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ABSTRACT

Initially, we apply the concept of Pythagorean fuzzy sets to UP (BCC)-algebras, and introduce
eight types of Pythagorean fuzzy sets in UP (BCC)-algebras, namely, Pythagorean fuzzy UP (BCC)-
subalgebras, Pythagorean fuzzy near UP (BCC)-filters, Pythagorean fuzzy UP (BCC)-filters, Pythagorean
fuzzy implicative UP (BCC)-filters, Pythagorean fuzzy comparative UP (BCC)-filters, Pythagorean fuzzy
shift UP (BCC)-filters, Pythagorean fuzzy UP (BCC)-ideals, and Pythagorean fuzzy strong UP (BCC)-ideals.
We discuss the relationship between some assertions of Pythagorean fuzzy sets and eight types of
Pythagorean fuzzy sets in UP (BCC)-algebras for study the generalizations of eight Pythagorean fuzzy
sets in UP (BCC)-algebras by finding sufficient conditions and study upper and lower approximations of
Pythagorean fuzzy sets. Next, we apply the concept of rough sets to Pythagorean fuzzy sets in UP (BCC)-
algebras, and introduce twenty-four types of rough Pythagorean fuzzy sets in UP (BCC)-algebras, namely,
(upper, lower) rough Pythagorean fuzzy UP (BCC)-subalgebras, (upper, lower) rough Pythagorean fuzzy
near UP (BCC)-filters, (upper, lower) rough Pythagorean fuzzy UP (BCC)-filters, (upper, lower) rough
Pythagorean fuzzy implicative UP (BCC)-filters, (upper, lower) rough Pythagorean fuzzy comparative UP
(BCC)—filters, (upper, lower) rough Pythagorean fuzzy shift UP (BCC)-filters, (upper, lower) rough
Pythagorean fuzzy UP (BCC)-ideals, and (upper, lower) rough Pythagorean fuzzy strong UP (BCC)-ideals.
We discuss t-level subsets of rough Pythagorean fuzzy sets in UP (BCC)-algebras. Finally, we apply the
concept of Pythagorean fuzzy soft sets to UP (BCC)-algebras, and introduce eight types of Pythagorean
fuzzy soft sets in UP (BCC)-algebras, namely, Pythagorean fuzzy soft UP (BCC)-subalgebras, Pythagorean
fuzzy soft near UP (BCC)-filters, Pythagorean fuzzy soft UP (BCC)-filters, Pythagorean fuzzy soft
implicative UP (BCC)-filters, Pythagorean fuzzy soft comparative UP (BCC)-filters, Pythagorean fuzzy soft
shift UP (BCC)-filters, Pythagorean fuzzy soft UP (BCC)-ideals, and Pythagorean fuzzy soft strong UP
(BCC)-ideals. In addition, we study the results of four operations of two Pythagorean fuzzy soft sets over
UP (BCC)-algebras, namely, the union, the restricted union, the intersection, and the extended intersection

and discuss t-level subsets of Pythagorean fuzzy soft sets over UP (BCC)-algebras.
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CHAPTER 1

INTRODUCTION

Among many algebraic structures, algebras of logic form an important
class of algebras. Examples of these are BCK-algebras [I'7], BCI-algebras [I8], B-
algebras [32], BE-algebras [24], UP-algebras [12], fully UP-semigroups [I3], topo-
logical UP-algebras [d1], UP-hyperalgebras [15], extension of KU/UP-algebras
[37] and others. They are strongly connected with logic. For example, BCI-
algebras introduced by Iséki [I8] in 1966 have connections with BCI-logic being
the BCI-system in combinatory logic which has application in the language of
functional programming. BCK and BClI-algebras are two classes of logical alge-
bras. They were introduced by Imai and Iséki [I'4, 18] in 1966 and have been
extensively investigated by many researchers. In 2022, Jun et al. [21] have shown
that the concept of UP-algebras (see [12]) and the concept of BCC-algebras (see
[27]) are the same concept. Therefore, in this dissertation and future research,
our research team will use the name BCC instead of UP in honour of Komori,

who first defined it in 1984.

The concept of fuzzy sets was first considered by Zadeh [53] in 1965.
Zadeh’s and others’ fuzzy set concepts have found numerous applications in math-
ematics and other fields. Following the introduction of the concept of fuzzy sets,
various researchers were interviewed about generalizations of the concept of fuzzy
sets, including: Atanassov [H] defined a new concept called an intuitionistic fuzzy
set which is a generalization of a fuzzy set, Torra and Narukawa [49, A8] intro-
duced the notion of hesitant fuzzy sets. Yager [bI] introduced a new class of
non-standard fuzzy subsets called a Pythagorean fuzzy set and the related idea
of Pythagorean membership grades, and Satirad and lampan [38] introduced sev-

eral types of subsets and of fuzzy sets of fully BCC-semigroups, and investigated



the algebraic properties of fuzzy sets under the operations of intersection and

union.

The concept of rough sets was first considered by Pawlak [33] in 1982.
After the introduction of the concept of rough sets, several authors have applied
the concept of rough sets to the generalizations of the concept of fuzzy sets in
many algebraic structures such as: in 2002, Jun [20] and Dudek et al. [d] applied
rough set theory to BCK-algebras and BCl-algebras. In 2008, Chen and Wang
[6] combined rough sets and fuzzy subalgebras (fuzzy ideals) fruitfully by defining
rough fuzzy subalgebras (rough fuzzy ideals) of BCI-algebras. In 2016, Moradiana
et al. [B0] presented a definition of the lower and upper approximation of subsets
of BCK-algebras concerning a fuzzy ideal. In the same year, Ahn and Kim [I]
introduced the concept of rough fuzzy filters in BE-algebras. In 2018, Ahn and Ko
[2] introduced the concept of rough ideals and rough fuzzy ideals in BCK/BCI-
algebras, In 2019-2020, Ansari et al. [4] and Klinseesook et al. [26] applied rough
set theory to BCC-algebras. In 2019, Hussain et al. [I1] introduced the concept

of rough Pythagorean fuzzy ideals in semigroups.

The concept of Pythagorean fuzzy sets was applied to semigroups, ternary
semigroups, and many logical algebras. Then, this idea is extended to the lower
and upper approximations of Pythagorean fuzzy left (resp., right) ideals, bi-ideals,
interior ideals, (1, 2)-ideals in semigroups and some important properties related
to these concepts are given. Jansi and Mohana [I9] introduced the concepts of
bipolar Pythagorean fuzzy A-ideals of BCl-algebras and investigated their proper-
ties. Also, relationships between bipolar Pythagorean fuzzy subalgebras, bipolar
Pythagorean fuzzy ideals, and bipolar Pythagorean fuzzy A-ideals are analyzed.
In 2020, Chinram and Panityakul [7] introduced rough Pythagorean fuzzy ideals
in ternary semigroups and gave some remarkable properties. This idea is extended

to the lower and upper approximations of Pythagorean fuzzy ideals.



In 1999, to solve complicated problems in economics, engineering, and
the environment, we cannot successfully use classical methods because of various
uncertainties typical for those problems. Uncertainties cannot be handled using
traditional mathematical tools but may be dealt with using a wide range of ex-
isting theories such as the probability theory, the theory of (intuitionistic) fuzzy
sets, the theory of vague sets, the theory of interval mathematics, and the theory
of rough sets. However, all of these theories have their own difficulties which are
pointed out in [29]. In 2001, Maji et al. [28] introduced the concept of fuzzy soft
sets as a generalization of the standard soft sets, and presented an application of
fuzzy soft sets in a decision-making problem. In 2013, Rehman et al. [36] studied
properties of fuzzy soft sets and their interrelation with respect to different op-
erations such as union, intersection, restricted union and extended intersection.
Then, they illustrate properties of AND and OR operations by giving counter-
examples. In 2015, Peng et al. [34] introduced the concept of Pythagorean fuzzy
soft sets and defined the operations such as complement, union, intersection,
and, or, addition, multiplication, necessity, and possibility. In 2017, Satirad et
al. [44] discussed the relationships among (prime, weakly prime) hesitant fuzzy
BCC-subalgebras (resp., hesitant fuzzy BCC-filters, hesitant fuzzy BCC-ideals
and hesitant fuzzy strong BCC-ideals) and some level subsets of a hesitant fuzzy
set on BCC-algebras. In 2018, Satirad et al. [38] introduced eight types of subsets
and fuzzy sets of fully BCC-semigroups, and investigated the algebraic properties
of fuzzy sets under the operations of intersection and union. In 2019, Satirad and
Tampan [3Y, 0] introduced ten types of fuzzy soft sets over fully BCC-semigroups,
and investigated the algebraic properties of fuzzy soft sets under the operations of
(extended) intersection and (restricted) union. In 2020, Tougeer [50] introduced
the notion of intuitionistic fuzzy soft a-ideals in BCl-algebras, described connec-
tions between various types of intuitionistic fuzzy soft a-ideals and intuitionistic

fuzzy soft ideals and characterised using the idea of soft (4, n)-level set.



CHAPTER II

PRELIMINARIES

Before we begin our study, let’s review the definition of BCC-algebras.

Definition 2.0.1 [I2] An algebra X = (X, -,0) of type (2,0) is called a BCC-
algebra, where X is a nonempty set, - is a binary operation on X, and 0 is a fixed

element of X (i.e., a nullary operation) if it satisfies the following axioms:
(BCC-1) (v, y,2€ X)((y-2) - ((z-y) - (z-2)) =0),

(BCC-2) (Vz € X)(0-z =x),

(BCC-3) (Vz € X)(z-0=0), and

(BCC-4) Ve,ye X)(z-y=0,y-2=0=2z=1y),

and is called a KU-algebra if it satisfies the following axioms: (BCC-2), (BCC-3),
(BCC-4), and

(KU) (Vz,y,2€ X)((z-y)-((y-2)-(z-2)) =0).

From [12], we know that the concept of BCC-algebras is a generalization

of KU-algebras (see [35]).

Example 2.0.2 [43] Let X be a universal set and let Q@ € P(X) where P(X)
means the power set of X. Let Po(X) = {A € P(X) | Q C A}. Define a binary
operation - on Pq(X) by putting A-B = BN(AYUQ) for all A, B € Pq(X) where
A% means the complement of a subset A. Then (Pq(X),-, ) is a BCC-algebra
and we shall call it the generalized power BCC-algebra of type 1 with respect to
Q. Let PYX) ={A € P(X)| ACQ}. Define a binary operation * on P?(X)
by putting A* B = BU (A° N Q) for all A, B € P(X). Then (P%(X),x,Q) is



a BCC-algebra and we shall call it the generalized power BC'C-algebra of type 2
with respect to Q. In particular, (P(X),-,0) is a BCC-algebra and we shall call
it the power BCC-algebra of type 1, and (P(X), *, X) is a BCC-algebra and we
shall call it the power BCC-algebra of type 2.

Example 2.0.3 [§] Let INy be the set of all natural numbers with zero. Define

two binary operations x and e on Ny by

y ifx <y,
(Ve,y € Ng) | z*xy =
0 otherwise

and

y ifx>yorax=0,
(Vo,y € Nog) [z oy =
0 otherwise

Then (N, *,0) and (INy, ®,0) are BCC-algebras.

For more examples of BCC-algebras, see [3, @, [3, 16, 42, 43, A5, 46].

In a BCC-algebra X = (X, ,0), the following assertions are valid (see
(2, 13]).

(Vz € X)(z - o = 0), (2.0.1)
Vz,y,z€ X)(z-y=0,y-2=0=2-2=0), (2.0.2)
(Va,y,2 € X)(z -y =0= (z-2)- (2-y) = 0), (2.0.3)
(Va,y,2 € X)(z-y=0=(y-2) (- 2) =0), (2.0.4)
(Va,y € X)(z- (y- ) =0), (2.0.5)
Vo,y € X)((y-2) -2 =0 a=y- 1), (2.0.6)

(Vo,y € X)(z- (y-y) =0), (2.0.7)



(Va, 2,9,z € X)((z-(y-2)) - (z- ((a-y) - (a-2))) =0),
(Va,z,y,z € X)((((a-2) - (a-y))-2) - ((z-y)-2) = 0),
(Va,y,z € X)(((z-y) - 2) - (y- 2) = 0),

(Vz,y,z€ X)(z-y=0=x-(z-y) =0),

(Vz,y,2 € X)(((x-y) - 2) - (&~ (y-2)) = 0), and

(Va,z,y,2 € X)(((z-y) - 2) - (y - (a-2)) = 0).

(2.0.8)
(2.0.9)
(2.0.10)
(2.0.11)
(2.0.12)

(2.0.13)

From [I2], the binary relation < on a BCC-algebra X = (X, -,0) defined

as follows:

(Vz,ye X)(z <y -y=0)

In a KU-algebra X = (X,-,0), the following assertions are valid (see

[317]).

(Ve,y,z€ X)(z-(y-2)=vy-(z-2)), and

(Vz,y € X)(y- ((y-z)-z) =0).

(2.0.14)

(2.0.15)

Theorem 2.0.4 [12] In a BCC-algebra X = (X,-,0), the following statements

are equivalent:
(1) X is a KU-algebra,

(2) (Va,y,z€ X)(z-(y-2) =y (x-2)), and

(3) Ve,y,ze X)(z-(y-2)=0=y-(x-2)=0).

For a nonempty subset S of a BCC-algebra X = (X, -,0) which satisfies

the following condition:

Ve,ye X)(ye S=xz-ye9).

(2.0.16)



Then the constant 0 of X is in S. Indeed, let z € S. By (E00) and (2018), we

have 0 =z -2 € S.

Definition 2.0.5 A nonempty subset S of a BCC-algebra X = (X, -,0) is called

(1) a BCC-subalgebra [12] of X if it satisfies the following condition:

(Vz,y € S)(z-y € 9), (2.0.17)

(2) a near BCC-filter [14] of X if it satisfies the condition (20018),

(3) a BCC-filter [&1] of X if it satisfies the following conditions:

the constant 0 of X is in S, (2.0.18)

(Vz,ye X)(z-ye S,xe S=yebl), (2.0.19)

(4) an implicative BCC-filter [23] of X if it satisfies the condition (2ZZ10IR) and

the following condition:

(Vz,y,z€e X)(z-(y-2) € S,z-yeS=x-2€59), (2.0.20)

(5) a comparative BCC-filter [22] of X if it satisfies the condition (ZZ0I8) and

the following condition:

Ve,y,ze X)(z-((y-2)-y) € S,ee S=yebl), (2.0.21)

(6) a shift BCC-filter [24] of X if it satisfies the condition (PZZT0IR) and the

following condition:

Ve,y,ze X)(z-(y-2)eS,zeS=((z-y)-y)-z€5), (2.0.22)



(7) a BCC-ideal [12] of X if it satisfies the condition (EZZ018) and the following

condition:

(Ve,y,z€ X)(z-(y-2)eS,ye S=x-2€89), (2.0.23)

(8) a strong BCC-ideal [10] of X if it satisfies the condition (2ZZ018) and the

following condition:

(Vz,y,z€ X)((z-y) - (z-2) € S;ye S=xz€9). (2.0.24)

We have that the concept of BCC-subalgebras is a generalization of near
BCC-filters, near BCC-filters is a generalization of BCC-filters, BCC-filters is
a generalization of BCC-ideals, BCC-filters is a generalization of comparative
BCC-filters, BCC-filters is a generalization of shift BCC-filters, BCC-ideals is a
generalization of implicative BCC-filters, implicative BCC-filters is a generaliza-
tion of strong BCC-ideals, comparative BCC-filters is a generalization of strong
BCC-ideals, and shift BCC-filters is a generalization of strong BCC-ideals. Fur-
thermore, they proved that the only strong BCC-ideal of a BCC-algebra X is
X.

Definition 2.0.6 [53] A fuzzy set F in a nonempty set X (or a fuzzy subset of X)
is described by its membership function fp. To every point z € X, this function
associates a real number fg(z) in the closed interval [0, 1]. The real number fg(z)
is interpreted for the point as a degree of membership of an object x € X to the
fuzzy set F, that is, F := {(z,fr(2)) | v € X}. We say that a fuzzy set F in X is

constant if its membership function fg is constant.

Definition 2.0.7 [63] Let F be a fuzzy set in a nonempty set X. The complement

of F, denoted by ﬁ, is described by its membership function fz which defined as



follows:

(Vo € X)(fz(z) =1 — fp(x)). (2.0.25)
Definition 2.0.8 [53] Let F; and Fy be fuzzy sets in a nonempty set X. The
relations C and =, and the operations U and N are defined as follows:
(1) F1 CFy & (Vo € X)(fp, (2) < fp,(x)),
(2) Fy =Fy < F; CFy,F D Fy,
(3) (Vo € X)((fe, Ufr,)(z) = max{fy, (2),fr,(2)}), and

(4) (Vo € X)((fe, Nfp,)(x) = min{fe, (2), fp, (2)}).

The following two propositions are easy to verify.

Proposition 2.0.9 Let F be a fuzzy set in a nonempty set X. Then following

assertions are valid:

(1) (Vo,y € X)(fe(2) < fr(y) & f(2) > f5(y)),
(2) (Va,y € X)(fr(z) = fp(y) & fr(2) = (),
(3) F— F, and

(4) (Vz,y € X)(1—min{fe(z),fr(y)} = max{fz(z), fz(y)} = max{l —fp(z),1—

Proposition 2.0.10 Let {F;}ic; be a nonempty family of fuzzy sets in a nonempty

set X where I 1s an arbitrary index set. Then following assertions are valid:

(1) (V2,5 € X) (it {min{fr,(2), i, (4)}} = min{int{fr,(2)}, inf . (5)}),

(2) (Vz,y € X)(sup{max{fr;(z),fr;(y)}} = max{silely{fm(x)h S;lely{fm(y)}}%

iel
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(3) (Va,y € X)(nf{max{fe;(z), fri(y)}} = max{int{fe;()}, inf{fr:(y)}}),
(4) (Vo,ye X )(S;lely{min{fm(w% fri(y)}} < min{ilely{fm(x)},S;lely{fm(y)}});

(5) (va € X)(supifr, (2)}) = Silel}a{fpi(x)z});

(6) (Vo € X)(inf{fr,(¢)}") = inf{fr,(2)°}),

(7) (Vo e X)(1 - Silely{fm(:v)} = inf{1 — f(2)}), and
(8) (Vo & X)(1 — inf{fr,(2)} = sup{l — fr,(2)}).

i€l

For a fuzzy set F in a BCC-algebra X = (X, -,0) which satisfies the
following condition:

(Ve,y € X)(fr(z - y) > fr(y)). (2.0.26)

Then
(Vx € X)(fp(0) > fp(z)).

Indeed, let x € X. By (E00)) and (20028), we have fp(0) = fp(z - z) > fp(x).

Definition 2.0.11 A fuzzy set F in a BCC-algebra X = (X, -,0) is called
(1) a fuzzy BCC-subalgebra [A1) of X if it satisfies the following condition:

(Vz,y € X)(fr(z - y) = min{fr(z), fr(y)}), (2.0.27)

(2) a fuzzy near BCC-filter [39] of X if it satisfies the condition (Z1IZH),

(3) a fuzzy BCC-filter [&7] of X if it satisfies the following conditions:
(Vz € X)(fp(0) > fr(x)), (2.0.28)

(Vz,y € X)(fr(y) > min{fp(z - y), fr(z)}), (2.0.29)
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(4) a fuzzy implicative BCC-filter of X if it satisfies the condition (2Z1I28) and

the following condition:

(Va,y,z € X)(fr(x - 2) > min{fp(z - (y - 2)),fr(z - y)}), (2.0.30)

(5) a fuzzy comparative BCC-filter of X if it satisfies the condition (ZZ028) and

the following condition:

(Vz,y,z € X)(fr(y) > min{fr(z - ((y- 2) - y)),fr(2)}), (2.0.31)

(6) a fuzzy shift BCC-filter of X if it satisfies the condition (Z02R) and the

following condition:

(Va,y, 2 € X)(te(((z - y) - y) - 2) > min{fe(z - (y - 2)), e (2)}),  (2.0.32)

(7) a fuzzy BCC-ideal [A7] of X if it satisfies the condition (ZZ028) and the

following condition:

(Vz,y,z € X)(fp(z - 2) > min{fp(z - (y - 2)),fr(y)}), (2.0.33)

(8) a fuzzy strong BCC-ideal [10] of X if it satisfies the condition (ZZI2R) and

the following condition:

(Vo,y,z € X)(fp(z) > min{fp((z - y) - (z - 2)),fr(v)}). (2.0.34)

We have that the concept of fuzzy BCC-subalgebras is a generalization of
fuzzy near BCC-filters, fuzzy near BCC-filters is a generalization of fuzzy BCC-
filters, fuzzy BCC-filters is a generalization of fuzzy BCC-ideals, and fuzzy BCC-

ideals is a generalization of fuzzy strong BCC-ideals. Furthermore, they proved
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that fuzzy strong BCC-ideals and constant fuzzy sets coincide in a BCC-algebras
X.

Let p be an equivalence relation on a BCC-algebra X = (X,-,0). If

x € X, then the p-class of z is the set (x), defined as follows:

(), ={y € X | (z,y) € p}.

An equivalence relation p on a BCC-algebra X = (X, -,0) is called a congruence

relation if

(Vx,y,zeX)((x,y) cEp= (.T‘Z,Zj'Z) € p and (Z‘%,Z'y) Ep)

Definition 2.0.12 For nonempty subsets A and B of a BCC-algebra X =
(X,-,0), we denote

AB=A-B={a-bla€ Aandbc B}

If p is a congruence on a BCC-algebra X = (X, -,0), then

(Vz,y € X)((#)p(y)y € (x-9),). (see [])

A congruence relation p on a BCC-algebra X = (X -,0) is said to be complete if

(Vo,y € X)((2)p(v)p = (2 - y),).

