BCC-algebra X; =
(X;;*;,0;) for all i € 1.

Theorem 3.1.8 Let X; = (X;;*;,0;) be a BCC-algebra for alli € 1. Then X; is
a bounded BCC-algebra for all i € I if and only if [[.c; Xi = (IL;ic; Xi; ®. (05)ier)

is a bounded BCC-algebra, where the binary operation ® is defined in Definition

9.1.4

Proof. By Theorem , we have X; = (Xj;*;,0;) is a BCC-algebra for all i € [
if and only if [],.; Xi = (I L;c; Xi; ®, (03)icr) is a BCC-algebra, where the binary
operation ® is defined in Definition . We are left to prove that X; is bounded
for all i € I if and only if J],.; X; is bounded.

Assume that X; is bounded for all 7 € I. Then for all i € I, there exists
1, € X, such that 1; < z; for all x; € X;. That is, 1, x x; = 0; for all 7 € I. Now,

(12')2'61 € Hie] Xl Let (in)iej € Hie[ Xl Thus
(Li)ier ® (wi)ier = (1i *i Ti)ier = (04)ier-

That is, (1;)ier < (x;)ier. Hence, [[,.; X; is bounded.

iel

Conversely, assume that [[,., X; is bounded. Then for all i € I, there
exists (1;)ier € [[;e; Xi such that (1;)ier < (23)ier for all (z;)ier € [],c; Xi. That
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is, (1i)i61 (%9 (xi)iél = (Oi)iel for all (xi)iel € Hie[ X;. Let 2 € I. Now, 1, € X,.
Let #; € X;. Then f,, € [[,.; X;, which is defined by () Since [[,c; X; is
bounded, we have (1;);e; ® fo, = (0;)icr. Now,

(Vi el) | ((L)ier @ fa;)(J) = :
0; *; 0; otherwise

this implies that 1; x; ; = 0;. That is, 1; < x;. Hence, X; is bounded for all

1€ 1. ]

Theorem 3.1.9 Let X; = (X;;%;,0;) be a BCC-algebra for all i € I. Then
Xi is a meet-commutative BCC-algebra for all i € I if and only if [[,.; X; =

(ITicr Xi: ®, (05)ier) is a meet-commutative BCC-algebra, where the binary oper-
ation ® is defined in Definition .

Proof. By Theorem , we have X; = (X;;#;,0;) is a BCC-algebra for all i € I
if and only if [],.; Xi = (I L;c; Xi; ®, (0;)icr) is a BCC-algebra, where the binary
operation ® is defined in Definition . We are left to prove that X; is meet-

commutative for all 4 € I if and only if [],.; X; is meet-commutative.

Assume that X; is meet-commutative for all i € I. Let (z;)ier, (yi)ier €
Hiel X;. Since X; is meet-commutative, we have x; A y; = y; A x; for all 7 € 1.

(@i)ier A (Yi)ier = ((Wi)ier ® (Ti)ier) @ (¥i)ier
= (Yi *i Ti)ier @ (Ti)ier
= ((yi *i 7:) *i T4)iex
= ((zi *i Yi) *i Yi)ier
= (@ *; Yi)ier @ (Yi)ier

= ((zi)ier ® (Yi)ier) @ (Yi)ier



20

= (Yi)ier N (3)icr-

Hence, [],.; X is meet-commutative.

el

Conversely, assume that []._; X; is meet-commutative. Let ¢ € I. Let

iel
zi,y; € Xi. Then f,,, fy, € [1;c; Xi, which are defined by () Since [[;o; Xi
is meet-commutative, we have f,, A fy, = fy A fo,. That is, (f,, ® fo,) @ fo, =

(fo, ® f,,) ® f,,- By Lemma B.1.6, we have fiyonne = fomyem- By (B.LI),

we have (y; *; z;) *; ©; = (x; *; y;) *; y;. Hence, X; is meet-commutative for all

vel. [l

Next, we introduce the concept of the weak direct product of an infinite

family of BCC-algebras and obtain some of its properties as follows:

Definition 3.1.10 Let X; = (X;*;,0;) be a BCC-algebra for all ¢ € I. Define
the weak direct product of a BCC-algebra X; for all 7 € I to be the structure
[Lie; Xi = (ITie; Xi; ®), where

HXi = {(24)ier € HXi | z; # 0;, where the number of such i is finite}.
el il
Then (Oi)iel & H:VGI XZ g Hie[ Xz

Theorem 3.1.11 Let X; = (X;%;,0;) be a BCC-algebra for all i € I. Then
[T;c; Xi is a BCC-subalgebra of the external direct product BCC-algebra ] ],c; X; =