Example 2.0.13 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0
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and a binary operation - defined by the following Cayley table:

—_
[\
= W W | W

[
o O o o | O
o o O

oS O

(@)

Let

p= {(07 0)7 (17 1)7 (2a 2)7 (37 3)7 (07 1)a (17 0)7 (27 3)7 <3a 2>}

Then p is a congruence relation on X. Thus

(O)p - (1)p = {O, 1}7 (2>p N (3)/) - {2> 3}-

We consider

(0-0), = (0), = {0,1} = {0, 1} = {0,1}{0, 1} = (0),,(0),,

(0-1), = (1), = {0,1} = {0, 1} = {0, 1}{0, 1} = (0),,(1),,

(0-2), = (2), = {2,3} = {2,3} = {0,1}{2,3} = (0),(2),,
(0-3), = (3)p = {2,3} = {2,3} = {0,1}{2,3} = (0),(3),,
(1-0), = (0), = {0,1} = {0,1} = {0, 1}{0, 1} = (1),(0),,,
(1-1), = (0), ={0,1} = {0,1} = {0,1}{0, 1} = (1),(1),,
(1-2), = (2), = {2,3} = {2,3} = {0, 1}{2,3} = (1),(2),,
(1-3), = (3)p ={2,3} = {2,3} = {0, 1}{2,3} = (1),(3),,

(2-0), = (0), = {0,1} = {0, 1} = {2,3}{0, 1} = (2),(0),,
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(2-1), = (0), ={0,1} = {0,1} = {2,3}{0,1} = (2),(1),,,
(2-2), = (0), ={0,1} = {0, 1} = {2,3}{2,3} = (2),(2),.,
(2:3), = (1), ={0,1} = {0,1} = {2,3}{2,3} = (2),(3),,
(3:0), = (0), ={0,1} = {0,1} = {2,3}{0, 1} = (3),(0),.,
(3-1), = (0), ={0,1} = {0,1} = {2,3}{0,1} = (3),(1),,,
(3-2), = (0), ={0,1} = {0,1} = {2,3}{2,3} = (3),(2),.,
(3-3), =(0), ={0,1} = {0,1} = {2,3}{2,3} = (3),(3),-
Hence, p is a complete congruence relation on X.

Definition 2.0.14 Let p be an equivalence relation on a nonempty set X and

S € P(X). The upper approximation of S is defined by

p(S) ={zeX|(x), €S}

the lower approximation of S is defined by

p (8) ={r e X[ (x),n5 #0}.

We know that p*(S) and p~(S) are subset of X. Then we call S that a

rough set of X.
Definition 2.0.15 [26] Let p be an equivalence relation on a BCC-algebra X =
(X,-,0). Then a nonempty subset S of X is called

(1) an upper rough BCC-subalgebra of X if p(S) is a BCC-subalgebra of X,

(2) an upper rough near BCC-filter of X if p*(S) is a near BCC-filter of X,
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(3) an upper rough BCC-filter of X if p™(P) is a BCC-filter of X,
(4) an upper rough BCC-ideal of X if p*(S) is a BCC-ideal of X,
(5) an upper rough strong BCC-ideal of X if p*(S) is a strong BCC-ideal of X,

(6) a lower rough BCC-subalgebra of X if ) # p~(S) is a BCC-subalgebra of
X,

(7) a lower rough near BCC-filter of X if () # p~(S) is a near BCC-filter of X,
(8) a lower rough BCC-filter of X if () # p~(S) is a BCC-filter of X,
(9) a lower rough BCC-ideal of X if () # p~(.S) is a BCC-ideal of X,

(10) a lower rough strong BCC-ideal of X if ) # p~(S) is a strong BCC-ideal of
X

’

(11) a rough BCC-subalgebra of X if it is both an upper rough BCC-subalgebra

and a lower rough BCC-subalgebra of X,

(12) a rough near BCC-filter of X if it is both an upper rough near BCC-filter

and a lower rough near BCC-filter of X,

(13) a rough BCC-filter of X if it is both an upper rough BCC-filter and a lower
rough BCC-filter of X,

(14) a rough BCC-ideal of X if it is both an upper rough BCC-ideal and a lower
rough BCC-ideal of X, and

(15) a rough strong BCC-ideal of X if it is both an upper rough strong BCC-ideal

and a lower rough strong BCC-ideal of X.

Definition 2.0.16 [61, 52] A Pythagorean fuzzy set P in a nonempty set X is

described by their membership function pp and non-membership function vp. To
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every point x € X, these functions associate real numbers pup(z) and vp(z) in the

closed interval [0, 1], with the following condition:

(Vo € X)(0 < pp(2)* +vp(x)* < 1). (2.0.35)

The real numbers pp(xz) and vp(z) are interpreted for the point as a degree
of membership and non-membership of an object x € X, respectively, to the
Pythagorean fuzzy set P, that is, P := {(z, up(x),vp(z)) | x € X}. For the sake
of simplicity, a Pythagorean fuzzy set P is denoted by P = (up,vp). We say that
a Pythagorean fuzzy set P in X is constant if their membership function pp and

non-membership function vp are constant.

Definition 2.0.17 Let P = (up, vp) and Q = (uq, vq) be Pythagorean fuzzy sets

in X. The relations C and =, and the operations U and N are defined as follows:

(1) PC Qe (Vo e X)(up(z) < pglz), ve(r) = vo(x)),
2) P=Q&ePCQP2Q,
(3) PUQ = (up Upq,vr Nrg), and

(4) PNnQ= (MpﬂﬂQ,VpUVQ).

Note that, P U Q and P N Q are Pythagorean fuzzy sets in X. In-
deed, let # € X. Then (up U puq)(z) = max{up(z), ug(z)} and (vp Nvg)(z) =

min{vp(z), vq(x)}. Thus we consider

0 < ((up U pq)(2))* + ((vp Nvg)(2))”

= max{p (), po(r)}?* + min{ve(z), vg(z)}>

= (pp(2))? + min{vp(z), vo(x)}*
(WLOG, assume that max{up(z), pq(x)} = pp(x))
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IN

(up(2))* + (vp(x))?

IN
—_

This implies that P U Q is a Pythagorean fuzzy set in X. The proof of P N Q is

similar to the proof of PUQ. Hence, we can denote PUQ = (up U pq, vp Nrg) =

(1puq, Ypug) and PN Q = (up N uq, vp Uvg) = (tpnq, YPnq)-

Definition 2.0.18 [61] Let {P; = (up;, ¥p;) }ier be a nonempty family of Pythago-
rean fuzzy sets in a nonempty set X where I is an arbitrary index set. The
intersection of P;, denoted by /\,_; P;, is described by theirs membership function

HPiey Pi and non-membership function VAsey Pi which defined as follows:

?

(V€ X)(pup,e, (@) = nf{pp;(2) }ier),

(Vo € X)(V/\ig p,(7) = sup{vp;() }ier)-

The union of P;, denoted by \/,_; P;, is described by theirs membership function

., p; and non-membership function vy, _ p, which defined as follows:
(Vo € X)(py,, p,(2) = sup{pp;(z) }ier),
(Vo € X)(I/vielpl(x) = inf{vp;(z) }icr).
In particular, if 7 = {1,2,...,n}, the intersection of Py, Py, ... P, de-
noted by P1APsA. . AP, is described by theirs membership function pp, ap,a..ap,
and non-membership function vp, sp,a..ap, Which defined as follows:

(Vo € X)(kpiapon...ap, (2) = min{up (), ppy(2), ..., e, () ),

(Vz € X)(vp,apon. AP, () = max{vp(x),vpy(z), ..., vp,(2)}).



18

The union of Py, Py, ..., P,, denoted by Py VP, V...V P,, is described by theirs
membership function pp,vp,v..vp, and non-membership function vp,vp,v. vp,

which defined as follows:
(VZL’ € X)(NP1VP2V~~VPn (.I‘) - maX{MP1<I>7 MP2(x)7 e 7/~LPn(‘r)})7
(Vi[) € X)<VP1VP2V..,VPn (37) = min{VPl(x)a VP2($)7 <. 7”Pn(x)})'

From now on, we shall let E be a set of parameters. Let PF(X) be the
set of all Pythagorean fuzzy sets in a universal set X. A subset A of E is called

a set of statistics.

Definition 2.0.19 [34] Let A C E. A pair (f’,A) is called a Pythagorean fuzzy
soft set over X if P is a mapping given by P: 4 — PF(X), that is, a Pythagorean
fuzzy soft set is a statistic family of Pythagorean fuzzy sets in X. In general,
for every a € A, Pla] := {(z, up(y (@), vy () | @ € X} is a Pythagorean fuzzy
set in X and it is called a Pythagorean fuzzy value set of statistic a. We call a
Pythagorean fuzzy soft set (ﬁ, A) over X that is a constant Pythagorean fuzzy soft
set based on the element a € A (we shortly call an a-constant Pythagorean fuzzy
soft set) of X if a Pythagorean fuzzy set f’[a] in X is a constant Pythagorean
fuzzy set. If (ﬁ, A) is an a-constant Pythagorean fuzzy soft set of X for all a € A,

we say that (ﬁ, A) is a constant Pythagorean fuzzy soft set of X.

By Definition EZXITY, we can find an example of Pythagorean fuzzy soft
sets over BCC-algebras X = (X, -,0) as follows:

Example 2.0.20 Let X = {0, 1,2,3} be a set which represents a collection of 4
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Thai paintings. Define binary operation - on X as the following Cayley tables:

[
o O o o | O
)

o O
S W W W W

Then X = (X, -,0) is a BCC-algebra. Let
A = {identity, beauty, skill}

with Plidentity], P[beauty], and P[skill] are Pythagorean fuzzy sets in X defined

as follows:

P 0 1 2 3

identity (0.4,0.5) (0.3,0.3) (0.1,0.6) (0.8,0.2)
beauty (0.9,0.3) (0.2,0.5) (0.1,0.2) (0.8,0.4)
skill  (0.3,0.5) (0.3,0.7) (0.5,0.6) (0.7,0.7)

Hence, (ﬁ, A) is a Pythagorean fuzzy soft set over X.

Definition 2.0.21 [84] Let A, B C F and (ﬁ,A),(Q,B} be two Pythagorean

fuzzy soft sets over X. If (P, A) and (Q, B) satisfy the following two conditions:

(1) BC A and

(2) (Vb€ B,z € X)(ugp (@) < pppy (@), vap (€) = vpy (@),

then we call (Q, B) the Pythagorean fuzzy soft subset of (P, A), denoted by
(Q B)C(P, A).
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Definition 2.0.22 [34] Let A, B C E and (P, A),(Q, B) be two Pythagorean
fuzzy soft sets over X. If (Q, B)C(P, A) and (P, A)C(Q, B), then we call (P, A)
equal (Q, B), denoted by (Q, B)=(P, A), meaning, A = B and P[a] = Q[a] for all

ac A.

Definition 2.0.23 [34] Let (Py, A;) and (P, A;) be two Pythagorean fuzzy soft
sets over X. The union of (Py, A;) and (Ps, A) is defined to be the Pythagorean

fuzzy soft set (Py, A1)U(Py, A3) = (P, A) satisfying the following conditions:

(1) A= Al UA2 and

(i) for all a € A,

ﬁl[a] iface Al \ AQ

Pla] = { Py[d] ifae A\ A
ﬁl[a] \/ﬁz[a] if a € Al ﬂAg

The restricted union of (P, A1) and (P, A) is defined to be the Pythagorean

fuzzy soft set (Py, A)U(Py, Ay) = (P, A) satisfying the following conditions:

(1) A:AlﬂAz%Q)and

(ii) Pla] = P1[a] V Py[a] for all a € A.

Definition 2.0.24 Let (Py, 4;) and (P, A5) be two Pythagorean fuzzy soft sets
over X. The extended intersection of (P1, A1) and (P, As) is defined to be the
Pythagorean fuzzy soft set (Py, A1)N(Ps, Ay) = (P, A) satisfying the following

conditions:

(1) A= Al U A2 and
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(ii) for all a € A,

ﬁl[a] if a c Al \ AQ

P[a] = 152[@] ifae A2 \ Al

Pl[a]/\ﬁg[a] 1fa€A1ﬂA2

The intersection [34] of (Py, A;) and (Ps, Ay) is defined to be the fuzzy soft set

(P1, A))A(Py, Ay) = (P, A) satisfying the following conditions:

(1) A:AlﬂAg%Q)and

(ii) Pla] = P1]a] A Py[a] for all a € A.



CHAPTER I11

PYTHAGOREAN FUZZY SETS

Next, we shall let X be a BCC-algebra X = (X, -,0).
3.1 Pythagorean fuzzy sets in BCC-algebras

We apply the concept of Pythagorean fuzzy sets to BCC-algebras and

introduce the eight types of Pythagorean fuzzy sets in BCC-algebras.
Definition 3.1.1 A Pythagorean fuzzy set P = (up,vp) in X is called

(1) a Pythagorean fuzzy BCC-subalgebra of X if it satisfies the following condi-

tions:

(Vo,y € X)(pp(z - y) = min{pp (), up(y)}), (3.1.1)

(Va,y € X)(ve(x - y) < max{ve(z),vp(y)}), (3.1.2)

(2) a Pythagorean fuzzy near BCC-filter of X if it satisfies the following condi-

tions:

(Va,y € X)(up(z-y) > pe(y)), (3.1.3)

(Vz,y € X)(vp(x-y) < vp(y)), (3.1.4)

(3) a Pythagorean fuzzy BCC-filter of X if it satisfies the following conditions:

(¥ € X)(p(0) > pin(2), (3.1.5)
(Vz € X)(vp(0) < vp(x)), (3.1.6)
(Va,y € X)(up(y) = min{up (2 - y), pe(2)}), (3.1.7)

(Vz,y € X)(vp(y) < max{vp(z-y),vp(z)}), (3.1.8)
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(4) a Pythagorean fuzzy implicative BCC-filter of X if it satisfies the conditions
(B13) and (BTH) and the following conditions:

(vx>yv zZ € X)(ILLP(;E ) Z) > min{ﬂP<x ’ (y ’ Z))ﬂMP(x ’ y)})? (3'1'9)

(Va,y,z € X)(vp(x - z) <max{vp(z-(y-2)),ve(x-y)}), (3.1.10)

(5) a Pythagorean fuzzy comparative BCC-filter of X if it satisfies the conditions
(B13H) and (BTH) and the following conditions:

(Vo,y, 2 € X)(pe(y) = min{up (- ((y - 2) - y)), pe(z)}), (3.1.11)

(Vz,y,2 € X)(vp(y) < max{ve(z- ((y-2) y)),ve(2)}), (3.1.12)

(6) a Pythagorean fuzzy shift BCC-filter of X if it satisfies the conditions (B=L3)
and (BM) and the following conditions:

(V2,92 € X)(up(((z - y) -y) - 2) = min{pp(z - (y - 2)), pp(2)}), (3.1.13)

(Vz,y,2 € X)(ve(((2-y) - y) - 2) Smax{vp(z- (y-2)),vp(z)}). (3.1.14)

(7) a Pythagorean fuzzy BCC-ideal of X if it satisfies the conditions (BTH) and
(BI@) and the following conditions:

(Vo,y, 2 € X)(up(2 - 2) = min{pp(z - (y - 2)), pe(y)}), (3.1.15)

(Vr,y,z € X)(vp(x - 2) <max{vp(z-(y-2)),vp(y)}), (3.1.16)

(8) a Pythagorean fuzzy strong BCC-ideal of X if it satisfies the conditions
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(B13) and (BTH) and the following conditions:

(Vo,y, 2 € X)(up(x) = min{up((z - y) - (2 - 7)), pe(y)}), (3.1.17)

(Va,y,z € X)(vp(x) <max{vp((z-y) - (z-2)),vp(y)}). (3.1.18)
Theorem 3.1.2 A Pythagorean fuzzy set in X is a Pythagorean fuzzy strong

BCC-ideal if and only if it is constant.

Proof. Assume that P = (up,vp) is a Pythagorean fuzzy strong BCC-ideal of X.
Then it satisfies (B71-3) and (BT8). Thus for all z € X,

pp(x) 2 min{pp((z - 0) - (z - x)), pp(0)} ((B113))
= min{pp(0- (z - 2)), up(0)} ((BCC-3))
= min{up(z - 2), pp(0)} ((BCC-2))
= min{up(0), ur(0)} ((e))
= e (0)

and

vp(z) < max{vp((z-0) - (z-2)),vp(0)} ((B113))
= max{vp(0 - (z - 2)),vp(0)} ((BCC-3))
= max{vp(z - z),vp(0)} ((BCC-2))
= max{vp(0), p(0)} (Cami))
= 1p(0).

Since pp(0) > pp(x) and vp(0) < vp(x), we have pp(x) = pp(0) and vp(x) =

vp(0) for all € X. Hence, up and vp are constant, that is, P is constant.

The converse is obvious because P is constant. O
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Theorem 3.1.3 Fvery Pythagorean fuzzy near BCC-filter of X is a Pythagorean
fuzzy BCC-subalgebra.

Proof. Let P = (up,vp) be a Pythagorean fuzzy near BCC-filter of X. Then for

all v,y € X,
pp(@ - y) = pp(y) ((B13))
> min{up(z), e (y)}
and
ve(z - y) < ve(y) ((B13))
< max{vp(z),vp(y)}.
Therefore, P is a Pythagorean fuzzy BCC-subalgebra of X. O

The converse of Theorem B3 does not hold in general. This is shown

by the following example.

Example 3.1.4 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

—_
[\

o O

—
o o o o | o
—

o W w W Ww

We define a Pythagorean fuzzy set P = (up,vp) with the membership function
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pp and the non-membership function vp as follows:

X0 1 2 3

pp | 0.9 0.7 0.8 0.5
vp| 0 04 0.1 0.6

Then P is a Pythagorean fuzzy BCC-subalgebra of X. Since pp(3-2) = pp(1) =
0.7 # 0.8 = up(2), we have P is not a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.1.5 Fvery Pythagorean fuzzy BCC-filter of X is a Pythagorean fuzzy
near BCC-filter.

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-filter of X. Then for all

T,y € X,
pe(z - y) > min{up(y - (z-y)), ue(y)} ((E&L2))
= min{up(0), pe(y)} ((Z3))
= pp(y)
and
vp(z - y) < max{vp,(y - (z-y)) ve(y)} (EL3))
= max{vp(0), vp(y)} (=)
= vp(y).
Therefore, P is a Pythagorean fuzzy near BCC-filter of X. O

The converse of Theorem BT does not hold in general. This is shown

by the following example.

Example 3.1.6 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0
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and a binary operation - defined by the following Cayley table:

[
o O o o | O
o o o =
S NN
S W W W W

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 15 203

pp |1 0.7 0.8 0.75
vp |0 0.6 0.3 0.4

Then P is a Pythagorean fuzzy near BCC-filter of X. Since up(1) = 0.7 2 0.75 =
min{1,0.75} = min{up(0), up(3)} = min{up(3 - 1), up(3)}, we have P is not a
Pythagorean fuzzy BCC-filter of X.

Theorem 3.1.7 Every Pythagorean fuzzy implicative BCC-filter of X is a Pytha-
gorean fuzzy BCC-filter.

Proof. Let P = (up,vp) be a Pythagorean fuzzy implicative BCC-filter of X.
Then for all x,y € X,

pe(y) = pup(0-y) ((BCC-2))
> min{up(0 - (z-y)), pp(0 - z)} ((B19))

= min{up(z - y), pp(r)} ((BCC-2))
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and
vp(y) = vp(0-y) ((BCC-2))
< max{vp(0- (z-y)),vp(0-2)} ((ET1m))
= max{vp(z - y),vp(z)}. ((BCC-2))
Therefore, P is a Pythagorean fuzzy BCC-filter of X. O

The converse of Theorem BT does not hold in general. This is shown

by the following example.

Example 3.1.8 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

~ W N =

o O o o o | o
o O =
@) \&)

S O W W W | w

S W W ke |

We define a Pythagorean fuzzy set P = (up, vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3 4

pp | 0.8 0.7 0.5 0.3 0.3
vp| 0 02 03 05 0.5

Then P is a Pythagorean fuzzy BCC-filter of X. Since pup(3-4) = pp(3) = 0.3 2
0.8 = min{0.8,0.8} = min{up(0), up(0)} = min{pup(3-(3-4)), up(3-3)}, we have

P is not a Pythagorean fuzzy implicative BCC-filter of X.
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Theorem 3.1.9 Every Pythagorean fuzzy comparative BOC-filter of X is a Pytha-
gorean fuzzy BCC-filter.

Proof. Let P = (up,vp) be a Pythagorean fuzzy comparative BCC-filter of X.
Then for all x,y € X,

pp(y) = minfpup(z - ((y - 0) - ), pp(2)} ((ETLD))
= min{pp(z - (0-y)), pp(z)} ((BCC-3))
= min{yip(c - y), (1)) (BCC-2))
and
ve(y) < max{ve(z - ((y-0) - y)),ve(2)} ((BL12))
= max{vp(z - (0-y)),vp(r)} ((BCC-3))
= max{vp(z - y),vp(z)}. ((BCC-2))
Therefore, P is a Pythagorean fuzzy BCC-filter of X. O

The converse of Theorem BT does not hold in general. This is shown

by the following example.

Example 3.1.10 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0(0 1 2 3 4
110 0 2 3 4
2/0 00 3 4
3/0 00 0 4
410 1 2 3 0
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We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3 4

pup |1 0.6 0.6 0.6 04
vp |0 0O 01 01 04

Then P is a Pythagorean fuzzy BCC-filter of X. Since pp(2) = 0.6 2 1 =
min{1, 1} = min{up(0), up(0)} = min{up(0-((2-3)-2)), up(0)}, we have P is not

a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.1.11 Ewvery Pythagorean fuzzy shift BCC-filter of X is a Pythagorean
fuzzy BCC-filter.

Proof. Let P = (up,vp) be a Pythagorean fuzzy shift BCC-filter of X. Then for

all v,y € X,
pe(y) = pup(0-y) ((BCC-2))
= pp((0-0) - y) ()
= pp(((y-0)-0)-y) ((BCC-3))
> min{pp(z - (0-y)), pp(z)} ((BT13))
= min{up(z - y), pp(2)} ((BCC-2))
and
vp(y) = vp(0-y) ((BCC-2))
= vp((0-0) - y) ((Zm))
=vp(((y-0)-0)-y) ((BCC-3))

< max{vp(z - (0-y)),vp(x)} ((B113))
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= max{vp(z - y),vp(x)}. ((BCC-2))

Therefore, P is a Pythagorean fuzzy BCC-filter of X. ]

The converse of Theorem BT 11 does not hold in general. This is shown

by the following example.

Example 3.1.12 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0j0 1 2 3 4
110 0 2 2 4
2/0 0 0 2 4
3/0 0 0 0 4
410 1 2 3 0

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3 4

pp | 0.9 05 0.2 0.2 0.2
vp |03 03 04 04 04

Then P is a Pythagorean fuzzy BCC-filter of X. Since up(((1-2)-2)-1) = pp(1) =
0.5 2 0.9 = min{0.9,0.9} = min{pp(0), up(0)} = min{up(0- (2- 1)), up(0)}, we
have P is not a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.1.13 FEvery Pythagorean fuzzy implicative BCC-filter of X is a Pytha-

gorean fuzzy BCC-ideal.

Proof. Let P = (up,vp) be a Pythagorean fuzzy implicative BCC-filter of X.
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By Theorem BT, we have P is a Pythagorean fuzzy BCC-filter, and so P is a

Pythagorean fuzzy near BCC-filter. Then for all x,y, 2z € X,

pp (- z) = min{pp(z - (y - 2)), w2 - )} ((ET3))
> min{up(z - (y - 2)), pe(y)} (EL3))
and
vp(x - z) < max{vp(z - (y - 2)),vp(z-y)} ((BT1m))
< max{vp(z - (y- 2)),vp(y)}- (ET3))
Therefore, P is a Pythagorean fuzzy BCC-ideal of X. [

The converse of Theorem BTT3 does not hold in general. This is shown

by the following example.

Example 3.1.14 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0(0 1 2 3 4
110 0 2 3 4
2/0 00 3 4
3/0 01 0 4
410 0 0 0O

We define a Pythagorean fuzzy set P = (up,vp) with the membership function



33

pp and the non-membership function vp as follows:

X0 1 2 3 4

pp | 0.6 0.5 0.2 0.1 0.1
vp |03 04 05 0.6 0.8

Then P is a Pythagorean fuzzy BCC-ideal of X. Since pp(3-2) = pp(1) = 0.5 2
0.6 = min{0.6,0.6} = min{up(0), up(0)} = min{up(3-(3-2)), up(3-3)}, we have

P is not a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.1.15 Every Pythagorean fuzzy strong BCC-ideal of X is a Pythago-
rean fuzzy implicative BCC-filter (resp., Pythagorean fuzzy comparative BCC-
filter, Pythagorean fuzzy shift BCC-filter).

Proof. Let P = (up,vp) be a Pythagorean fuzzy strong BCC-ideal of X. Since
P is constant, we have P is a Pythagorean fuzzy implicative BCC-filter (resp.,
Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter)
of X. O]

The converse of Theorem BT T3 does not hold in general. This is shown

by the following examples.

Example 3.1.16 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0(0 1 2 3 4
110 0 0 0 4
2/0 1 00 4
3/0 1 2 0 4
410 1 2 3 0
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We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3 4

pwp |05 04 04 04 0.3
vp |04 05 05 05 0.8

Then P is a Pythagorean fuzzy implicative BCC-filter of X. But P is not a
constant Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy
strong BCC-ideal of X.

Example 3.1.17 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0/0 1 2 4
110 0 1 2 4
2(0 0 0 2 4
3/0 0 0 0 4
410 0 0 2 0

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3 4

pwp |09 09 09 09 0.3
vp |03 0.3 0.3 0.3 0.6

Then P is a Pythagorean fuzzy comparative BCC-filter of X. But P is not a
constant Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy
strong BCC-ideal of X.
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Example 3.1.18 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

—_
N}
N W W

—_
o o o o o | O
o oa O

(= N S

~ W N
o O
=

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

up and the non-membership function vp as follows:

X0 1 2 3 4

pwp 0.5 0.2 02 0.2 0.1
vp |02 06 0.6 0.6 0.8

Then P is a Pythagorean fuzzy shift BCC-filter of X. But P is not a constant
Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy strong
BCC-ideal of X.

Theorem 3.1.19 Every Pythagorean fuzzy BCC-ideal of X is a Pythagorean
fuzzy BCC-filter.

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-ideal of X. It is sufficient
to prove the conditions (B1-1) and (BT8). Then for all z,y € X,

pp(y) = pup(0-y) ((BCC-2))
> min{pp(0- (2 -y)), up(x)} ((B11H))

— min{pp(a - y), e ()} ((BCC-2))
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and
vp(y) = vp(0-y) ((BCC-2))
< max{vp(0- (2 - y)), ve(2)} (ET1m))
= max{vp(z - y),vp(x)}. ((BCC-2))
Therefore, P is a Pythagorean fuzzy BCC-filter of X. O

The converse of Theorem BTT9 does not hold in general. This is shown

by the following example.

Example 3.1.20 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

012 3
0{0 1 2 3
110 0 2 2
2|10 1 0 2
3/0 1 00

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3

up |09 0.5 0.2 0.2
vp |01 0.4 05 0.5

Then P is a Pythagorean fuzzy BCC-filter of X. Since pup(2-3) = pp(2) = 0.2 2
0.5 = min{0.9,0.5} = min{up(0), pp(1)} = min{pup(2- (1-3)), up(1)}, we have P

is not a Pythagorean fuzzy BCC-ideal of X.
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Theorem 3.1.21 FEvery Pythagorean fuzzy strong BCC-ideal of X is a Pythago-
rean fuzzy BCC-ideal.

Proof. Let P = (up, vp) be a Pythagorean fuzzy strong BCC-ideal of X. By The-
orem BT, we have P is constant. Therefore, it is obvious that P is a Pythagorean

fuzzy BCC-ideal of X. O]

The converse of Theorem B-T21 does not hold in general. This is shown

by the following example.

Example 3.1.22 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

—_
o o o O | O
=

N O N
o W Ww W | w

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pup and the non-membership function vp as follows:

X\ P=g1-12% 3

pp |1 05 0.2 0.7
vp |0 0.6 08 0.4

Then P is a Pythagorean fuzzy BCC-ideal of X. But P is not constant and by

Theorem BT, we have P is not a Pythagorean fuzzy strong BCC-ideal of X.

Next, we shall find examples for study connection of Pythagorean fuzzy

sets in BCC-algebras.
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Example 3.1.23 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

—_
o O O O | O
o o o
S NN
S NN W W

We define a Pythagorean fuzzy set P = (up, vp) with the membership function

pup and the non-membership function vp as follows:

X0 1 2 3

up |05 02 0.1 0.1
vp |04 0.7 0.9 0.9

Then P is a Pythagorean fuzzy shift BCC-filter of X. Since pup(2-3) = pup(2) =

0.1 ? 0.5 = min{0.5,0.5} = min{up(0), up(0)} = min{up(2-(2-3)), up(2 - 2)},

we have P is not a Pythagorean fuzzy implicative BCC-filter of X.

Example 3.1.24 From Example BT14, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:
X |0 1 2 3 4

up | 0.8 0.1 0.2 0.6 0.1
vp |0.1 0.7 0.6 02 0.7

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Since vp(((2-1)-1)-
2) = vp(2) = 0.6 £ 0.2 = max{0.1,0.2} = max{vp(0),vp(3)} = max{rp(3 - (1-
2)),vp(3)}, we have P is not a Pythagorean fuzzy shift BCC-filter of X.

Example 3.1.25 From Example BT18, we define a Pythagorean fuzzy set P =
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(up,vp) with the membership function pp and the non-membership function vp

as follows:
X0 1 2 3 4

pp 0.5 0.2 03 04 0.2
vp |05 09 08 06 0.9

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Since vp(2) = 0.8 £
0.6 = max{0.5,0.6} = max{vp(0),rp(3)} = max{rp(3-((2-1)-2)),vp(3)}, we

have P is not a Pythagorean fuzzy comparative BCC-filter of X.

Example 3.1.26 Let X = {0,1,2,3,4} be a BCC-algebra with a fixed element

0 and a binary operation - defined by the following Cayley table:

012 3 4
0/0 1 2 3 4
110 0 0 00
2/0 1 0 0 4
3101 2 0 4
410 1 2 3 0

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 .2 3 4

up |07 0.1 04 06 0.1
vp 0.2 0.7 0.6 0.4 0.7

Then P is a Pythagorean fuzzy BCC-ideal of X. Since vp(4) = 0.8 £ 0.2 =
max{0.2,0.2} = max{vp(0),p(0)} = max{vp(0-((4-1)-4)),vp(0)}, we have P

is not a Pythagorean fuzzy comparative BCC-filter of X.

Example 3.1.27 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0
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and a binary operation - defined by the following Cayley table:

[
o O o o | O
o o o =
S NN
S W W W W

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

XAL0 1 P28 (3

pp | 0.6 0.4 0.2 0.2
vp |03 05 0.9 0.9

Then P is a Pythagorean fuzzy BCC-ideal of X. Since vp(((1-2)-2)-1) = vp(1) =
0.5 £ 0.3 = max{0.3,0.3} = max{vp(0),p(0)} = max{vp(0-(2-1)),vp(0)}, we
have P is not a Pythagorean fuzzy shift BCC-filter of X.

Example 3.1.28 From Example BTT23, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:
X |0 1 2 3

pp | 0.7 0.7 04 04
vp | 0.5 0.5 0.6 0.6

Then P is a Pythagorean fuzzy shift BCC-filter of X. Since vp(2-3) = vp(2) =
0.6 £ 0.5 = max{0.5,0.5} = max{vp(0),vp(1)} = max{vp(2-(1-3)),vp(1)}, we

have P is not a Pythagorean fuzzy BCC-ideal of X.

Example 3.1.29 From Example BT23, we define a Pythagorean fuzzy set P =

(up,vp) with the membership function pp and the non-membership function vp
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as follows:
X |0 1 2 3

up |05 05 01 0.1
vp |06 06 0.8 0.8
Then P is a Pythagorean fuzzy shift BCC-filter of X. Since vp(2) = 0.8 £ 0.6 =
max{0.6,0.6} = max{vp(0),p(0)} = max{vp(0-((2-3)-2)),vp(0)}, we have P

is not a Pythagorean fuzzy comparative BCC-filter of X.

We get the diagram of the generalization of Pythagorean fuzzy sets in

BCC-algebras, which is shown with Figure [

Pythagorean fuzzy
BCC-subalgebra

Pythagorean fuzzy
near BCC-filter

»  Pythagorean fuzzy

A

BCC-filter
Pythagorean fuzzy
BCC-ideal
Pythagorean fuzzy Pythagorean fuzzy . Pythagorean fuzzy
comparative BCC-filter implicative BCC-filter shift BCC-filter
T Pythagorean fuzzy T

strong BCC-ideal

Constant Pythagorean
fuzzy set

Figure 1: Pythagorean fuzzy sets in BCC-algebras



42

If Fis a fuzzy set in X, then (fg,f5) is a Pythagorean fuzzy set in X.
Indeed, for all x € X,

0 < (fr(2))” + (£ (2))?
= (fe(2))? + (1 — fp(x))?
< fp() + 1 = 2fp(z) + (fe(2))?
< fp(z) + 1 — 2fp(z) + fo(2)

= 1.

Theorem 3.1.30 Let F be a fuzzy set in X. Then the following statements hold:

(1) (fe,fy) is a Pythagorean fuzzy set in X,

(2) F is a fuzzy BCC-subalgebra of X if and only if (fr,f5) is a Pythagorean
fuzzy BCC-subalgebra of X,

(3) F is a fuzzy near BCC-filter of X if and only if (fr,f5) is a Pythagorean
fuzzy near BCC-filter of X,

(4) F is a fuzzy BCC-filter of X if and only if (fr,fz) is a Pythagorean fuzzy
BCC-filter of X,

(5) F is a fuzzy implicative BCC-filter of X if and only if (fy,f5) is a Pythago-
rean fuzzy implicative BCC-filter of X,

(6) Fis a fuzzy comparative BCC-filter of X if and only if (fe,fz) is a Pythago-

rean fuzzy comparative BCC-filter of X,

(7) F is a fuzzy shift BCC-filter of X if and only if (fy,f5) is a Pythagorean
fuzzy shift BOC-filter of X.

(8) F is a fuzzy BCC-ideal of X if and only if (fy,f5) is a Pythagorean fuzzy
BCC-ideal of X, and
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(9) F is a fuzzy strong BCC-ideal of X if and only if (fp,f5) is a Pythagorean
fuzzy strong BCC-ideal of X.

Proof. (1) Let € X. Then 0 < fp(z)? + fz(2)? = fp(2)? + (1 — fp(x))* <

fe(z) + (1 — fe(z)) = 1. Hence, (fg,f5) is a Pythagorean fuzzy set in X.

(2) Assume that F is a fuzzy BCC-subalgebra of X. Then for all z,y € X,

fo(z - y) > min{fe(z), fr(y)} ((2r23))

and

fa(z-y) =1—fr(z-y)
< 1 —min{fp(x), fr(y)} ((za))

= max{fz(z), fz(y)}. (Proposition 2209 [4])

This implies that (fg, fz) is a Pythagorean fuzzy BCC-subalgebra of X.

Conversely, assume that (fg,f5) is a Pythagorean fuzzy BCC-subalgebra
of X. Then F satisfies the condition (B-T). Hence, F is a fuzzy BCC-subalgebra

of X.
(3) Assume that F is a fuzzy near BCC-filter of X. Then for all z,y € X,
fe(z - y) > fo(y) ((e2m))
and
fz(z - y) < fx(y). (Proposition 2209 [T})

This implies that (fg,fz) is a Pythagorean fuzzy near BCC-filter of X.
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Conversely, assume that (fp,fz) is a Pythagorean fuzzy near BCC-filter
of X. Then F satisfies the condition (B13). Hence, F is a fuzzy near BCC-filter

of X.
(4) Assume that F is a fuzzy BCC-filter of X. Then for all z,y € X,
fr(0) > fr(z), ((1=3))
f=(0) < fx(z), (Proposition 2109 [[1])
fe(y) > min{fe(z - y), fr(2)}, ((2r29))
and
fi(y) =1 —1r(y)

< 1—min{fp(x - y), fp(z)} ((2129))
= max{fz(z - y), f5(x)}. (Proposition 2109 [[4])

This implies that (fg, f5) is a Pythagorean fuzzy BCC-filter of X.

Conversely, assume that (fy, f5) is a Pythagorean fuzzy BCC-filter of X.
Then F satisfies the conditions (B1H) and (B1=4). Hence, F is a fuzzy BCC-filter
of X.

(5) Assume that F is a fuzzy implicative BCC-filter of X. Then for all

z,y € X,

fr(0) > fr (), (2r=23))

f=(0) < fx(2), (Proposition 2109 [[T])
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fp(z - 2) > min{fe(z - (y - 2)), fe (2 - )}, ((2r=m))

and

fz(x-2)=1—fp(z-2)
<1—min{fp(z- (y-2)),fp(z-y)} ((z13m))

=max{fz(z- (y-2)), &z y)}. (Proposition 2209 [4])

This implies that (fg, f5) is a Pythagorean fuzzy implicative BCC-filter of X.

Conversely, assume that (fg, fz) is a Pythagorean fuzzy implicative BCC-
filter of X. Then F satisfies the conditions (B214) and (BT9). Hence, F is a fuzzy
implicative BCC-filter of X.

(6) Assume that F is a fuzzy comparative BCC-filter of X. Then for all

r,y € X,
fp(0) > fp (), ((228))
f=(0) < f5(z), (Proposition 2109 [[1])
fr(y) > min{fr(z - ((y - 2) -9)), fw (@)}, ((213T))

and
fr(y) =1 —fr(y)

<1—min{fp(z- ((y- 2) - y)), fr(z)} ((23))
=max{fz(z- ((y-2)-y)),fx(x)}. (Proposition 2209 [4])

This implies that (fg, f5) is a Pythagorean fuzzy comparative BCC-filter of X.
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Conversely, assume that (fp, fz) is a Pythagorean fuzzy comparative BCC-
filter of X. Then F satisfies the conditions (BI3) and (BZTIM). Hence, F is a

fuzzy comparative BCC-filter of X.

(7) Assume that F is a fuzzy shift BCC-filter of X. Then for all z,y € X,

fr(0) > fr(z), ((1=3))
£2(0) < fx(x), (Proposition P19 [T})
fe(((-y) - y) - 2) =2 min{fe(z - (y - 2)), fe(2)}, ((e=2))

and

fm(((z-y)y)-2)=1-1e(((z-y)-y) - 2)
<1 —min{fp(z- (y-2)),fr(z)} ((E32))

= max{fz(z - (y - 2)), fz(2)}. (Proposition 2209 [4])

This implies that (fg, f5) is a Pythagorean fuzzy shift BCC-filter of X.

Conversely, assume that (fp,fz) is a Pythagorean fuzzy shift BCC-filter
of X. Then F satisfies the conditions (B13) and (B113). Hence, F is a fuzzy
shift BCC-filter of X.

(8) Assume that F is a fuzzy BCC-ideal of X. Then for all z,y € X,

fr(0) > fr(2), (21r=23))
f=(0) < f5(z), (Proposition 209 [[1])

fp(z - 2) > min{fe(z - (y - 2)), fr (y) }, (r=3))
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and

fo(rz-2) =1—fp(x-2)
<1 —min{fp(x- (y-2)),fr(y)} ((zr33))

= nlax{fﬁ (:L‘ . (y . Z)), fﬁ (y)} (PI‘OpOSitiOH ZAIRS| )

This implies that (fp, fz) is a Pythagorean fuzzy BCC-ideal of X.

Conversely, assume that (fg, f5) is a Pythagorean fuzzy BCC-ideal of X.
Then F satisfies the conditions (B1H) and (B7T1H). Hence, F is a fuzzy BCC-ideal
of X.

(9) Assume that F is a fuzzy strong BCC-ideal of X. Then f is constant
and so fz is constant. By Theorem BT, we have (fg, f) is a Pythagorean fuzzy
strong BCC-ideal of X.

Conversely, assume that (fg, ) is a Pythagorean fuzzy strong BCC-ideal
of X. By Theorem BT, we have fy is constant. Hence, F is a fuzzy strong BCC-
ideal of X. O

3.2 Properties of Pythagorean fuzzy sets

In this section, we shall find some properties and examples for study the

generalizations of Pythagorean fuzzy sets in BCC-algebras.

Proposition 3.2.1 If P = (up,vp) is a Pythagorean fuzzy BCC-subalgebra of X,
then it satisfies the conditions (B13) and (BTD).

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-subalgebra of X. Then for
all x € X,

6 (0) = rp (e - @) > min{pup(e), jup(0)} = pp(e)  ((E0T) and (ELT))
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and

vp(0) = vp(x - ) < max{vp(z),vp(z)} = vp(z). ((20m) and (B12))

O

Proposition 3.2.2 If P = (up,vp) is a Pythagorean fuzzy BCC-filter of X, then

(Ve y € X) v <y= pp(r) < pp(y), , (32.1)

x <y=vp(x)>vp(y)

Proof. Let P = (up, vp) be a Pythagorean fuzzy BCC-filter of X and let z,y € X

be such that x <y. Then z -y =0, so

pe(y) > min{pe (2 - y), pe(z)} = min{up(0), pp(z)} = pp(x) ((BT=2))

and

vp(y) < max{ve(z - y), vp(2)} = max{ve(0), vp(2)} = vp(z). (EL3))

]

Corollary 3.2.3 If P = (up,vp) is a Pythagorean fuzzy BCC-filter of X, then

(V5 € X) pe(y) < pp(z - y), ’ (3.2.2)

ve(y) > ve(z - y)

Proof. By (Z10H), we have y - (z - y) = 0, that is, y < x -y. By (B=Z), we have

pe(y) < pp(x - y) and ve(y) = ve(z - y). O

Proposition 3.2.4 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
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following conditions:

(Vz,y,2 € X) # o= prle-y) 2 mintpe(2), ek , (3.2.3)

z <z =vp(r-y) <max{vp(2),vp(y)}

then it is a Pythagorean fuzzy BCC-subalgebra of X .

Proof. Let z,y € X. By (21), we have x < z. It follows from (B=Z3) that

pp(z - y) > min{up(z), pp(y)} and vp(z - y) < max{vp(z),vp(y)}. Hence, P is a
Pythagorean fuzzy BCC-subalgebra of X. m

Theorem 3.2.5 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (B=23), then it satisfies the conditions (BZIH) and (BH).

Proof. 1t is straightforward by Proposition B=24. m

In general, the converse of Theorem BZZ3 may be not true by the following

example.

Example 3.2.6 From Example BT20, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:

X0 1 2 3

up |1 05 0.1 07

vp |0 0.5 06 04
Then P satisfies the conditions (B1=4) and (BTI8) but it does not satisfy the con-
dition (B23). Indeed, 1 < 1 but pup(1-3) = pp(2) = 0.1 # 0.5 = min{0.5,0.7} =
min{up(1), pp(3)} and vp(1-3) = vp(2) = 0.6 £ 0.5 = max{0.5,0.4} = max{vp(1)
e (3))-

Proposition 3.2.7 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
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following conditions:

(Vz,y,2 € X) et g) 2 min{ue(2), o)k, ; (3.2.4)

vp(z - y) < max{ve(2),vp(y)}

then it satisfies the condition (B=23).

In general, the converse of Proposition B2271 may be not true by the

following example.

Example 3.2.8 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

—_

o o o o | ©
= o

N O W

o O W o w | w

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3

up | 0.8 0.1 0.3 0.2
vp | 0.4 0.9 0.6 0.8

Then P satisfies the condition (B23) but it does not satisfy the condition (B=24).
Indeed, pp(l-2) = pp(3) = 0.2 # 0.3 = min{0.8,0.3} = min{up(0), up(2)} and
vp(1-2) =1vp(3) = 0.8 £ 0.6 = max{0.4,0.6} = max{vp(0),

vp(2)}-

Proposition 3.2.9 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
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condition (B=Z), then it is a Pythagorean fuzzy near BCC-filter of X.