(ILcs Xis®, (05)ier)-

Proof. We see that (0;)ic; € [[ic; Xi # 0. Let (i)ier, (vi)ier € [, Xi, where
L={iel|x;#0;}and I, ={i € I | y; # 0;} are finite. Then |I; U I5] is finite.
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Thus

(Vi eI) | ((wi)ier ® (Yi)ier)(j) =

0; x; 0; otherwise

0 if j el — I

(Vi € I) | ((zi)ier @ (i)ier)(§) =
Y; lf] € [2 - Il

0; otherwise

This implies that the number of such ((x;)ie; @ (¥i)ier)(J) # 0; is not more than
|1y U L], that is, it is finite. Thus (2;)ic; ® (yi)ier € [[;e; Xi- Hence, [[t, X; is
a BCC-subalgebra of J],.; X;. O

Theorem 3.1.12 Let X; = (X;;%;,0;) be a BCC-algebra and S; a subset of
X; for all @ € I. Then S; is a BCC-subalgebra of X; for all © € I if and
only if [[,c; Si is a BCC-subalgebra of the external direct product BCC-algebra

Hie[ Xi = (Hiel Xi;®, (05)icr)-

Proof. Assume that S; is a BCC-subalgebra of X; for all ¢ € I. Since S; is a
nonempty subset of X; for all ¢ € I and by Remark , we have [[,.; S; is a
nonempty subset of [[,.; X;. Let (z;)ier, (¥i)ier € [[;e; S Then x;,y; € S; for
all i € I. By (), we have z; %; y; € S; for all i € I, so (;)ier @ (Yi)ier =
(25 *; Yi)ier € [ ;o7 Si- Hence, [[.c; Si is a BCC-subalgebra of ], X;.

Conversely, assume that []..; S; is a BCC-subalgebra of [[,.; X;. Since

icl el
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[I;c; Si is a nonempty subset of [[,., X; and by Remark , we have 5; is
a nonempty subset of X; for all ¢ € I. Let ¢ € I and let x;,y; € S;. Then
fais fy; € 11ics Si» which are defined by (B.1.1)). By () and Lemma , we
have foiy, = for @ fy, € [Lier Si- By (B.1.1)), we have z; x; 3; € S;. Hence, Sj is
a BCC-subalgebra of X; for all 7 € I. [

Theorem 3.1.13 Let X; = (X;;%;,0;) be a BCC-algebra and S; a subset of
X; for all i € I. Then S; is a near BCC-filter of X; for all i € I if and
only if [[,c; Si is a near BCC-filter of the external direct product BCC-algebra

[Lic; Xi = (ILier Xi3 ®, (0i)icr)-

Proof. Assume that S; is a near BCC-filter of X; for all « € I. Since 5; is
a nonempty subset of X; for all ¢ € [ and by Remark , we have [[..; S;
is a nonempty subset of [[..; Xi. Let (zi)ier, (¥i)ier € [lic; Xi be such that
(Yi)ier € [;e; Si- Thus y; € S;foralli € I, it follows from () that z;%;1; € S;
for all i € I. Thus (x;)icr ® (Yi)ier = (% % Yi)ier € [[;o; Si- Hence, [[;c; S; is a
near BCC-filter of [[,., Xi.

Conversely, assume that []..; S; is a near BCC-filter of ], X;. Since
[Lic; Si is a nonempty subset of [],.; X; and by Remark , we have S; is a
nonempty subset of X; for all i € I. Let ¢« € I and let z;,y; € X; be such that
yi € S;. Then f,,, fy, € [Lic; Xi and fy, € [[,c; S, which are defined by ()
By (2.0.9) and Lemma , we have fr..y = fo, ® fy, € [L;e; Si- By (B.1.1)), we
have z; x; y; € S;. Hence, S; is a near BCC-filter of X; for all 7 € I. O

Theorem 3.1.14 Let X; = (X;;*;,0;) be a BCC-algebra and S; a subset of X; for
alli € 1. Then S; is a BCC-filter of X; for alli € I if and only if [[,.; S; is a BCC-
filter of the external direct product BCC-algebra [],c; Xi = ([ Lic; Xi: ®, (05)ier)-

Proof. Assume that S; is a BCC-filter of X; for all ¢ € I. Then 0; € S; for
all i € I, so (0;)ier € [Lic;Si # 0. Let (2;)ier, (Wi)ier € [l;e; Xi be such that
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(zi)ier ® (Yi)ier € [Licy S and (w3)ier € [Lic; Si- Then (x5 *; yi)ier € [Lie; Si
Thus z; x; y; € S; and x; € S;, it follows from () that y; € S; for all ¢ € I.
Thus (y;)icr € [L;c; Si- Hence, [],.; S is a BCC-ilter o