Proof. Let z,y € X. By (E0I3), we have y < = -y. It follows from (B=) that
pup(z - y) > pp(y) and vp(x - y) < vp(y). Hence, P is a Pythagorean fuzzy near
BCC-filter of X. O

Theorem 3.2.10 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (B=Zl), then it satisfies the condition (B=24).

Proof. Let x,y,z € X. By (203H), we have y < z-y. It follows from (B=Z) that

pp(-y) > pp(y) = min{up(2), pe(y)} and vp(2-y) < vp(y) < max{vp(z), ve(y)}.
0

In general, the converse of Theorem B0 may be not true by the fol-

lowing example.

Example 3.2.11 From Example BTTH, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:
X0 1 2 3

up |08 0.3 04 0.7
vp 0.2 0.7 0.5 0.4

Then P satisfies the condition (B224) but it does not satisfy the condition (B=2).

Indeed, 3 < 1 but up(3) =0.7 £ 0.3 = up(1l) and vp(3) = 0.4 2 0.7 = vp(1).

Theorem 3.2.12 If P = (up,vp) is a Pythagorean fuzzy BCC-subalgebra of X

satisfying the following conditions:

oy zex) | TV 0T ez ) (3.2.5)

r-y#0=vp(x) <vpy)

then it is a Pythagorean fuzzy near BCC-filter of X.
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Proof. Let x,y € X.

Case 1: z-y = 0. By Proposition B2, we have pp(x-y) = pup(0) > pp(y)

and vp(z - y) = vp(0) < vp(y).

Case 2: z -y # 0. By (B23), we have up(z - y) > min{up(x),

pe(y)} = pe(y) and vp(z - y) < max{ve(z),ve(y)} = ve(y). Hence, P is a
Pythagorean fuzzy near BCC-filter of X. O

Proposition 3.2.13 A Pythagorean fuzzy set P = (up,vp) in X satisfies the

following conditions:

Vo zex) | 25T YT RRW Zminae @ pe@h ) g )

z<z-y=vp(y) <max{vp(z),vp(r)}

if and only if it is a Pythagorean fuzzy BCC-filter of X.

Proof. Let x € X. By (BCC-3), we have x < z - 0. It follows from (B=2H8) that

pp(0) = min{pp(z), pp(x)} = pp(z) and vp(0) < max{vp(z),ve(z)} = vp(z).
Next, let x,y € X. By (2Z0010), we have z -y < x - y. It follows from (B=2@) that

pp(y) > min{pp(x - y), pp(z)} and vp(y) < max{vp(z -y),vp(r)}. Hence, P is a
Pythagorean fuzzy BCC-filter of X.

Conversely, let x,y, 2z € X be such that z < x-y. Then z- (z-y) =0, so

pe (2 - y) > min{pp(2 - (z - y)), pp(2)} = min{pup(0), up(2)} = pp(z) ((B17))

and

vp(z - y) < max{vp(z - (- y)),vp(2)} = max{rp(0), vp(2)} = vp(z). ((BLF))

Thus
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pp(y) = min{pp(z - y), pp(2)} = min{up(2), pe ()}

and

ve(y) < max{ve(z - ), ve(2)} < max{e(2), ve(2)}.

]

Theorem 3.2.14 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (BZ8), then it satisfies the condition (B=Z).

Proof. Let z,y € X be such that z < y. By (EXIID), we have z < z - y.

N

It follows from (B=2W) that pp(y) > min{up(z), up(z)} = pp(z) and vp(y)

U

max{vp(z),vp(z)} = vp(x).
In general, the converse of Theorem BZZT4 may be not true by the fol-

lowing example.

Example 3.2.15 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

012 3
0(0 1 2 3
110 0 2 2
2|01 01
3/0 0 00

We define a Pythagorean fuzzy set P = (up,vp) with the membership function
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pp and the non-membership function vp as follows:

X0 1 2 3

up [0.7 0.3 05 0.1
vp | 0.3 0.7 0.5 0.8

Then P satisfies the condition (B=Z) but it does not satisfy the condition (B=ZH8).
Indeed, 2 < 1-3 but up(3) = 0.1 #* 0.3 = min{0.5,0.3} = min{up(2), up(1)} and
vp(3) = 0.8 £ 0.7 = max{0.5,0.7} = max{vp(2),vp(1)}.

Theorem 3.2.16 If P = (up,vp) is a Pythagorean fuzzy near BCC-filter of X

satisfying the following conditions:
(Vz,y € X) 1 ) (3.2.7)

then it is a Pythagorean fuzzy BCC-filter of X .

Proof. Let x,y € X. By Theorem B33 and Proposition B2, we have P is a
Pythagorean fuzzy BCC-subalgebra of X which satisfies the conditions (3T3)
and (B1M). By (B21), we have pp(y) > min{up(y), up(z)} = min{up(x -
y), pp(z)} and vp(y) < max{vp(y),vp(z)} = max{vp(z - y),vp(z)}. Hence, P
is a Pythagorean fuzzy BCC-filter of X. O

Theorem 3.2.17 If P is a Pythagorean fuzzy BCC-ideal of X satisfying the

following condition:

(V.2 € X) pp(@ - (y - 2)) = pe(y) = pe(y) = pe(x - y), 528

vp(r-(y-2)) <ve(y) = ve(y) <vp(z-y)

then P is a Pythagorean fuzzy implicative BCC-filter of X.

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-ideal of X satisfying the
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condition (BZ28). Then P satisfies the conditions (BI-3) and (B@). In case of

pp(z - (y - 2)) < pp(y) and vp(z - (y - 2)) > vp(y) are easy to verify. Next, let

x,y,z € X,
pp (2 - 2) = min{pp(z - (y - 2)), pp(y)} ((ET13))
> min{pp(z - (y - 2)), pe(z - y)} ((B=Z3) for up)
and
vp(x - 2) < max{vp(z - (y - 2)),vp(y)} ((ET1D))
< max{vp(z-(y-2)),ve(x-y)} ((BZR) for vp)
Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X. ]

Theorem 3.2.18 If P s a Pythagorean fuzzy BCC-ideal of X satisfying the

following condition:

pp (- y) > pp(z - ((7-y) - 2))
vo ) QIS ey T |, (3.2.9)
ve(z-y) <ve(z-((x-y)-2))

Y
= vp(x-((x-y) 2)) <vplx-(y-2))

then P is a Pythagorean fuzzy implicative BCC-filter of X.

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-ideal of X satisfying the
condition (B229). Then P satisfies the conditions (B1H) and (B=I8). In case of
pp(z-y) < pp(z-((x-y)-2)) and vp(z-y) > vp(x- ((x-y)-2)) are easy to verify.
Next, let x,y,z € X,

pp (@ - z) = min{pp(z - ((2-y) - 2)), pe(z - y)} (ET3))
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> min{pup(z - (y - 2)), ue(2 - )} ((B=29) for pp)
and
vp(z - 2z) < max{vp((z-y) - 2)),ve(z - y)} ((ET1m))
< max{vp(z - (y - 2)), vp(x - y)}- ((8=3) for vp)
Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X. 0

Theorem 3.2.19 If P is a Pythagorean fuzzy BCC-filter of X satisfying the

following condition:

pe(x) > pe(x - y)
o,y zex) | =P 2l ), (3.2.10)
vp(r) < vp(x-y)

= ve(z-y) <wve(z-((y-2)-y))
then P is a Pythagorean fuzzy comparative BCC-filter of X.
Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-filter of X satisfying the

condition (B=Z1M). Then P satisfies the conditions (B1H) and (BT8). In case of

pp(x) < pp(x - y) and vp(z) > vp(z - y) are easy to verify. Next, let z,y,z € X,

pp(y) = min{up (2 - y), pp(z)} ((BT=2))
> min{up(z - ((y-2) - y)), up(v)} ((B=1m) for pp)

and
vp(y) < max{vp(z - y),vp(z)} ((B13))

<max{vp(z-((y-2)-y)),ve(r)}. ((8zZ1m) for vp)
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Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X. O]

Theorem 3.2.20 If P is a Pythagorean fuzzy BCC-filter of X satisfying the

following condition:

(Va,y, 2 € X) e e . (3.2.11)
((z-y)-y) - 2))

z-y)-y)-2) <wve(z-(y-2))

= vp(x - ((

then P is a Pythagorean fuzzy shift BCC-filter of X .

Proof. Let P = (up,vp) be a Pythagorean fuzzy BCC-filter of X satisfying the
condition (BZZT). Then P satisfies the conditions (B1H) and (BT8). In case of
up() < oo (2 9) - y) - 2)) and vp(x) > vp(a- (2 9) ) - 2)) are easy to
verify. Next, let z,y,2 € X,

pe(((z-y) - y) - 2) Z min{pe(z - (((2-y) - y) - 2)), g ()} ((E12))
= min{up(z - (y - 2)), pe(2)} ((B=Z11) for up)
and
vp(((z-y) - y) - 2) <max{vp(z - (((z-y)-y) - 2)), ve(2)} (E3))
< max{vp(z- (y-2)),ve(x)}. ((B=1) for vp)
Therefore, P is a Pythagorean fuzzy shift BCC-filter of X. O

Theorem 3.2.21 If P is a Pythagorean fuzzy set in X satisfying the following
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condition:

(a<z-(y-2)

Va2 € X) = pp(z - 2) = min{pp(a), pp(z - y)}, | (3.2.12)

(a<z-(y-2)

= vp(z - 2) < max{vp(a),vp(z-y)}

then P 1s a Pythagorean fuzzy implicative BCC-filter of X .

Proof. Let P = (up,vp) be a Pythagorean fuzzy set in X satisfying the condition
(BZ12). Let x € X. By (BCC-3), we have z-(0-(z-0)) = 0, that is, z < 0-(z-0).
It follows from (B=2T12) that

pip(0) = pip(0 - 0)
> min{pp(z), pp(0 - )}
= min{up(x), up(z)} ((BCC-2))
= pp(2),
vp(0) = vp(0-0)
< max{vp(z),vp(0- )}
= max{vp(z), vp(z)} ((BCC-2))

= vp(z).

Next, let x,y,z € X. By (220), we have (z-(y-2)) - (z- (y-z)) = 0, that is,
x-(y-2)<az-(y-z). It follows from (B=2T2) that

pe( - z) > min{up(z - (y - 2)), pp(x - y)},

vp(z - z) < max{ve(z- (y- 2)),vp(2-y)}.

Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X [
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Theorem 3.2.22 If P is a Pythagorean fuzzy set in X satisfying the following

condition:

(a<z-((y-2)y)
(Va.z.y.= € X) = pp(y) = min{up(a), pp(z)}, | (3.2.13)
(a<z-((y-2) y)

= vp(y) < max{vp(a),vp(z)}

then P is a Pythagorean fuzzy comparative BCC-filter of X.

Proof. Let P = (up,vp) be a Pythagorean fuzzy set in X satisfying the condition
(BZ13). Let x € X. By (BCC-3), we have z - (z - ((0-z) - 0)) = 0, that is,
z<z-((0-x)-0). It follows from (B=ZT3) that

pp(0) > min{pp (), pp(r)} = pp(z),

vp(0) < max{vp(z),vp(x)} = vp(x).

Next, let z,y,2z € X. By (Z1), we have (z- ((y-2)-y)) - (x-((y-2)-y)) =0,
that is, - ((y - 2) - y) < - ((y - 2) - y). It follows from (BZZT3) that

pe(y) > min{pp (- ((y - 2) - v)), pe(2)},

vp(y) < max{vp(z - ((y-2) - ), ve(r)}-

Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X. m

Theorem 3.2.23 If P is a Pythagorean fuzzy set in X satisfying the conditions
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(BI22) and (BIR) and the following condition:

(Vx,y,z € X) (3.2.14)

then P 1s a Pythagorean fuzzy comparative BCC-filter of X.

Proof. Let P = (up, vp) be a Pythagorean fuzzy set in X satisfying the conditions
(B17), (B18), and (B2214). Let z € X. By (BCC-2) and (BCC-3), we have

pp(x - ((0-2) - 0)) = pp(0) = pp(0) = pp((z - ((0- 2) - 0)) - 0),

vp(z - ((0-2)-0)) = vp(0) < vp(0) = ve((z - ((0-2)-0))-0).

It follows from (B=ZT4) that

Thus P satisfies the conditions (818) and (B18). In case of up(z-((y-2)-y)) <

pe((z- ((y-2)-y))-y) and vp(z - ((y- 2) - y)) > ve((z- ((y- 2) - y)) - y) are easy to
verify. Next, let x,y, 2z € X. Then

pe(y) = min{pp((z- ((y-2)-y)) - y),pue(@- ((y-2)-y))} ((B1=2)
( ), e (

= min{pp(z - ((y-2) - y)), p

I

(y-2)-y)-y),velx-((y-2)-y)} ((BT3)

vp(y) < max{ve((z - ( )
=max{vp(z- ((v-2)-v)),ve(x)}. ((Bzz13a) for vp

Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X. ]
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Theorem 3.2.24 If P is a Pythagorean fuzzy set in X satisfying the following

condition:

(a<z-(y-2)
Varg-ex)| pe(((2 - y) - y) - 2) =2 min{pp(a), pe(r)}, (3215
(a<z-(y-2)

= vp(((2-9) - y) - 2) < max{vp(a),vp(2)}

then P is a Pythagorean fuzzy shift BCC-filter of X .

Proof. Let P = (up,vp) be a Pythagorean fuzzy set in X satisfying the condition
(BXT13). Let x € X. By (BCC-3), we have z-(x-(2-0)) = 0, that is, z < x-(z-0).
It follows from (B=ZTH) that

pp(0) = pe(((0- z) - 2) - 0) = min{pp(z), pp(2)} = pp(z), ((BCC-2))

vp(0) = vp(((0-2) - x)-0) < max{vp(z),vp(x)} = vp(z). ((BCC-2))

Next, let x,y,z € X. By (220), we have (z - (y-2)) - (z- (y- z)) = 0, that is,
x-(y-z)<az-(y-=z). It follows from (B=2TH) that

pe(((z-y) - y) - z) = min{pp(x - (y - 2)), ()},

vp(((z-y) -y) - 2) < max{ve(z- (y-2)), ve(2)}.

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X. m

Theorem 3.2.25 If P is a Pythagorean fuzzy set in X satisfying the conditions
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(BI22) and (BIR) and the following condition:

(Vz,y, 2 € X) ' e ’ . (3.2.16)

then P is a Pythagorean fuzzy shift BCC-filter of X.

Proof. Let P = (up, vp) be a Pythagorean fuzzy set in X satisfying the conditions
(B17), (B1R), and (B221M). Let 2 € X. By (BCC-2) and (BCC-3), we have

pp (- (2 -0)) = pp(0) = pp(0) = pp((z - (2 - 0)) - (((0- 2) - z) - 0),

vp(z - (2-0)) = vp(0) < vp(0) = vp((z - (z-0)) - (((0-2) - 2) - 0).

It follows from (B=218) that

pp(0) = pp((2 - (- 0)) - (((0-2) - ) - 0) = pp(2),

vp(0) = vp((z - (z-0)) - (((0-z) -2) - 0) <vp(z).

Thus P satisfies the conditions (B=3) and (BM). In case of up(z - (y-2)) <

pp((z-(y-2)) - (((z-y) - y)-2) and wp(x - (y-2)) > wp((z-(y-2)) - (((z-y) - y) - 2)
are easy to verify. Next, let z,y,2z € X. Then

pe(((z-y) - y) - 2)
> min{up((z - (y-2)) - (((z-y) - y) - 2), pe(@- (y-2))} ((BT=2))
= min{up(z - (y - 2)), pp(2)}, ((B=Z18) for sup)
vp(((z-y) - y) - 2)

<max{vp((z-(y-2))- (((z-y)-y) - 2),ve(z - (y - 2))} (&)
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= max{vp(z- (y-2)),vp(x)}. ((B=Z13) for up)

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X. m

Proposition 3.2.26 A Pythagorean fuzzy set P = (up,vp) in X satisfies the

following conditions:

a<z-(y-2)

(Va,z,y.2 € X) = pp(z - z) = min{pp(a), ue(y)}, | (3.2.17)

a<z-(y-2)

= vp(x - z) < max{wvp(a), vp(y)}

if and only if it is a Pythagorean fuzzy BCC-ideal of X.

Proof. Let x € X. By (BCC-3), we have x < - (x - 0). Then

pp(0) = pp (2 - 0) = min{pp(z), pp ()} = pe(z)  ((BCC-3) and (BZ11))

and

vp(0) = vp(z - 0) < max{vp(z),vp(r)} = vp(x). ((BCC-3) and (B=ZT17))

Let z,y,z € X. By (E0), we have z - (y-2) <z - (y-z). Then

pp(x - 2) = min{up(z - (y - 2)), pp(y)} ((war))

and

vp(z - z) < max{ve(z- (y - 2)),ve(y)}- (E=2T))

Hence, P is a Pythagorean fuzzy BCC-ideal of X.
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Conversely, let a,z,y, z € X be such that a < x - (y-2). By (B221) and
(B=), we have up(a) < pp(z- (y-2)) and vp(a) > vp(x - (y - 2)). Thus

pp (@ - 2) = min{pp(z - (y - 2)), pe(y)} = min{pp(a), pe(y)} (ETm))

and

vp(z - z) <max{ve(z- (y-2)),vp(y)} < max{ve(a),vp(y)}.  ((ELI0))

]

Proposition 3.2.27 If P = (up,vp) is a Pythagorean fuzzy BCC-ideal of X,

then

a<z-(y-z2)

(Va..9.7 € X) = pp(a-2) > min{up(z), up(y)}, | (3.2.18)

a<a(y-2)

= vp(a - z) < max{vp(x),vp(y)}
Proof. Let a,x,y,z € X such that a < x-(y-2). Thena-(x-(y-2)) =0, so
pp(a- (y - 2)) = min{pp(a- (- (y - 2))), pe(2)}

= min{up(0), up(z)}
= pip(z) (ELm3)

and

vp(a- (y-z)) <max{vp(a- (z-(y-2))),ve(x)}
= max{vp(0),vp(z)}

= vp(). (ET1D))
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Thus

pe(a-2z) >min{up(a- (y-2)), pp(y)} = min{up(z), up(y)} ((B11H))

and

vp(a-z) < max{rp(a- (y-2)),ve(y)} < max{ve(r),ve(y)}. (ETm))

O

Corollary 3.2.28 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (B=ZIQ), then it satisfies the condition (BZZIR).

Proof. 1t is straightforward by Propositions B2228 and B2 m

Theorem 3.2.29 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
conditions (E0I4) and (B=ZIR), then it satisfies the condition (B=214).

Proof. Let a,z,y,z € X be such that « < z - (y - 2). By (E0014), we have
O=a-(x-(y-2))=z-(a-(y-2)), that is, z < a- (y - 2). It follows from (BZIH)
that pp(z - z) > min{pup(a), up(y)} and vp(x - 2) < max{vp(a),vp(y)}. O

Theorem 3.2.30 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (BZZIR), then it satisfies the condition (B=XH).

Proof. Let x,y,z € X be such that z < z-y. By (E0) and (E13), we have
0=z2-2<z-(xr-y). By (BCC-2) and (BZIR), we have up(y) = pup(0-y) >
min{pup(z), pp(2)} and vp(y) = vp(0 - y) < max{vp(z), vp(z)}. =

Corollary 3.2.31 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
condition (BZXIQ), then it satisfies the condition (B=203).

Proof. 1t is straightforward by Corollary and Theorem B=2-30. ]
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In general, the converse of Theorem may be not true by the fol-

lowing example.

Example 3.2.32 From Example B2, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:

X0 1 2 3

pp |07 03 02 0.2
vp | 0.3 0.7 0.75 0.75

Then P satisfies the condition (B228) but it does not satisfy the condition (B=218).
Indeed, 3 < 1-(0-2) but up(3-2) = pup(2) = 0.2 ¥ 0.3 = min{0.3,0.7} =
min{pp(1), up(0)} and vp(3 - 2) = vp(2) = 0.75 £ 0.7 = max{0.7,0.3} =

max{vp(1l),vp(0)}.

The following example shows that Pythagorean fuzzy set in a BCC-

algebra which satisfies the condition (B=211) is not constant.

Example 3.2.33 From Example BT72, we define a Pythagorean fuzzy set P =
(up,vp) with the membership function pp and the non-membership function vp

as follows:
X |0 1 2 3

pp |1 0.8 05 0.5
vp |0 0.3 0.6 0.6

Then P satisfies the condition (BZZT1) but it is not constant.

Theorem 3.2.34 If P = (up,vp) is a Pythagorean fuzzy BCC-filter of X satis-
fying the condition (EX0IA), then it is a Pythagorean fuzzy BCC-ideal of X .

Proof. Let P be a Pythagorean fuzzy BCC-filter of X. Then for all z,y, z € X,

pp(z - 2) > min{up(y - (z - 2)), up(y)}
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= min{up(z - (y - 2)), we(y)} ((B12) and (21113))
and
vp(z - 2) < max{vp(y - (z-2)),vp(y)}
= max{vp(z - (y - 2)), ve(y)}- ((BTB) and (2113))
Hence, P is a Pythagorean fuzzy BCC-ideal of X. 0

Proposition 3.2.35 A Pythagorean fuzzy set P = (up,vp) in X satisfies the

following conditions:

a<(z-y) (z-2)

(Va.z.y.2 € X) = pp(r) > min{up(a), ue(y)}, | (3:2.19)

a<(z-y) (z-2)

= vp(x) < max{vp(a),vp(y)}

if and only if it is a Pythagorean fuzzy strong BCC-ideal of X .

Proof. Let « € X. By (BCC-3), we have # < 0 = 2-0 = (0-)-(0-0). By (B=TH),
we have up(0) > min{up(2), pp(2)} = pe(z) and vp(0) < max{vp(z),ve(z)} =
vp(z). Next, let 7,7, 2 € X. By (ZID), we have (z-9)- (z-2) < (2-y)- (z-2). By
(BZT), we have pp(x) = min{up((z-y)- (2-2)), up(y)} and ve(z) < max{vp((z-

y) - (z-z)),vp(y)}. Hence, P is a Pythagorean fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem BT O
Theorem 3.2.36 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
following conditions:

(Va,y,z € X) STy = pele) 2 mindpp (o), pe W)}, , (3.2.20)

z<z-y=vp(z) <max{vp(z),rp(y)}
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then it satisfies the condition (B=X3).

Proof. Let z,y,z € X be such that z < z. By (E04), we have z -y < z-y. By

(BZ20), we have pp(z-y) > min{up(2), pp(y)} and vp(2-y) < max{ve(z),ve(y)}.
m

Proposition 3.2.37 A Pythagorean fuzzy set P = (up,vp) in X satisfies the
condition (B22220) if and only if it is a Pythagorean fuzzy strong BCC-ideal of X .

Proof. Let x € X. By (BCC-3), we have z < 0 = 0-0. By (BZZ20), we have
pp(x) = min{up(0), up(0)} = pp(0) and vp(z) < max{vp(0),rp(0)} = vp(0).
By Theorem BZ238, we have P satisfies (B2223). Thus P a Pythagorean fuzzy
BCC-subalgebra of X by Proposition BZZ4. It follows from Proposition B=2Z
that up(0) > pp(x) and vp(0) < vp(z), so up(z) = pp(0) and vp(z) = vp(0) for
all x € X, that is, P is constant. By Theorem BT, we have P is a Pythagorean
fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem BT2. [

Theorem 3.2.38 If P = (up,vp) is a Pythagorean fuzzy set in X satisfying the
following conditions:

2<x-y = z) 2 ,
(va,yzex) | T HelQ 2 hel) : (3.2.21)

z<zy=vp(2) <vp(y)

then it satisfies the condition (B=23).

Proof. Let z,y,z € X be such that z < x. By (2004), we have z -y < z-y. It
follows from (B=221) that up(x-y) > pp(y) > min{up(z), up(y)} and vp(z - y) <
vp(y) < max{vp(z),vp(y)}. O

Proposition 3.2.39 A Pythagorean fuzzy set P = (up,vp) in X satisfies the
condition (B22Z220) if and only if it is a Pythagorean fuzzy strong BCC-ideal of X .
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Proof. Let x € X. By (BCC-3), we have + < 0 = 0-0. By (B=ZZT), we have
pup(z) > pp(0) and vp(z) < vp(0). By Theorem BZ3B, we have P satisfies
(8323). Thus P is a Pythagorean fuzzy BCC-subalgebra of X by Proposition
BZ4. It follows from Proposition B2 that up(0) > wp(x) and vp(0) < vp(x),
so pp(x) = pp(0) and vp(z) = vp(0) for all x € X, that is, P is constant. By

Theorem BT, we have P is a Pythagorean fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem BT2. ]

We get the diagram of sufficient conditions of Pythagorean fuzzy sets in

BCC-algebras, which is shown with Figure 2.

Pythagorean fuzzy

BCC-subalgebra — G13.616

K]

— (3.2.3)

+(3.2.5) H

(3.2.4)

Pythagorean fuzzy T/VY

near BCC-filter “ (3.2.1)

$627) by

li Pythagorean fuzzy <+——*> (3.2.6)

BCC-filter t
(322) T l+(2.0.14) (3.2.18)
T ¢+(2.0.14)
Pythagorean fuzzy

BCC-ideal > (3.2.17)

K4 v

Pythagorean fuzzy <«— Constant Pythagorean
strong BCC-ideal fuzzy set

'

(3.2.19) (3.2.20) (3.2.21)
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Pythagorean fuzzy set
+(3.2.13) +(3.2.15)
Pythagorean fuzzy
BCC-filter +3.1.7),
(3.1.8),
+(3.1.7), (3.2.16)
(3.1.8), +(3.2.12) +(3.2.11)
(3.2.14)
+(3.2.10) Pythagorean fuzzy
BCC-ideal
+(3.2.8)/(3.2.9)
Yy VY Y YvYY
Pythagorean fuzzy L, Pythagorean fuzzy Pythagorean fuzzy
comparative BCC-filter implicative BCC-filter shift BCC-filter

Figure 2: Properties of Pythagorean fuzzy sets in BCC-algebras

3.3 Upper and lower approximations of Pythagorean fuzzy sets

Definition 3.3.1 Let p be an equivalence relation on a nonempty set X and
P = (up,vp) a Pythagorean fuzzy set in X. The upper approzimation is defined
by

p*(P) =A{(x, 1ip(2), 7p(z)) |+ € X},

where ip(z) = sup {up(a)} and vp(z) = 1r(1f) {vp(a)}. The lower approzimation
a€(z), ac(z)p

is defined by

p-(P) = {(z, py(2), vp(x)) | © € X},

where () = aél(le)p{lu,p(a)} and vp(z) = sup {vp(a)}.

ag(x),

Theorem 3.3.2 Let p be an equivalence relation on a nonempty set X and P =

(up,vp) a Pythagorean fuzzy set in X. Then the following statements hold:

(1) p™(P) is a Pythagorean fuzzy set in X, and

(2) p~(P) is a Pythagorean fuzzy set in X.

Proof. Let x € X.
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(1) We consider

a€(x), ()p

= sup {pp(a)*} + 11(1f) {vp(a)?} (Proposition 2010 [6))
ac(e), ac(@)p

< sup {pp(a)’} + inf {1—pp(a)’}
ac (@), ae (),

= sup {up(a)®} +1— sup {up(a)?} (Proposition 2010 7))
a€(x), a€(z)p

=1.

This implies that 0 < 7ip(x)? + Up(x)? < 1. Therefore, p*(P) is a Pythagorean

fuzzy set in X.
(2) The proof is similar to the proof of [T}. O

Then we call P that a rough Pythagorean fuzzy set in a set X. Thus we

can denote the upper approximation and the lower approximation by p*(P) =

(fip, 7p) and p~(P) = (HF”ZP)’ respectively.
Proposition 3.3.3 Let P = (up,vp) and Q = (uq, vq) be Pythagorean fuzzy sets
m X. If p is an equivalence relation on X, then the following statements hold:
(1) p=(P) S P Cp™(P),
(2) PCQ=p*(P) Cp*(Q),p (P) Cp~(Q),
(3) pT(PUQ) =p"(P)Up™(Q),
(4) pT(PNQ)Cp™(P)NpT(Q),

(5) P~ (PUQ) 2 p~(P)Up (Q), and



6) p~(PNQ)=p (P)Np (Q).

Proof. Let p be an equivalence relation on X.

(1) Then for all z € X,

and

vp(z) = sup {vp(a)}

a€(@),

By Definition 22014 [T], we have p~(P) C P C p™(P).
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(2) If P C Q, then pp(z) < pg(z) and vp(z) > vo(x) for all z € X. We

consider

(Proposition 22010 [6])



(@) = inf {up(a)}

- a€(z),p

< inf {uq(a)}

a€(z)p

and
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(Proposition 2110 [8))

(Proposition 010 [8))

(Proposition 010 [[G))

By Definition 22014 [T, we have p™(P) C p*(Q) and p~(P) C p~(Q).

(3) By Definition ZIT4 [3], we have P U Q = (upuq, Ypuq). Then we

know that

pF(PUQ) = (fipug, 7ruq)

and

p*(P)Up*(Q) = (Tip UTig, 7e N T0).

Thus for all x € X,

fpug(z) = sup {ppug(a)}

a€(x)p
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= sup {(up U puq)(a)}

a€(z)p

= sup {max{pp(a), uq(a)}}

ac(z)p

= max{ sup {pp(a)}, sup {uq(a)}} (Proposition 2010 [2))

ag(z), a€(x),
= max{Jip(7), fg(7)}

= (ﬁP U ﬁQ)(I)

and

Upug(z) = &lf) {vpuq(a)}
a€(x),

= inf {(vp Nvg)(a)}

a€g(x)p

= inf {min{rp(a),vg(a)}}

a€(z)p
= min{ 11(1f) {vp(a)}, 11(1f) {vq(a)}} (Proposition 2010 [T))
a€(x)p ac(x)p

= min{vp(z), 7g(z)}

= (7p NTg)(x).

Hence, p™(PUQ) = p*™ (P)Up™(Q).

(4) By Definition 20117 [4], we have PN Q = (upnq; Ypnq). Then we

know that

pt(PNQ) = (Tipng> 7PnQ)

and

p*(P) N p*(Q) = (B Nig, 7p UTQ),

Thus for all x € X,

Fienq () = sup {upnq(a)}

a€(z)p
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= sup {(up Npug)(a)}

ag(x),

= sup {min{up(a), uq(a)}}

a€g(z)p

< min{ sup {up(a)}, sup {uq(a)}t} (Proposition 210 [4))

a€(z), a€(z),
= min{zp(v), fig(z)}

= (1 Nig) (%)

and

Upnq(z) = é{lf) {vprq(a)}
ag(z),

= inf {(vp Urg)(a)}

a€(x)p

3 aé?$p{max{up (a),vq(a)}}

> max{aél(le)p{yp(a)}, aél(le)p{VQ(CL)}} (Proposition 1010 [3])
= max{7p(z),Vq(7)}
= (p UTg)(z).

Hence, p* (PN Q) C p™(P) N p™(Q).

(5) By Definition Z0T17 3], we have P U Q = (upuq, Ypuq). Then we

know that

p-(PUQ) = (p qr Yrua)

and

p~(P)Up(Q) = (k, Ulg:p N vq)-

Thus for all x € X,

boogl®) = inf {urula)}
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= aér(lgf)p{(up U pq)(a)}

= inf {max{pp(a),puq(a)}}

a€g(z)p

> max{ ér(lf) {up(a)}, éI(lf) {nq(a)}} (Proposition 22010 [[3])
ac(x)p ac(¥)p

= maX{EP(ZE),HQ(x)}

= (pp U EQ)(‘T)

and

ZPUQ(ZL‘) = sup {vpug(a)}
a€g(z)p

= sup {(vp N1vg)(a)}

a€g(z)p

= sup {min{up(a), VQ(CL)}}

a€g(z)p

< min{ sup {vp(a)}, sup {vq(a)}} (Proposition 2010 [4])

ac(@), ag(@),
= min{vp(z), vq(z)}

= (vp Nrg) ().

Hence, p~(PUQ) 2 p~(P)Up~(Q).

(6) By Definition E0 T4 [4), we have P N Q = (upnq, ¥pnq). Then we
know that

p~(PNQ) = (fprq Yrra)
and
p~(P)0p (Q) = (pp Ny e Urg).

Thus for all x € X,

Hpaq (z) = ag(lacf)p{'uPmQ (@)}



— inf {(ur N 1) (0))

ag(z)p

— aér(lzf)p{min{/ip (a), MQ(G) )
= mint, 8, e @) B, (el

- min{HP (x), g, ()}

= (p N ) ()

and

ZPmQ(m) = sup {vpnq(a)}
a€(z),p

= sup {(vp Urg)(a)}

a€(z),

— asel(lgg {maX{VP(a); VQ(G)}}

= max{ sup {vp(a)}, sup {rq(a)}}

a€(z)p ag(z)p
= max{vp(x), vq(z)}

= (vp Urg)(x).

Hence, p~ (PN Q) =p~(P)Np~(Q).

7

(Proposition 2010 [T))

(Proposition 2010 [2])

]

Lemma 3.3.4 If p is an equivalence relation on a nonempty set X and P =

(up,vp) a Pythagorean fuzzy set in X, then

(Vo,y € X)(zpy = Tip(2) = Tip(y)), (3.3.1)
(Vz,y € X)(xpy = vp(x) =Up(y)), (3.3.2)
(Vo,y € X)(wpy = py(7) = p,(y)), (3.3.3)

(V,y € X)(xpy = vp(x) = vp(y)). (3.3.4)



Proof. Let x,y € X be such that zpy.

fip(z) = Sup {ur(a)}
vp(r) = inf {ve(a)}
pp (@) = ot {up(a)}
vp(z) = sup {vp(a)}

a€(x)p

We complete the proof.

Theorem 3.3.5 Let p be an congruence relation on a BCC-algebra X =
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Then

bil(lr)) {up(0)} = Tip(y),

bé?f) {vp(b)} =Tp(y),

mf {up( )} = ﬁp(y)7

be(y)
sup {VP( )} = vp(y)-
be(y)p

]

(X,~,0)

and P = (up,vp) a Pythagorean fuzzy set in X. Then the following statements

hold:

(1) if P is a Pythagorean fuzzy BCC-subalgebra of X and p is complete, then

p~(P) is a Pythagorean fuzzy BCC-subalgebra of X,

(2) if P is a Pythagorean fuzzy near BCC-filter of X and p is complete, then

p~(P) is a Pythagorean fuzzy near BCC-filter of X,

(3) if P is a Pythagorean fuzzy BCC-filter of X and (0), = {0}, then p~(P) is
a Pythagorean fuzzy BCC-filter of X,

(4) if P is a Pythagorean fuzzy implicative BCC-filter of X, (0)

» =1{0}, and p

is complete, then p~(P) is a Pythagorean fuzzy implicative BCC-filter of X,

(5) if P is a Pythagorean fuzzy comparative BCC-filter of X and (0), = {0},

then p~(P) is a Pythagorean fuzzy comparative BCC-filter of X,

(6) if P is a Pythagorean fuzzy shift BCC-filter of X, (0), =

{0}, and p is

complete, then p~(P) is a Pythagorean fuzzy shift BCC-filter of X.

(7) if P is a Pythagorean fuzzy BCC-ideal of X, (0), =

{0}, and p is complete,

then p—(P) is a Pythagorean fuzzy BCC-ideal of X, and
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(8) if P is a Pythagorean fuzzy strong BCC-ideal of X, then p~(P) is a Pythago-

rean fuzzy strong BCC-ideal of X.

Proof. (1) Assume that P is a Pythagorean fuzzy BCC-subalgebra of X and p

complete. Then for all x,y € X,

(T - Y)

and

vp(z-y)

= inf {up(c)}
ce(z-y)p

= inf &
. (x),,(y),,{“P( )}

=  inf ) {uep(a-0)}

a-be(),(
> inf  {min{up(a), pp(b)}}

[ ae(l')mbe(y)P

L min{aér(le) p{up(a)}, : é%f)p{up(b)}}

= min{p, (2), p,(y)}

= sup {re()}

c€(zy)p

= sup {rp(c)}
c€(@)o(®)o

= sup  {wp(a-0)}

a-be(x)p(y)p

< sup
a€(x)p,be(y),p

= max{ sup {vp(a)}, sup {vp(b)}}

a€(z)p bE(y)p

{max{vp(a),vp(b)}}

= max{vp(x),vp(y)}.

((ET)

(Proposition 2010 [[T])

(ET2))

(Proposition 2010 [[2])

Hence, p~(P) is a Pythagorean fuzzy BCC-subalgebra of X.

(2) Assume that P is a Pythagorean fuzzy near BCC-filter of X and p



complete. Then for all z,y € X,

ppl-y) = Iof {up(c)}

ce(z-y)p

= ot Ane(e)}

— il {ue(a-b)

a-be(x)p(y)p

> inf {up(b)} (BD3)

be(y)p

= p1,(Y)

and

vp(z-y) = sup {vp(c)}

ce(zy)p

= sup {wp(0)}
c€(z)p(y)p

= sup {wp(a-b)}
a-be(2), (u),

< sup {vp(b)} (E3))

be(y),

= vp(y)-

Hence, p~(P) is a Pythagorean fuzzy near BCC-filter of X.

(3) Assume that P is a Pythagorean fuzzy BCC-filter of X and (0), =

{0}. Then for all z,y € X,

11,(0) = aé?(f)p{up(a)} = pp(0) = pp(b) = bé{lf)p{up( )} = pp(),

vp(0) = 861(15 {ve(a)} = vp(0) <wp(b) < bzl(lg {ve(0)} = vp(2),

pp(y) = mf {up( )}

be(y
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> inf o, min{pe(a-0), pe(a)}} (6L3))

a-b&(x)p(y)p,a€(x)

> inf {min{up(a-b), up(a)}}

a-be(z-y)p,a€(x),

=min{ inf {up(a-b)}, inf {up(a)}} (Proposition 22010 [[T])
a-be(z-y)p a€(z),

= min{p, (2 - ), p, ()},

and

vp(y) = bzt(u; {ve(b)}

< sup  {max{vp(a-b),ve(a)}} (EL3)

a-be(x),(y)p,a€(x),

< sup {max{vp(a-b),vp(a)}}
a-be(x-y)p,a€(x)p

=max{ sup {vp(a-b)}, sup {vp(a)}} (Proposition 22010 [[2])
a-be(z-y)p a€(x)p

= max{vp(z - y),vp(z)}.

Hence, p~(P) is a Pythagorean fuzzy BCC-filter of X.

(4) Assume that P is a Pythagorean fuzzy implicative BCC-filter of X,
(0), = {0}, and p is complete. Then for all z,y € X,

11, (0) = ag(lof)p{up(a)} = pp(0) = pp(z) 2 bei&f)p{up(b)} = pp (),

vp(0) = sup {vp(a)} = vp(0) < wp(r) < sup {vp(b)} = vp(),

a€(0), be(z)p
(- 2)
= f
dé&‘z {ne(d)}

= (11)1f(z {pp(d)} (p is complete)
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— inf Appla-<)}

a-c&(x)p(2)p

> inf {min{up(a-(b-c)), up(a-b)}} (ET9)

a-(b-c)€(x)p((¥)p(2)p),a-bE(@)p (y),

= inf {min{pp(a-(b-c)),up(a-b)}} (p is complete)

a-(b-0)€(2-(y-2)) pra-bE(w-y)

= min{ inf pp(a-(b-c)), inf {up(a-b)}} (Proposition 210 [T})

a-(b-c)E(a-(y-2)), a-be(ey),

= min{u, (- (y-2)), g (x -y},

and

vp(x-2)

= sup {vp(d)}

de(z-z),

= sup {vp(d)} (p is complete)
de(@)p(2)p

— s {we(a- o)}

a-ce(x)p(2)p

< sup {max{vp(a-(b-c)),vp(a-b)}} ((B1m))
a(b-c)€(x)p((y)p(2)p)a-bE(2)p(y)p

= sup {max{vp(a-(b-c)),vp(a-b)}} (p is complete)
a-(b-c)E(a-(y-2))pra-bE (@)

=max{  sup vp(a-(b-c)), sup {vp(a-b)}} (Proposition Z010 [2])

a-(b-c)e(x-(y-2))p a-be(z-y)p
= max{vp(z - (y-2)),vp(z-y)}.
Hence, p~(P) is a Pythagorean fuzzy implicative BCC-filter of X.

(5) Assume that P is a Pythagorean fuzzy comparative BCC-filter of X
and (0), = {0}. Then for all z,y € X,

1, (0) = ag(lof)p{up(a)} = pp(0) = pp(x) > inf {up(b)} = p,(2),

T obe(),

vp(0) = i‘ﬁ(}; {re(a)} = vp(0) < wp(x) < bg&g {rp(b)} = vp(w),
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P ()

— inf {up(b)}

be(y)p

> inf min a-((b-c)-b)),upla BT
= a~<(b4c>~b)e(x>p(((y)p<z>p><y>p>,ae<x>p{ tup(a-((b-c)-0) @)}y (( )

> inf min a-((b-c)-b)), a is congruence
2 oeeit ) e, 0i{pe(a - ((b-c)- b)), mp(a)}} (o g )

= min inf a-((b-c)-b
{“'((b'c)‘b)e(w-((y-Z)-y))p{'up( ((b-c)- b))}
; 1r(lf) {up(a)}} (Proposition P00 [[T})
ac(x)p

= min{p,(z - ((y - 2) - 9)), pp(2)},

and

vp(y)
= sup {vp(b)}

be(y)p

IN

sup {max{vp(a-((b-c)-b)),ve(a)}}  (ETL2))
a:((b0)D)E(@) ()o(2)0)w)) aE(e),

IN

sup {max{vp(a-((b-c)-b)),vp(a)}} (pis congruence)
a-((b-c)-b)e(z-((y-2)y))pa€(®)p

= max{ sup {ve(a-((b-c)-b))}
a-((b-c)-b)e(z-((y-2)9))p
, sup {vp(a)}} (Proposition 2010 [[2])
a€g(z),p

= max{vp(z- ((y-2)-y)),vp(x)}.

Hence, p~(P) is a Pythagorean fuzzy comparative BCC-filter of X.

(6) Assume that P is a Pythagorean fuzzy shift BCC-filter of X, (0), =
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{0}, and p is complete. Then for all z,y € X,

pp(0) = ag(lof)p{up(a)} = pp(0) = pp(z) = inf {up(b)} = p,(2),

T obe(a),

vp(0) = Sét(l(g {re(a)} = vp(0) < wp(x) < bzt(lr; {re(b)} = vp(2),

pe(((z-y) - y) - 2)
= inf  A{up(d)}

de(((z-y)y)-2)p

= inf d is complete
de(((z»(:z/)p)(y)p)(z)p{“ p(d)} (p plete)

= inf {up(((c-b)-b)-c)}

(c)b)-ce (2o w)0) )o) ()
{min{pp(a- (b-c)), pp(a)}} (BTm3))

v

inf
a-(b-c)€(2)p((y)p(2)p),a€(z)p

= inf {min{pp(a-(b-c)),up(a-b)}} (p is complete)
a-(b-c)€(z-(y-2)) p,a-bE(z-y)p

= min{ inf pp(a-(b-c)), inf {pp(a)}}  (Proposition EIT0 [T})

a-(b0)€(e-(y-2))p ag (),

=min{p, (7 (y-2)), pp(2)},

and

vp(((z-y)-y) - 2)
= sup {vp(d)}

de(((y)-y)-2)p

= sup {vp(d)} (p is complete)
de(((2)p()p)(¥)p)(2)p

= sup {re(((c-0)-0) - )}
((e:)-b)-ce(((2)p (1)) () ) (2)p

< sup {max{ve(a- (b-c)),ve(a)}} (ET13))

a-(b-c)&(x)p((y)p(2)p) a&(@)p

= sup {max{vp(a-(b-c)),vp(a)}} (p is complete)
a-(b-c)€(z-(y-2)) p,a€(x),
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= max{ sup vp(a-(b-c)), sup {vp(a)}}  (Proposition 2010 [2])
a-(b-c)E(@-(y-2) ae (@),

= max{gp(m’ . (y : Z)),Zp(iﬁ)}-

Hence, p~(P) is a Pythagorean fuzzy shift BCC-filter of X.

(7) Assume that P is a Pythagorean fuzzy BCC-ideal of X, p a complete,
and (0), = {0}. Then for all z,y,z € X,

() = inf {p(@)} = 0 (0) 2 ) 2 inf {po(b)} = 1, @)

vp(0) = Sél(l(g {ve(a)} = vp(0) <wvp(b) < bzl(lg {rp(b)} = vp(2),

Ep(x - z)

= nf {ue(d)}

de(z-z)

= inf d
de(a:)p(z)p{u p(d)}

= inf {up(a-c)}

a-ce(x)p(2)p

B - T {min{pp(a- (b-c)), up(b)}} ((B11H))

— inf {min{pp(a-(b-c)), up(b)}}

a-(b-c)e(z(y-2))p,bE(Y)p

= min{ inf {pp(a-(b-c))}, inf {up(b)}}  (Proposition E010 [T})
a-(b-c)e(z(y-2))p be(y)p

— min{py (@ - (v ), 1y ()}

and

vp(z - 2)

= sup {vp(d)}

de(z-2),
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= sup {vp(d)}
de(@)n(2),

= sup {we(a-c)}

a-ce(x)p(2)p

< sup {max{vp(a- (b-c)),vp(b)}} ((ETm))
a-(b-c)€(z)p((¥)p(2)),bE(W)p
= sup {max{vp(a-(b-c)),vp(b)}}

a-(b-c)e(a-(y-2)) p,bE () p

= max{ sup {vp(a-(b-c))}, sup {vp(b)}} (Proposition 2010 [[2])
a-(b-c)€(z-(y-2))p be()p

= max{vp(z - (y - 2)),vp(y)}-

Hence, p~(P) is a Pythagorean fuzzy BCC-ideal of X.

(8) Assume that P is a Pythagorean fuzzy strong BCC-ideal of X. By

Theorem B2, we have P is constant. Then for all x,y,z € X,
#p(0) a&lo)p{up(a)} o )p{up( )} = (@),

vp(0) = sup {vp(a)} = sup {vp(b)} = vp(z),

a€(0), be(a),
11 ()
a€(x)p
= inf min c-b)-(c-a)), b BT
= (C'b)'(c'a)e((z)p(y)ﬂ)((z)p(iﬂ)p),be(y)p{ {,UP(( ) ( )) ,UP( )}} (( ))
> inf min c-b)-(c-a)), up(b
2 ooy ooz ane, T ikp((e-0) - (c-a), up(B)}}
= min inf b (c-a
{(C'b)'(C'a)e((z'y)'(z-x))p{'up(( ) ( ))}

,bér(lyf) {pp(b)}} (Proposition 22010 [[1])

= min{HP((z cy) - (z- x)),gp(y)},
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and
vp(z)
= sup {vp(a)}
a€(x),
< sup {max{vp((c-b)-(c-a)),vp(b)}}  (BIIR))
(eb)-(ca)e((2)p(¥)p) ((2)p (%)) bE(W)
< sup {max{vp((c-b)-(c-a)),vp(b)}}
(c:b)-(c-a)€((zy) (2-2)) p,bE(Y)
= max{ sup {vp((c-b)-(c-a))}
(eb) (ca)e((zy)(27)),
, sup {vp(b)}} (Proposition 21010 [2])
bE(y)p
=max{vp((z-y) - (2 ), vp(y)}.
Hence, p~(P) is a Pythagorean fuzzy strong BCC-ideal of X. O]

The following example shows that Theorem B=3H may be not true if
(0), # {0}

Example 3.3.6 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

0123
0j0 1 2 3
110 0 2 0
2(0 1 0 3
3/01 20

We define a Pythagorean fuzzy set P = (up,vp) with the membership function
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pp and the non-membership function vp as follows:

X0 1 2 3

pp [0.7 04 0.6 0.6
vp |02 0.6 0.3 0.3

Then P = (up, vp) is a Pythagorean fuzzy BCC-filter of X. Let
p={(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(0,3), (3,0)}.

Then p is a congruence relation on X. Thus

(0), = (1), = (3), = {0, 1,3}, (2), = {2}-

} = min{0.7,0.4,0.6} = 0.4 * 0.6 =
pe(2) = p,(2) and vp 0),vp(1),vp(3)} = max{0.2,0.6,0.3} =
0.6 £ 0.3 = vp(2) = vp(2), we have p~(P) is not a Pythagorean fuzzy BCC-filter

Since p,(0) = min{up(0), up(1), e (3
(

of X.

The following example shows that Theorem B=343 may be not true if

(0), # {0} and p is not complete.

Example 3.3.7 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

012 3
0j0 1 2 3
110 0 2 0
2/0 1 0 3
301 20

We define a Pythagorean fuzzy set P = (up,vp) with the membership function
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pp and the non-membership function vp as follows:

X0 1 2 3

up |1 01 0.3 03
vp |0 05 0.2 0.2

Then P = (up, vp) is a Pythagorean fuzzy implicative BCC-filter of X. Let

p = {(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(0,3), (3,0)}.

Then p is a congruence relation on X. Thus

(0), = (1), = (3), = {0, 1,3}, (2), = {2}-

But p is not complete because

{0} = {22} = (2),(2), # (2-2), = (0), = {0, 1,3},

Since i, (0) = min{up(0), pp(1), pp(3)} = min{1,0.1,0.3} = 0.1 2 0.3 = pp(2) =
pp(2) and vp(0) = max{ve(0),vp(1),vp(3)} = max{0,0.5,0.2} = 0 £ 0.2 =
vp(2) = vp(2), we have p~(P) is not a Pythagorean fuzzy implicative BCC-filter
of X.

The following example shows that Theorem B=33 may be not true if

(0), # {0} and p is not complete.

Example 3.3.8 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0



90

and a binary operation - defined by the following Cayley table:

012 3
0j0 1 2 3
110 0 2 3
2(0 1 0 3
3101 2 0

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

XAL0 1 P28 (3

pp | 0.8 0.3 0.5 0.8
vp 0.2 09 0.7 0.2

Then P = (up, vp) is a Pythagorean fuzzy comparative BCC-filter of X. Let
p=1(0,0),(1,1),(2,2),(3,3),(0,2),(2,0)}.

Then p is a congruence relation on X. Thus
(0), = (2), = {0,2}, (1), = {1},(3), = {3}.
But p is not complete because
{0} = {1{1} = (1),(1), # (1-1), = (0), = {0, 2},

Since p,(0) = min{pp(0), up(2)} = min{0.8,0.5} = 0.5 2 0.8 = up(3) = p,(3)
and vp(0) = max{vp(0),vp(2)} = max{0.2,0.7} = 0.7 £ 0.2 = vp(3) = vp(3),

we have p~(P) is not a Pythagorean fuzzy comparative BCC-filter of X.
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The following example shows that Theorem B=33 may be not true if
(0), # {0} and p is not complete.

Example 3.3.9 By Example B33 8, we define a Pythagorean fuzzy set P =
(up, vp) with the membership function pp and the non-membership function vp

as follows:
X |0 1 2 3

pp|1 02 0.1 05
vp |0 0.6 0.9 04

Then P = (up, vp) is a Pythagorean fuzzy shift BCC-filter of X. Let

P = {(07 0)7 (1’ 1)7 (27 2)7 (37 3)’ (07 2)7 (27 0)}

Then p is a congruence relation on X. Thus

(O)p = (2)/7 = {0,2}, (1),0 = {1}, (3)/7 = {3}.

But p is not complete because

{0} = {813} = 3),(3)p # (3-3), = (0), = {0, 2},

Since p,(0) = min{pp(0), pp(2)} = min{l,0.1} = 0.1 2 0.2 = pp(1) = py(1)
and vp(0) = max{vp(0),vp(2)} = max{0,0.9} = 0.9 £ 0.4 = vp(3) = vp(3), we
have p~(P) is not a Pythagorean fuzzy shift BCC-filter of X.

The following example shows that Theorem B=33 may be not true if
(0), # {0} and p is not complete.

Example 3.3.10 From Example BT22, we define a Pythagorean fuzzy set P =

(up, vp) with the membership function pp and the non-membership function vp
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as follows:
X |0 1 2 3

e |1 0.2 0.1 0.5
vp |0 0.6 0.9 04

Then P = (up, vp) is a Pythagorean fuzzy BCC-ideal of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(0,2), (2,0)}.

Then p is a congruence relation on X. Thus

(0), = (2), = {0,2}, (1), = {1}, (3), = {3}.

Since p,(0) = min{pp(0), pp(2)} = min{1,0.1} = 0.1 2 0.2 = pp(1) = p,(1)
and vp(0) = max{vp(0),p(2)} = max{0,0.9} = 0.9 £ 0.6 = vp(1) = vp(1), we
have p~(P) is not a Pythagorean fuzzy BCC-ideal of X.

Open Problem. Is the lower approximation p~ (P) a Pythagorean fuzzy
BCC-ideal of X if P is a Pythagorean fuzzy BCC-ideal, (0), # {0}, and p is

complete?

Lemma 3.3.11 If p is an congruence relation on a BCC-algebra X = (X, -,0)
and P = (up,vp) a Pythagorean fuzzy BCC-subalgebra of X, then the upper

approzimation pt(P) satisfies the following conditions:

(Vz € X)(1p(0) > Tip(7)), (3.3.5)
(Vo € X)(vp(0) < vp(x)). (3.3.6)

Proof. Let x € X. Then

fp(0) = set(l(g {up(a)}
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I
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]

Theorem 3.3.12 Let p be an congruence relation on a BCC-algebra X = (X, -,0)
and P = (up,vp) a Pythagorean fuzzy set in X. Then the following statements
hold:

(1) If P is a Pythagorean fuzzy BCC-subalgebra of X, then p*(P) is a Pythago-
rean fuzzy BCC-subalgebra of X,

(2) If P is a Pythagorean fuzzy near BCC-filter of X, then p*(P) is a Pythago-
rean fuzzy near BCC-filter of X, and

(3) IfP is a Pythagorean fuzzy strong BCC-ideal of X, then p™(P) is a Pythago-

rean fuzzy strong BCC-ideal of X .

Proof. (1) Assume that P is a Pythagorean fuzzy BCC-subalgebra of X. Then

for all x,y € X,
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Case 1: x =y. Then

and
vp(z - y) = vp(0) ((21D))
< p(x) (E=D))
< max{vp(z), 7p(y)}
Case 2: x # y.
Case 2.1: -y = x or y. It is sufficient to assume that -y = x. Then
Bp(z - y) = fip(z) = min{7ip(z), Ip(y) }
and

vp(z - y) = vp(r) < max{vp(z), vp(y)}-

Case 2.2: -y # x and x -y # y. Assume that there exists z € X be

such that x -y = z. If 2p0, then

and
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If zp0 or yp0, it is sufficient to assume that zp0. Since p is a congruence

relation on X, we have zypOy, that is, zpy. Therefore,

and

vp(z - y) = Up(2)
=7p(y)
— min{7p(0), 7p(y)}

= max{7p(x),7p(y)}.

Hence, p*(P) is a Pythagorean fuzzy BCC-subalgebra of X.

(2) Assume that P is a Pythagorean fuzzy near BCC-filter of X. Then

for all x,y € X,

fp(-y) = :’(u.p) {ue(c)}

> sup {up(c)}
c€(x)p(y)p

= sup {up(a-b)}

a-be(x),(y)p

> sup {up(b)}

be(y)p

= Tp(y)
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and

vp(x-y) = inf {vp(c)}

ce(zy)p

< inf vp(c
= ce<w)p(y>p{ p()}

= inf {vp(a-b)}

a-b€(x)p(y)p

< inf {vp(b)} ((B13))

be(y)p

=Up(y).
Hence, p*(P) is a Pythagorean fuzzy near BCC-filter of X.
(3) Assume that P is a Pythagorean fuzzy strong BCC-ideal of X. By

Theorem B2, we have P is constant. Then for all z,y, z € X,

Fip(0) = sup {pp(a)} = sup {up(b)} = fip(x),
ae(0), be(x),p

vp(0) = inf {vp(a)} = beil(le)p{VP(b)} = Up(z),

a€(0),

Fip(2)

= sup {w(a)}
a€(x),p

> sup {min{up((c-b) - (c-a)),pe(b)}}  ((BLLD))
(c:b)-(c-a)€((2)p(¥)p) ((2)p(2) ) bE(Y)p

= sup {min{up((c-b) - (c-a)), pe(b)}}
(c:b)-(c-a)e((z-y)-(22))p,bE(Y) p

= min{ sup {pp((c-b)-(c-a))}, sup {up(b)}} (P is constant)

(c:)-(c-a)e((z-y)-(22))p be(y)p

=min{ip((z-y) - (z-2)),1p(v)},



= inf {vp(a)}

a€(z),p

inf max{vp((c-b)-(c-a)),vp(b
- (C'b)’(c'a)e((z)f?(y)ﬂ)((Z)p(m)p):be(y)p{ {re((e-0) - (c-a), ve(B)}}

_ inf {max{vp((c-b)-(c-a)),vp(b)}}

 (eb)-(ca)e((zy)-(2))p bE(),

= max inf vp((c-b)-(c-a))}, inf {vp(b
{onen o l(e-b)- (e a))}, inf {p(0))}

= max{p((z-y) - (2-2)),7p(y)}

Hence, p*(P) is a Pythagorean fuzzy strong BCC-ideal of X.
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(ET13)

(P is constant)

The following example shows that if P is a Pythagorean fuzzy BCC-filter

of X, then the upper approximation p™(P) is not a Pythagorean fuzzy BCC-filter

in general.

Example 3.3.13 From Example BZX8, we define a Pythagorean fuzzy set P =

(up, vp) with the membership function pp and the non-membership function vp

as follows:
X0 1 2 3

pp 0.6 05 0.3 0.3
vp 0.3 04 0.7 0.7

Then P = (up, vp) is a Pythagorean fuzzy BCC-filter of X. Let

p=1(0,0),(1,1),(2,2),(3,3),(3,0),(0,3)}.

Then p is a congruence relation on X. Thus

(O)p = (3)p = {0, 3}, (1)p = {1}, (Q)p = {2}.
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Since fip(2) = pp(2) = 0.3 # 0.5 = min{max{pp(0), up(3)}, pp (1)} } = min{7ip(3)
,fp(1)} = min{fp(1-2), @p(1)}. we have p*(P) is not a Pythagorean fuzzy BCC-
filter of X.

Open Problem. Is the upper approximation p™(P) a Pythagorean fuzzy
BCC-filter of X if P is a Pythagorean fuzzy BCC-filter of X?

By Theorem B=3H, we discussed about relation between Pythagorean
fuzzy sets and lower approximations. Next, we study relation between Pythago-
rean fuzzy sets and upper approximations. We found the relation of them cannot
prove in the same direction with Theorem B=3H. Hence, we assume that p be an
equivalence relation on X and P = (up, vp) a Pythagorean fuzzy set in X, then
the following examples show that if P is a Pythagorean fuzzy implicative (resp.,
comparative, shift) BCC-filter of X, then the upper approximation p*(P) is not

a Pythagorean fuzzy implicative (resp., comparative, shift) BCC-filter in general.

Example 3.3.14 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

0123
0(01 2 3
110 0 3 3
2(0 0 00
3/0 110

We define a Pythagorean fuzzy set P = (up,vp) with the membership function

pp and the non-membership function vp as follows:

X0 1 2 3

pwp 0.6 0.5 03 0.3
vp |04 0.5 0.7 0.7
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Then P = (up, vp) is a Pythagorean fuzzy implicative BCC-filter of X. Let

pP= {(070)v (1’ 1)7 (272)7 (373)’ (073)7 (370)}

Then p is an equivalence relation on X. Thus

(O)p = (3>p = {O» 3}7 (1)/7 = {1}> (Q)p = {2}

Since fip(0 - 2) = fip(2) = 0.3 # 0.5 = min{0.6, 0.5} = min{max{0.6,0.3},0.5} =

min{7ip(3), 7p(1)} = min{zap(0 - (1 - 2)),mp(0 - 1)}, we have p(P) is not a

Pythagorean fuzzy implicative BCC-filter of X.

Example 3.3.15 From Example BZ3T4, we define a Pythagorean fuzzy set P =
(up,vp) with the membership function pp and the non-membership function vp

as follows:

X|0 1 2 3

up |08 0.2 0.1 0.1
vp [0.2 0.6 0.9 0.9

Then P = (up, vp) is a Pythagorean fuzzy comparative BCC-filter of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(0,3), (3,0)}.

Then p is an equivalence relation on X. Thus

(0)p = (3)p = {0,3}, (1), = {1}, (2), = {2}

Since fip(2) = 0.1 # 0.2 = min{0.8,0.2} = min{max{0.8,0.1},0.2} = min{7p(3)
,Pp(1)} = min{zp(1- ((2-3) - 2)),m@p(1)}, we have p™(P) is not a Pythagorean

fuzzy comparative BCC-filter of X.

Example 3.3.16 From Example B33T4, we define a Pythagorean fuzzy set P =
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(up,vp) with the membership function pp and the non-membership function vp

as follows:
X0 1 2 3

pp |09 0.8 0.2 0.2
vp | 0.3 04 08 0.8

Then P = (up, vp) is a Pythagorean fuzzy shift BCC-filter of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(0,3),(3,0)}.

Then p is an equivalence relation on X. Thus

(0), = (3), = {0,3}, (1), = {1}, (2), = {2}

Since Zip(((2-0)-0)-2) = fip(2) = 0.2 # 0.8 = min{0.9, 0.8} = min{max{0.9, 0.2}

,0.8} = min{7ip(3), 7ip (1)} = min{zip(1 - (0-2)), 7p(1)}, we have p*(P) is not a
Pythagorean fuzzy shift BCC-filter of X.

Open Problem. Is the upper approximation p* (P) a Pythagorean fuzzy
implicative (resp., comparative, shift) BCC-filter of X if P is a Pythagorean fuzzy

implicative (resp., comparative, shift) BCC-filter of X and p is congruence?

3.4 t-Level subsets of Pythagorean fuzzy sets

In this section, we shall discuss the relationships between Pythagorean
fuzzy BCC-subalgebras (Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy
BCC-filters, Pythagorean fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-
ideals) of BCC-algebras and their ¢-level subsets.

Definition 3.4.1 [@7] Let F be a fuzzy set with the membership function pg in
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X. The sets

U, t) = {2 € X | jr(a) > 1},
Ut (up.t) = {2 € X | pela) > 1},

Lipr.t) = {w € X | prlx) < 1},
L (e, t) = {w € X | s () < 1),

B(ur,t) = {x € X | p) = 1}

are referred to as an upper t-level subset, an upper t-strong level subset, a lower
t-level subset, a lower t-strong level subset, and an equal t-level subset of F, re-

spectively, for any ¢ € [0, 1].

Theorem 3.4.2 P is a Pythagorean fuzzy BCC-subalgebra of X if and only if
U(pp,t) and L(vp,t) are, if the sets are nonempty, BCC-subalgebras of X for

every t € [0,1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy BCC-subalgebra of X. Let
t € [0,1] be such that U(up,t), L(vp,t) # 0. Let z,y € X. Then

z,y € Ulpp,t) = pp(z) >t pup(y) >t
= min{up(z), up(y)} >t
= pp(z - y) = min{pp(2), pe(y)} > ¢ (mm))

=z-y € U(up,t)
and

z,y € L(vp,t) = vp(z) < t,vp(y) <t

= max{pup(2), ve(y)} <t

= vp(z - y) < max{vp(z),vp(y)} <t (B2))
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=z -y € L(vp,t).

Hence, U(up,t) and L(vp,t) are BCC-subalgebras of X.

Conversely, assume for all ¢ € [0,1],U(up,t) and L(vp,t) are BCC-

subalge-bras of X if the sets are nonempty. Let x,y € X.

Choose t = min{up(z), up(y)} € [0,1]. Then up(z) >t and pp(y) > t.
Thus x,y € U(up,t) # 0. As a hypothesis, we get U(up,t) is a BCC-subalgebra
of X and so x -y € U(up,t). Thus pp(z-y) >t = min{up(z), up(y)}.

Choose t = max{vp(x),vp(y)} € [0,1]. Then vp(z) <t and vp(y) < t.
Thus z,y € L(vp,t) # 0. As a hypothesis, we get L(vp,t) is a BCC-subalgebra

of X and so x -y € U(vp,t). Thus vp(z-y) <t = max{vp(z),vp(y)}.
Hence, P is a Pythagorean fuzzy BCC-subalgebra of X. O

Theorem 3.4.3 P is a Pythagorean fuzzy BCC-subalgebra of X if and only if
Ut (up,t) and L~ (vp,t) are, if the sets are nonempty, BCC-subalgebras of X for

every t € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy BCC-subalgebra of X. Let
t € [0,1] be such that U (up,t), L™ (vp,t) # 0. Let z,y € X. Then

x,y € Ut (up,t) = pp(x) > t, up(y) >t
= min{up(z), pp(y)} >t
= pp(z - y) = min{pp (), up(y)} >t ((BTm))

=x-y €U (up,t)
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and

x,y € L™ (vp,t) = vp(z) < t,vp(y) <t
= max{up(z), vp(y)} <t
= vp(z - y) < max{vp(z),vp(y)} <t (B2)

=z-y € L (vp,t).

Hence, Ut (up,t) and L™ (vp,t) are BCC-subalgebras of X.

Conversely, assume for all ¢ € [0,1], Ut (up,t) and L~ (vp,t) are BCC-

subalgebras of X if the sets are nonempty.

Suppose there exist x,y € X such that pp(z - y) < min{up(x), up(y)}.
Choose t = up(z - y) € [0,1]. Then pp(x) > t and pp(y) > t. Thus z,y €
Ut (up,t) # 0. As a hypothesis, we get U™ (up,t) is a BCC-subalgebra of X and

sox-y € Ut (up,t). Thus pp(x -y) >t = pp(z - y), a contradiction. Hence,

pe(z - y) > min{pp(z), pp(y)} for all 7,y € X,

Suppose there exist x,y € X such that vp(x - y) > max{vp(x),vp(y)}.
Choose t = vp(z - y) € [0,1]. Then vp(x) < t and vp(y) < t. Thus x,y €
L~ (vp,t) # 0. As a hypothesis, we get L™ (vp,t) is a BCC-subalgebra of X and
sox-y € L (vp,t). Thus vp(z-y) < t = vp(x - y), a contradiction. Hence,

vp(x - y) < max{vp(x),vp(y)} for all x,y € X.
Therefore, P is a Pythagorean fuzzy BCC-subalgebra of X. O

Theorem 3.4.4 P is a Pythagorean fuzzy near BCC-filter of X if and only if
U(pp,t) and L(vp,t) are, if the sets are nonempty, near BCC-filers for every
t €10,1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy near BCC-filter of X. Let
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t € [0, 1] be such that U(up,t), L(vp,t) # 0. Let 2,y € X. Then

y € Ulpp,t) = pp(y) >t
= pp(z-y) > pp(y) >t ((B13))

= x -y € Ulup, 1)

and

x,y € L(vp,t) = vp(y) <t
= vp(z-y) <wp(y) <t ((BT2))

=z -y € L(vp,t).

Hence, U(pp,t) and L(vp,t) are near BCC-filers of X.

Conversely, assume for all ¢ € [0,1],U(up,t) and L(vp,t) are near BCC-

filers of X if the sets are nonempty. Let z,y € X.

Choose t = pp(y) € [0,1]. Then pp(y) > t. Thus y € U(up,t) # 0. As

a hypothesis, we get U(up,t) is a near BCC-filter of X and so z -y € U(up,1).

Thus pp (7 - y) >t = pp(y).

Choose t = vp(y) € [0,1]. The vp(y) < t. Thus y € L(vp,t) # 0. As a
hypothesis, we get L(vp,t) is a near BCC-filter of X and so -y € U(vp,t). Thus

vp(z-y) <t =wp(y).
Hence, P is a Pythagorean fuzzy near BCC-filter of X. ]

Theorem 3.4.5 P is a Pythagorean fuzzy near BCC-filter of X if and only if
Ut (up,t) and L™ (vp,t) are, if the sets are nonempty, near BCC-filers of X for

every t € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy near BCC-filter of X. Let
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€ [0, 1] be such that U™ (up,t), L~ (vp,t) # 0. Let 2,y € X. Then

y € Ut (up,t) = pp(y) >t
= pp(z-y) > pp(y) >t (E13))

= -y €U (up,1)

and

ye€ L (vp,t) = vp(y) <t
= vp(r-y) <wvp(y) <t ((B132))

=x-y € L (vp,t).

Hence, Ut (up,t) and L~ (vp,t) are near BCC-filers of X.

Conversely, assume for all ¢ € [0,1],U"(up,t) and L~ (vp,t) are near

BCC-filers of X if the sets are nonempty.

Suppose there exist =,y € X such that pp(xz -y) < pp(y). Choose
t = pp(x-y) €10,1]. Then pp(y) > t. Thus y € Ut (up,t) # (. As a hypothesis,
we get UT(up,t) is a near BCC-filter of X and so x -y € Ut (up,t). Thus
pp(z - y) >t = pp(z - y), a contradiction. Hence, up(z - y) > pp(y) for all
z,y € X.

Suppose there exist z,y € X such that vp(z - y) > vp(y). Choose t =
vp(x -y) € [0,1]. Then vp(y) < t. Thus y € L™ (vp,t) # 0. As a hypothesis, we
get L~ (vp,t) is a near BCC-ilter of X and so -y € L™ (vp,t). Thus vp(z-y) <

t = vp(z - y), a contradiction. Hence, vp(z -y) < vp(y) for all z,y € X.
Therefore, P is a Pythagorean fuzzy near BCC-filter of X. O

Theorem 3.4.6 P is a Pythagorean fuzzy BCC-filter of X if and only if U(up,t)
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and L(vp,t) are, if the sets are nonempty, BCC-filers for every t € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy BCC-filter of X. Let ¢t € [0, 1]

be such that U(up,t), L(vp,t) # 0. Let 2,y € X. Then

z e U(pp,t) = pp(z) >t
= pip(0) = pp(x) > 1

=0e U(Mp,t),

x-y,x € Ulpp,t) = pp(z-y) = t, pup(z) >t
= min{yup(x - y), pp(2)} = ¢
= pp(y) = min{pp(z - y), pp(z)} > ¢

=y € U(up,t),

x € L(vp,t) = vp(z) <t
= vp(0) < wvp(x) <t

=0¢ L(l/p,t),

and

z-y,x € L(vp,t) = vp(x-y) <t,vp(z) <t
= max{up(z - y), vp(z)} <t
= vp(y) < max{vp(x-y),vp(x)} <t

EAS L(I/p,t).

Hence, U(pp,t) and L(vp,t) are BCC-filers of X.

(E2)
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Conversely, assume for all ¢t € [0,1],U(up,t) and L(vp,t) are BCC-filers

of X if the sets are nonempty. Let x,y € X.

Choose t = pp(z) € [0,1). Then pp(z) > t. Thus x € U(up,t) # 0.
As a hypothesis, we get U(up,t) is a BCC-filter of X and so 0 € U(up,t). Thus

pp(0) = t = pp(x).
Choose t = min{up(z - y),up(z)} € [0,1]. Then pp(x -y) > t and

pp(x) > t. Thus x - y,z € U(up,t) # 0. As a hypothesis, we get U(up,t) is a
BCC-filter of X and so y € U(up,t). Thus up(y) >t = min{up(z - y), up(x)}.

Choose t = vp(z) € [0,1]. The vp(x) < t. Thus z € L(vp,t) # 0. As
a hypothesis, we get L(vp,t) is a BCC-filter of X and so 0 € U(vp,t). Thus

vp(0) <t =vp(z).

Choose t = max{vp(x - y),vp(x)} € [0,1]. Then vp(z - y) < t and
vp(z) < t. Thus = -y,x € L(up,t) # (. As a hypothesis, we get L(up,t) is a
BCC-filter of X and so y € L(up,t). Thus vp(y) <t = max{vp(x-y),vp(x)}.

Hence, P is a Pythagorean fuzzy BCC-filter of X. [
Theorem 3.4.7 P is a Pythagorean fuzzy BCC-filter of X if and only if Ut (up, t)

and L~ (vp,t) are, if the sets are nonempty, BCC-filers of X for every t € [0, 1].

Proof. Assume P = (up, vp) is a Pythagorean fuzzy BCC-filter of X. Let ¢ € [0, 1]
be such that UT (up,t), L™ (vp,t) # 0. Let 2,y € X. Then

r €U (up,t) = pp(x) >t
= up(0) > pp(z) >t ((B1H))

=0e€ U+([1,p7t),
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x-y,x € U (up,t) = pp(z-y) > t, pup(x) >t
= min{pp(z - y), pp(2)} > ¢
= pp(y) = min{pp(z - y), pp(z)} >t ((BT2))

=y e U (up,t),

x € L™ (vp,t) = vp(x) <t
= vp(0) < vp(x) <t (B1m))

= 0€ L™ (Vp,)

and

r-y,x € L (vp,t) = vp(x-y) < t,vp(zr) <t
= max{vp(x-y),vp(x)} <t
= vp(y) < max{vp(z-y), ve(z)} <t (E13))

:>y€L (VPa)

Hence, Ut (up,t) and L™ (vp,t) are BCC-filers of X.

Conversely, assume for all ¢t € [0,1],U"(up,t) and L~ (vp,t) are BCC-

filers of X if the sets are nonempty.

Suppose there exists + € X such that pp(0) < pp(x). Choose t =
pp(0) € [0,1]. Then pp(x) > t. Thus z € U (up,t) # (0. As a hypothesis, we get
Ut (up,t) is a BCC-filter of X and so 0 € Ut (up,t). Thus pp(0) >t = up(0), a

contradiction. Hence, up(0) > pp(z) for all z € X.

Suppose there exist z,y € X such that pp(y) < min{up(z - y), pp(z)}.
Choose t = up(y) € [0,1]. Then pp(z -y) > t and pp(z) > t. Thus z - y,z €
Ut (up,t) # 0. As a hypothesis, we get UT(up,t) is a BCC-filter of X and
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soy € U(up,t). Thus up(y) > t = pp(y), a contradiction. Hence, up(y) >

min{pp(x - y), up(z)} for all z,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(x) < t. Thus = € L™ (vp,t) # 0. As a hypothesis, we get
L~ (vp,t) is a BCCHilter of X and so 0 € L™ (vp,t). Thus vp(0) < t = vp(0), a

contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist x,y € X such that vp(y) > max{vp(z - y),vp(z)}.
Choose t = vp(y) € [0,1]. Then vp(z-y) < t and vp(x) < t. Thus z-y,z €
L~ (vp,t) # (). As a hypothesis, we get L™ (vp,t) is a BCC-filter of X and so y €
L~ (vp,t). Thus vp(y) <t = vp(y), a contradiction. Hence, vp(y) < max{vp(x -

y),vp(z)} for all z,y € X.
Therefore, P is a Pythagorean fuzzy BCC-filter of X. ]

Theorem 3.4.8 P is a Pythagorean fuzzy implicative BCC-filters of X if and only
if U(up,t) and L(vp,t) are, if the sets are nonempty, implicative BCC-filters for

every t € [0, 1].

Proof. Assume P = (up, vp) is a Pythagorean fuzzy implicative BCC-filters of X.
Let t € [0, 1] be such that U(up,t), L(vp,t) # 0. Let 2,y € X. Then

x € U(up,t) = pup(x) >1
= pp(0) > pp(v) >t ((B13))

=0 U(up,t),

z-(y-2),z-y€U(up,t)
= pp(r-(y-2)) =t pup(z-y) >t

= min{up(z - (y - 2)), pp(z-y)} >t
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= pp(z - z) 2 min{pp(z - (y-2)), pe(r-y)p 2 ¢ ((BLY))

=ux-z¢€U(up,t),

z € L(vp,t) = vp(z) <t
= vp(0) < vp(x) <t ((813))

=0 € L(Vp,t),

and

x-(y-z),x-y € Lvp,1)
= vp(z- (y-2)) <t,vp(z-y) <t
= max{pp(z - (y-2)),vp(r-y)} <t
= vp(z-2) Smax{vp(z- (y-2)),ve(z-y)} <t ((BII0))

=z 2z € L(vp,t).

Hence, U(up,t) and L(vp,t) are implicative BCC-filters of X.

Conversely, assume for all ¢ € [0, 1], U(up,t) and L(vp,t) are implicative

BCC-filters of X if the sets are nonempty. Let x,y € X.

Choose t = pp(x) € [0,1]. Then pp(z) >t. Thus x € U(up,t) # 0. As a
hypothesis, we get U(up, t) is an implicative BCC-filter of X and so 0 € U(up, t).
Thus pp(0) > ¢ = pp(z).

Choose t = min{pp(z- (y- 2)), pp(z-y)} € [0,1]. Then pp(x-(y-2)) >t
and pp(z -y) > t. Thus x- (y-2),z-y € U(up,t) # 0. As a hypothesis, we

get U(up,t) is an implicative BCC-filter of X and so = -z € U(up,t). Thus

pp(@ - 2) 2t =min{up(z - (y - 2)), pup(z - y)}-
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Choose t = vp(z) € [0,1]. The vp(z) < t. Thus z € L(vp,t) # (). As a
hypothesis, we get L(vp,t) is an implicative BCC-filter of X and so 0 € U(vp, t).
Thus vp(0) <t = vp(x).

Choose t = max{vp(x - (y-2)),vp(z-y)} € [0,1]. Then vp(x-(y-2)) <t
and vp(z-y) < t. Thusz-(y-z2),z-y € L(up,t) # 0. As a hypothesis, we
get L(pp,t) is an implicative BCC-filter of X and so = - z € L(up,t). Thus

vp(x-z) <t=max{vp(x-(y-2)),ve(x-y)}.
Hence, P is a Pythagorean fuzzy implicative BCC-filter of X. [

Theorem 3.4.9 P is a Pythagorean fuzzy implicative BCC-filter of X if and only
if U (up,t) and L™ (vp,t) are, if the sets are nonempty, implicative BCC-filters
of X for every t € [0,1].

Proof. Assume P = (up, vp) is a Pythagorean fuzzy implicative BCC-filter of X.
Let ¢ € [0,1] be such that Ut (up,t), L™ (vp,t) # 0. Let x,y € X. Then

r €U (up,t) = pp(x) >t
= up(0) > pp(z) >t ((B13))

=0e€ U+([1,p,t),

v (y-2),7-y €U (up,t)
= pp(z - (y-2) >t pp(x-y) >t
= min{pp(z - (y-2)), pe(z-y)} > 1
= pp(z - z) 2 min{pp(z - (y - 2)),pe(z-y)} >t ((BTH))

=x-2€ U (up,t),
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r € L (vp,t) = vp(x) <t
= vp(0) < wvp(x) <t (B1m))

=0¢e L™ (Vp, ),

and

x-(y-z),x-y €L (vp,t)
= vp(z- (y-2)) < t,uplz-y) <t
= max{vp(z- (y- 2)),ve(z-y)} <t
= vp(z-z) Smax{vp(z- (y-2)),vp(z-y)} <t  ((ED))

=x-z€ L (vp,t).

Hence, Ut (up,t) and L™ (vp,t) are implicative BCC-filters of X.

Conversely, assume for all ¢ € [0,1],U*(up,t) and L~ (vp,t) are implica-

tive BCC-filters of X if the sets are nonempty.

Suppose there exists z € X such that up(0) < pp(z). Choose t =
pp(0) € [0,1]. Then pp(z) > t. Thus & € Ut (up,t) # 0. As a hypothesis,
we get Ut (up,t) is an implicative BCC-filter of X and so 0 € U (up,t). Thus

wp(0) >t = up(0), a contradiction. Hence, up(0) > pp(z) for all x € X.

Suppose there exist x,y € X such that pp(z-z) < min{up(z-(y-2)), up(z-
y)}. Choose t = pp(z-2) € [0,1]. Then up(x - (y-2)) >t and pp(z - y) > t.
Thus x - (y - 2),2 -y € UM (up,t) # . As a hypothesis, we get U™ (up,t) is an
implicative BCC-filter of X and so z-z € U™ (up,t). Thus pup(z-2) >t = pp(z-2),

a contradiction. Hence, pup(x - 2) > min{up(z- (y-2)), pp(x-y)} for all x,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(x) < t. Thus x € L™ (vp,t) # 0. As a hypothesis, we get L™ (vp,t)
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is an implicative BCC-filter of X and so 0 € L~ (vp,t). Thus vp(0) < t = vp(0),

a contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist z,y € X such that vp(x-2) > max{vp(z-(y-2)), ve(x-
y)}. Choose t = vp(x - z) € [0,1]. Then vp(x - (y-2)) < t and vp(x -y) < t.
Thus = - (y - 2),2 -y € L™ (vp,t) # 0. As a hypothesis, we get L™ (vp,t) is an
implicative BCC-filter of X and so x-z € L™ (vp,t). Thus vp(z-2) <t = vp(z-2),

a contradiction. Hence, vp(x - 2) < max{vp(z- (y-2)),vp(z-y)} for all z,y € X.
Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X [

Theorem 3.4.10 P is a Pythagorean fuzzy comparative BCC-filter of X if and
only if U(up,t) and L(vp,t) are, if the sets are nonempty, comparative BCC-filters

for every t € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy comparative BCC-filters of
X. Let t € [0,1] be such that U(up,t), L(vp,t) # 0. Let 2,y € X. Then

v € U(up,t) = pp(x) >t
= p(0) > pp(x) > (613))

=0e€ U(Mp,t),

z-((y-2)-y),xeU(up,t)
= pp(x - ((y-2)-y) =t pe(x) 21
= min{up(z - ((y - 2) - y)), pe(x)} 2 ¢
= pp(y) = min{pp(z - ((y - 2) -y)), pe(z)} = ¢ ((BII))

=y € U(up,t),
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€ L(vp,t) = vp(x) <t
= vp(0) < vp(z) <t ((813))

=0¢€ L(l/p,t),

and

z-((y-2)-y),z € L(vp,1)
= vp(z- ((y-2)-y) <tvp(z) <t
= max{up(z - ((y-2)-y),ve(x)} <t
= vp(y) < max{vp(z- ((y-2)-y),ve(x)} <t (BETI2))

=y € L(l/p,t).

Hence, U(up,t) and L(vp,t) are comparative BCC-filters of X.

Conversely, assume for all ¢ € [0, 1], U(up,t) and L(vp,t) are comparative

BCC-filters of X if the sets are nonempty. Let x,y € X.

Choose t = up(z) € [0,1]. Then pp(x) >t. Thus z € U(up,t) #0. As a
hypothesis, we get U(up,t) is a comparative BCC-filter of X and so 0 € U(up,t).
Thus pp(0) >t = pp(z).

Choose t = min{up(z-((y-2)-y)), pe(z)} € [0,1]. Then pp(z-((y-2)-y)) =
t and pp(x) > t. Thus = - ((y-2) - y),x € U(up,t) # . As a hypothesis,

we get U(up,t) is a comparative BCC-filter of X and so y € U(up,t). Thus

pe(y) >t =min{up(z - ((y-2)-y)), pp(z)}.

Choose t = vp(z) € [0,1]. The vp(x) < t. Thus x € L(vp,t) # (. As a
hypothesis, we get L(vp,t) is a comparative BCC-filter of X and so 0 € U(vp, t).
Thus vp(0) <t = vp(x).

Choose t = max{vp(z-((y-2)-y)),vp(x)} € [0,1]. Then vp(z-((y-2)-y)) <
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t and vp(z) < t. Thus z - ((y - 2) - y),x € L(up,t) # 0. As a hypothesis,

we get L(up,t) is a comparative BCC-filter of X and so y € L(up,t). Thus

vp(y) <t =max{vp(z-((y-2)-y)),ve(z)}.
Hence, P is a Pythagorean fuzzy comparative BCC-filter of X. m

Theorem 3.4.11 P s a Pythagorean fuzzy comparative BCC-filter of X if and
only if UM (up,t) and L~ (vp,t) are, if the sets are nonempty, comparative BCC-
filters of X for every t € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy comparative BCC-filter of
X. Let t € [0,1] be such that Ut (up,t), L™ (vp,t) # (. Let 2,y € X. Then

r €U (up,t) = pp(x) >t
= pp(0) > pp(v) >t ((8B13))

= 0€ U (up,t),

z-((y-2)-y),x €U (up,t)
= pp(z- (Y- 2)y) >t pup(x) >t
= min{pp(z - ((y - 2) - y)), pe(x)} >t
= pe(y) = minfup(z - ((y - 2) - y)), pp(x)} > ¢ ((B1IW))

=y € U (up,t),

r € L (vp,t) = vp(x) <t
= vp(0) < wvp(x) <t (31m))

= 0¢€ L (vp,t),
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and

z-((y-2)-y)z el (vi)
= vp(z- ((y-2)-y) <twp(z) <t
= max{vp(z- ((y-2)-y),ve(r)} <t
= vp(y) <max{vp(z-((y-2)-y))ve(r)} <t  (BEILI)

:>y€L (VP,)

Hence, Ut (up,t) and L™ (vp,t) are comparative BCC-filters of X.

Conversely, assume for all ¢ € [0, 1], U" (up,t) and L™ (vp,t) are compar-

ative BCC-filters of X if the sets are nonempty.

Suppose there exists z € X such that up(0) < pp(z). Choose t =
pup(0) € [0,1]. Then pp(z) > t. Thus z € Ut (up,t) # 0. As a hypothesis,
we get Ut (up,t) is a comparative BCC-filter of X and so 0 € U™ (up,t). Thus

wp(0) >t = up(0), a contradiction. Hence, up(0) > pp(z) for all x € X.

Suppose there exist z,y € X such that pp(y) < min{up(z - ((y - 2) -
y)), up(x)}. Choose t = pp(y) € [0,1]. Then pp(z-((y-2)-y)) >t and pp(z) > t.
Thus z- ((y - 2) - y),z € Ut (up,t) # 0. As a hypothesis, we get Ut (up,t) is a
comparative BCC-filter of X and so y € U™ (up,t). Thus up(y) >t = pup(y), a

contradiction. Hence, pup(y) > min{up(z - ((y - 2) - v)), pp(x)} for all z,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(x) <t. Thus x € L™ (vp,t) # 0. As a hypothesis, we get L~ (vp,t)
is a comparative BCC-filter of X and so 0 € L™ (vp,t). Thus vp(0) < t = vp(0),

a contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist z,y € X such that vp(y) > max{vp(z - ((y - 2) -
y)),vp(x)}. Choose t = vp(y) € [0,1]. Then vp(z- ((y-2)-y)) <t and vp(x) < t.
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Thus « - ((y - 2) - y),z € L™ (vp,t) # 0. As a hypothesis, we get L™ (vp,t) is a
comparative BCC-filter of X and so y € L™ (vp,t). Thus vp(y) < t = vp(y), a

contradiction. Hence, vp(y) < max{vp(z- ((y - 2)-y)),vp(z)} for all z,y € X.
Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X. [

Theorem 3.4.12 P is a Pythagorean fuzzy shift BCC-filter of X if and only if
U(pp,t) and L(vp,t) are, if the sets are nonempty, shift BCC-filters for every
t €10,1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy shift BCC-filter of X. Let
t € [0,1] be such that U(up,t), L(vp,t) # (. Let z,y,z € X. Then

x € Ulup,t) = pp(z) >t
= 1p(0) > pp(a) > t (ET13))

=0 U(up, 1),

z-(y-z),x € U(up,t)
= pp(z - (y-2)) 2t pp(z) >
= min{up(z - (y - 2)), pp(2)} > t
= pp(((z-y) -y) - 2) 2 min{pp(z - (y - 2)), pe(z)} 2 ¢ ((BI13))

= ((z-y)-y) -z € Uup, 1),

z € L{ve,t) = vp(z) <t
= vp(0) < vp(x) <t ((813))

=0 € L(vp,t),
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and

v (y-2),x € L(vp,t)
= vp(z- (y-2)) < t,vp(z) <t
= max{up(z - (y-2)),ve(2)} <t
= vp(((z-y) -y) - 2) Smax{vp(z- (y-2)),ve(x)} <t ((B3T3))

= ((z-y)-y) -z € L(vp,t).

Hence, U(up,t) and L(vp,t) are shift BCC-filters of X.

Conversely, assume for all ¢ € [0, 1], U(up,t) and L(vp,t) are shift BCC-

filters of X if the sets are nonempty. Let x,y,z € X.

Choose t = up(z) € [0,1]. Then pup(x) >t. Thus z € U(up,t) #0. As a
hypothesis, we get U(up,t) is a shift BCC-filter of X and so 0 € U(up,t). Thus

pp(0) >t = pp(x).

Choose t = min{up(z - (y - 2)), up(x)} € [0,1]. Then up(x - (y-2)) >t
and pp(z) > t. Thus z - (y - 2),z € U(up,t) # 0. As a hypothesis, we get
U(up,t) is a shift BCC-filter of X and so ((z-vy) -y) - 2 € U(up,t). Thus

pe(((z-y)-y)-2z) >t =min{up(z - (y - 2)), up(z)}.

Choose t = vp(z) € [0,1]. The vp(x) < t. Thus x € L(vp,t) # (. As a
hypothesis, we get L(vp,t) is a shift BCC-filter of X and so 0 € U(vp,t). Thus

vp(0) <t =vp(z).

Choose t = max{vp(z-(y-2)),vp(x)} € [0,1]. Then vp(z-(y-2)) <t and
vp(x) <t. Thus x- (y-2),x € L(up,t) # 0. As a hypothesis, we get L(up,t) is a
shift BCC-filter of X and so ((z-y)-y) -z € L(up,t). Thus vp(((z-y) -y) - 2) >

t =max{vp(z- (y-2)),vp(x)}.
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Hence, P is a Pythagorean fuzzy shift BCC-filter of X. O]

Theorem 3.4.13 P is a Pythagorean fuzzy shift BCC-filter of X if and only if
Ut (up,t) and L™ (vp,t) are, if the sets are nonempty, shift BCC-filters of X for

every t € [0,1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy shift BCC-filter of X. Let
t € [0,1] be such that U (up,t), L™ (vp,t) # (). Let z,y,2 € X. Then

x € Ut (up,t) = up(z) >t
= pp(0) > pp(z) >t ((8B13))

=0e U+(Mp,t),

z-(y-z),x €U (up,1)
= pp(z - (y - 2)) > t,pp(x) > 1
= min{pp(z - (y - 2)), pp(2)} >t
= pp(((z-y) - y) - 2) 2 min{pp(z- (y- 2)), pe(x)} >t ((B113))

= ((z-y)-y) -z € U (up,t),

x € L (vp,t) = vp(x) <t
= VP(O) < VP(LC) <t ((B:Eﬁ))

=0e L_(Vp,t),

and

z-(y-z2),xv €L (vp,t)

=uvp(x-(y-2)) <tvp(x)<t
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= max{vp(z - (y-2)),vp(z)} <t
= vp(((z-9) - y) - 2) <max{vp(z-(y-2)),ve(r)} <t (ELT))

= ((z-y)-y) -z €L (vp,1).

Hence, U (up,t) and L™ (vp,t) are shift BCC-filters of X.

Conversely, assume for all ¢ € [0,1],U" (up,t) and L~ (vp,t) are shift

BCC-filters of X if the sets are nonempty.

Suppose there exists z € X such that up(0) < pp(z). Choose t =
wp(0) € [0,1]. Then pp(x) > t. Thus z € Ut (up,t) # (). As a hypothesis, we get
Ut (up,t) is a shift BCC-filter of X and so 0 € U™ (up, t). Thus up(0) >t = up(0),

a contradiction. Hence, pp(0) > up(x) for all z € X.

Suppose there exist x,y, z € X such that up(((z-y)-y)-2) < min{pup(x-
(y - 2)), pe(z)}. Choose t = up(((2-y) - y) - 2) € [0,1]. Then pp(z-(y-2)) > 1
and pp(x) > t. Thus x - (y - 2),2z € Ut(up,t) # 0. As a hypothesis, we get
Ut (up,t) is a shift BCC-filter of X and so ((z-y)-y) -2z € Ut (up,t). Thus
pe(((zy)-y)-2) > t = pp(((2-y)-y)-2), a contradiction. Hence, pp(((z-y)-y)-2) =
min{pp(x - (y - 2)), pp(x)} for all z,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(x) < t. Thus x € L™ (vp,t) # 0. As a hypothesis, we get L™ (vp, t)
is a shift BCC-filter of X and so 0 € L~ (vp,t). Thus vp(0) < t = vp(0), a

contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist z,y, z € X such that vp(((z-y)-y)-2) > max{vp(x-
(y-2)),vp(x)}. Chooset = vp(((z-y)-y)-2) €[0,1]. Then vp(z-(y-2)) <t
and vp(z) < t. Thus z - (y-z2),z € L (vp,t) # 0. As a hypothesis, we get
L~ (vp,t) is a shift BCC-filter of X and so ((z-y)-y) -2 € L™ (vp,t). Thus

vp(((z-y)-y)-z) <t=uwvp(((2-y)-y) z), a contradiction. Hence, vp(((2-y)-y)-2) <



max{vp(x - (y-2)),vp(r)} for all x,y € X.

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X.

121

]

Theorem 3.4.14 P is a Pythagorean fuzzy BCC-ideal of X if and only if U(up,t)

and L(vp,t) are, if the sets are nonempty, BCC-ideals for every t € [0, 1].

Proof. Assume P = (up, vp) is a Pythagorean fuzzy BCC-ideal of X. Let t € [0, 1]

be such that U(up,t), L(vp,t) # 0. Let z,y,2 € X. Then

x € U(up,t) = pp(x) >t
= up(0) > pp(r) >t

=0 € U(pp,1),

z-(y-z),y €U(up,t) = pp(r-(y-2)) >t up(y) >t

= min{pp(z - (y - 2)), up(y)} > t

= pp(x - 2) 2 min{pp(z - (y - 2)), pe(y)} =t ((ELIT))

=z -z € U(up,t),

x € L(vp,t) = vp(x) <t
= vp(0) < wvp(x) <t

= 0 € L(vp, 1),

and

z-(y-2),y € Llvp,t) = vp(z-(y-2)) <tvp(y) <t

= max{pup( - (y-2)),vp(y)} <1

= vp(x-z) <max{vp(z-(y-2)),ve(y)} <t

((ET1m))
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=z -z € L(vp,t).

Hence, U(up,t) and L(vp,t) are BCC-ideals of X.

Conversely, assume for all ¢ € [0, 1], U(up,t) and L(vp,t) are BCC-ideals

of X if the sets are nonempty. Let x,y,z € X.

Choose t = pp(z) € [0,1]. Then pp(x) > t. Thus z € U(up,t) # 0.
As a hypothesis, we get U(up,t) is a BCC-ideal of X and so 0 € U(up,t). Thus

pp(0) >t = pp ().

Choose t = min{pup(z - (y - 2)), up(y)} € [0,1]. Then up(x - (y-2)) >t
and pp(y) > t. Thus z - (y - 2),y € U(up,t) # 0. As a hypothesis, we get
U(pp,t) is a BCC-ideal of X and so z -z € U(up,t). Thus pp(x-2) >t =

min{pp (2 - (y - 2)), we(y)}-
Choose t = vp(z) € [0,1]. The vp(z) < t. Thus = € L(vp,t) # 0. As

a hypothesis, we get L(vp,t) is a BCC-ideal of X and so 0 € U(vp,t). Thus

Vp(O) S t= I/p(x).

Choose t = max{vp(z - (y - 2)),vp(y)} € [0,1]. Then vp(z-(y-2)) <t
and vp(y) < t. Thus x - (y - 2),y € L(up,t) # 0. As a hypothesis, we get
L(pp,t) is a BCC-ideal of X and so z - z € L(up,t). Thus vp(z-2) < t =

max{vp(z - (y-2)),vp(y)}.
Hence, P is a Pythagorean fuzzy BCC-ideal of X. [
Theorem 3.4.15 P is a Pythagorean fuzzy BCC-ideal of X if and only if U™ (up,

t) and L~ (vp,t) are, if the sets are nonempty, BCC-ideals of X for everyt € [0, 1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy BCC-ideal of X. Let ¢t € [0, 1]
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be such that UT (up,t), L~ (vp,t) # 0. Let z,y,2z € X. Then

r €U (up,t) = pp(x) >t
= pp(0) > pp(v) >t ((8B13))

= 0€ U (up,t),

x-(y-2),y €U (up,t) = pp(x - (y-2)) >t,up(y) >t
= min{pp(z - (y - 2)), pp(y)} >t
= pp(z - z) > min{pp(z - (y - 2)), pe(y)} >t ((B1I3))

=1x-2€U"(up,t),

r € L (vp,t) = vp(x) <t
= vp(0) < wp(x) <t (31m))

=0¢€ L (vp,t),

and

x-(y-2),y€ L (vp,t) = vp(x-(y-2)) <t,vp(y) <t
= max{vp(z - (y-2),ve(y)} <t
= vp(x-z) <max{vp(r-(y-2)),ve(y)} <t ((B1IH))

=ux-z€ L (vp,t).

Hence, Ut (up,t) and L~ (vp,t) are BCC-ideals of X.

Conversely, assume for all t € [0,1],U"(up,t) and L~ (vp,t) are BCC-

ideals of X if the sets are nonempty.
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Suppose there exists € X such that pp(0) < pp(x). Choose t =
wp(0) € [0,1]. Then pp(x) > t. Thus z € U (up,t) # (0. As a hypothesis, we get
Ut (up,t) is a BCC-ideal of X and so 0 € Ut (up,t). Thus pp(0) >t = up(0), a

contradiction. Hence, up(0) > pp(z) for all z € X.

Suppose there exist x,y,z € X such that pp(z - 2) < min{up(z - (y -
2)), up(y)}. Choose t = pup(x - z) € [0,1]. Then pp(z - (y-2)) >t and up(y) > t.
Thus x - (y - 2),y € U (up,t) # 0. As a hypothesis, we get U™ (up,t) is a BCC-
ideal of X and so 22 € U (up,t). Thus pup(z-2) >t = pp(z-2), a contradiction.

Hence, pp(z - z) = min{pp(z - (y - 2)), pp(y)} for all 2,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(z) < t. Thus x € L™ (vp,t) # 0. As a hypothesis, we get
L~ (vp,t) is a BCC-ideal of X and so 0 € L™ (vp,t). Thus vp(0) < t = vp(0), a

contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist z,y,z € X such that vp(z - z) > max{vp(z - (y -
2)),vp(y)}. Choose t = vp(z) € [0,1]. Then vp(z - (y-2)) < t and vp(y) < t.
Thus z-(y-2),y € L™ (vp,t) # (). As a hypothesis, we get L™ (vp, t) is a BCC-ideal
of X and so -z € L™ (vp,t). Thus vp(z-2z) < t = vp(x - 2), a contradiction.

Hence, vp(x - 2) < max{vp(z - (y-2)),vp(y)} for all z,y € X.

Therefore, P is a Pythagorean fuzzy BCC-ideal of X. [

Theorem 3.4.16 P is a Pythagorean fuzzy strong BCC-ideal of X if and only if
U(pp,t) and L(vp,t) are, if the sets are nonempty, strong BCC-ideals for every
t €0,1].

Proof. Assume P = (up, vp) is a Pythagorean fuzzy strong BCC-ideal of X. Let
t € [0,1] be such that U(up,t), L(vp,t) # 0. Let z,y,z € X. Then

r € U(up,t) = pp(x) >t



125

= pp(0) > pp(z) >t (ET13))

= 0 € U(up,t),

(z-y)-(z-2),y € Upp, 1)
= pp((z-y)- (z-2) 2t pe(y) 2 1
= min{pp((z-y) - (- 2)), up(y)} =t
= pp(z) = min{up((z - y) - (z-2)),pp(y)} =2t ((B137D))

=z € U(up,1),

r € L(vp,t) = vp(x) <t
= vp(0) < vp(x) <t ((813))

=0¢c L(I/p,t),

and

(z-y) - (z-2),y € Lvp, 1)
=vp((z-y)-(z-2) <twp(y) <t
= max{up((z-y) - (z-2)),vp(y)} <t
= vp(z) Smax{vp((z-y) (z-2)),vp(y)} <t ((BLIF))

=z € L(vp,t).

Hence, U(up,t) and L(vp,t) are strong BCC-ideals of X.

Conversely, assume for all t € [0, 1], U(up, t) and L(vp, t) are strong BCC-

ideals of X if the sets are nonempty. Let x,y,z € X.

Choose t = pp(z) € [0,1]. Then pp(x) >t. Thus z € U(up,t) #0. As a
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hypothesis, we get U(up, t) is a strong BCC-ideal of X and so 0 € U(up,t). Thus
p(0) > £ = pip().
Choose t = min{up((z - y) - (z - x)), up(y)} € [0,1]. Then pp((z - y) -

(z-2)) >t and pp(y) > t. Thus (z-y) - (z-2),y € U(up,t) # 0. As a
hypothesis, we get U(up,t) is a strong BCC-ideal of X and so x € U(up,t). Thus

pp () 2t =min{up((z - y) - (2 2)), pe(y)}-
Choose t = vp(z) € [0,1]. The vp(z) < t. Thus = € L(vp,t) # (. As a

hypothesis, we get L(vp,t) is a strong BCC-ideal of X and so 0 € U(vp,t). Thus

vp(0) <t =vp(z).

Choose t = max{vp((z -y) - (z - x)),vp(y)} € [0,1]. Then vp((z - y) -
(z-2) < tand vp(y) < t. Thus (z-y) - (2-2),y € L(up,t) # 0. As a

hypothesis, we get L(up,t) is a strong BCC-ideal of X and so x € L(up,t). Thus

vp(z) 2t = max{ve((z-y) - (z-2)),vp(y)}
Hence, P is a Pythagorean fuzzy strong BCC-ideal of X. O

Theorem 3.4.17 P is a Pythagorean fuzzy strong BCC-ideal of X if and only
if Ut (up,t) and L~ (vp,t) are, if the sets are nonempty, strong BCC-ideals of X

for every t € [0,1].

Proof. Assume P = (up,vp) is a Pythagorean fuzzy strong BCC-ideal of X. Let
t € [0,1] be such that U* (up,t), L~ (vp,t) # (). Let z,y,2 € X. Then

r e U (up,t) = pp(x) >t
= pp(0) > pp(z) >t ((813))

= 0¢e U (up,t),

(z-y)-(z-x),y € U (up, )



= pp((z-y) - (z-2) >t pp(y) > ¢

= min{pp((z-y) - (2-2)), pup(y); > 1

= pp(z) > min{up((z-y) - (z-2)),up(y)} >t

=z € Ut (up,t),

r € L™ (vp,t) = vp(x) <t
= vp(0) < wvp(x) <t

= 0€ L™ (Vp,)

and

(z-y) (z-2),y € L™ (vp,1)
=vp((z-y) - (z-2)) < t,vp(y) <t

= max{vp((2-y) - (z-2)),vp(y)} <t

= vp(x) <max{vp((z-y) - (z-2)),vp(y)} <t

=>xcrel” (l/p,)

Hence, Ut (up,t) and L~ (vp,t) are strong BCC-ideals of X.
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Conversely, assume for all ¢ € [0,1],U" (up,t) and L™ (vp,t) are strong

BCC-ideals of X if the sets are nonempty.

Suppose there exists * € X such that up(0) < pp(z).

Choose t =

pp(0) € [0,1]. Then pp(x) > t. Thus z € U (up,t) # (). As a hypothesis, we get

Ut (up,t) is a strong BCC-ideal of X and so 0 € Ut (up,t). Thus up(0) > ¢t =

up(0), a contradiction. Hence, pp(0) > up(x) for all x € X.

Suppose there exist z,y,z € X such that pp(x) < min{up((z-y) - (2
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x)), pp(y)}. Choose t = up(x) € [0,1]. Then pp((z-y)-(z-2)) >t and pp(y) > t.
Thus (z-y) - (z-z),y € Ut (up,t) # 0. As a hypothesis, we get U™ (up,t) is
a strong BCC-ideal of X and so x € Ut (up,t). Thus pp(x) > t = up(z), a

contradiction. Hence, pp(x) > min{pup((z-y) - (z-z)), up(y)} for all z,y € X.

Suppose there exists y € X such that vp(0) > vp(z). Choose t = vp(0) €
[0,1]. Then vp(x) < t. Thus x € L™ (vp,t) # 0. As a hypothesis, we get L™ (vp,t)
is a strong BCC-ideal of X and so 0 € L~ (vp,t). Thus vp(0) < t = vp(0), a

contradiction. Hence, vp(0) < vp(z) for all z,y € X.

Suppose there exist z,y,z € X such that vp(x) > max{vp((z - y) - (2
x)),vp(y)}. Choose t = vp(z) € [0,1]. Then vp((z-y)-(2-2)) <t and vp(y) < t.
Thus (z-y)-(z-z),y € L™ (vp,t) # (. As a hypothesis, we get L™ (vp, t) is a strong
BCC-ideal of X and so x € L™ (vp,t). Thus vp(z) <t = vp(z), a contradiction.

Hence, vp(z) < max{vp((z-y) - (z-x)),vp(y)} for all z,y € X.
Therefore, P is a Pythagorean fuzzy strong BCC-ideal of X. O]
Theorem 3.4.18 P is a Pythagorean fuzzy strong BCC-ideal of X if and only if

E(up, pp(0)) and E(vp,vp(0)) are strong BCC-ideals of X .

Proof. Assume P = (up, vp) is a Pythagorean fuzzy strong BCC-ideal of X. Since

P is constant, we have

(Vz € X)

Thus z € E(up,pp(0)) and x € E(vp,vp(0)) and so E(up, up(0)) = X and
E(vp,vp(0)) = X. Hence, E(up, up(0)) and E(vp,vp(0)) are strong BCC-ideals
of X.

Conversely, assume for all E(up, up(0)) and E(vp, vp(0)) are strong BCC-
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ideals of X. Then E(up,up(0)) = X and E(vp,vp(0)) = X. We consider

(Vo € X)

Thus P is constant, that is, P is a Pythagorean fuzzy strong BCC-ideal of X. [

3.5 The operations on Pythagorean fuzzy sets

Theorem 3.5.1 The intersection of any nonempty family of Pythagorean fuzzy

BCC-subalgebras of X is also a Pythagorean fuzzy BCC-subalgebra.

Proof. Assume that P; is a Pythagorean fuzzy BCC-subalgebra of X for all i € I.
Let x,y € X. Then

A, (T - y) = inf{pp;(x - y) bier
> inf{min{pp,(2), ppi(y)} e
= min{inf{up; (@) ticr, inf{up;(y) tier}
= min{up,_, p,(2), 1, p,(y)} and
U, Pi (T - y) = sup{vei (7 - y) ier
< sup{max{vp;(x), vp;(y)} }ier
= max{sup{vp;(z) ticr, sup{ve;(y) bicr }

oy max{y/\iel P; ("L‘)’ V/\iEI P; <y)}
Hence, A,c; P; is a Pythagorean fuzzy BCC-subalgebra of X. [

The following example show that the union of two Pythagorean fuzzy
BCC-subalgebras of BCC-algebra may be not a Pythagorean fuzzy BCC-subalge-

bra.
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Example 3.5.2 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

—_
o O O O | O
o o o
S =N
S W W W W

We define two Pythagorean fuzzy sets P; = (up,,vp,) and Py = (up,,vp,) as

follows:
X |0 1 2 3

pp, | 0.8 0.3 0.8 0.2

vp, 0.2 0.5 0.2 0.6

pp, | 0.8 0.2 0.1 0.6

vp, |0.2 0.8 0.9 0.7

Then P; and Py are Pythagorean fuzzy BCC-subalgebras of X. Since pp,vp, (3 -

2) = pp,vp,(1) = 0.3 z 0.6 = min{0.6,0.8} = min{up,vp,(3), tp,vp,(2)}, we

have P; V P, is not a Pythagorean fuzzy BCC-subalgebra of X.

Theorem 3.5.3 The intersection of any nonempty family of Pythagorean fuzzy
near BCC-filters of X is also a Pythagorean fuzzy near BCC-filter.

Proof. Assume that P; is a Pythagorean fuzzy near BCC-filter of X for all i € I.
Then

’u/\iel Py (‘T ’ y) - inf{lupi(x ’ y)}ie[
> inf{up;(y) bier
— lu/\ie] P; (y) and

V/\iEI Py (.Q? ) y) = Sup{VPi(x : y)}iel
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< sup{vp;(y) bier

= V/\iel P; (y) :

Hence, A,.; P; is a Pythagorean fuzzy near BCC-filter of X. O

Theorem 3.5.4 The union of any nonempty family of Pythagorean fuzzy near
BCC-filters of X is also a Pythagorean fuzzy near BC'C-filter.

Proof. Assume that P; is a Pythagorean fuzzy near BCC-filter of X for all i € I.
Then

1y, P (@ - y) = sup{up;(@ - y) bier
> sup{pp;(Y) fier
= 1y, p,(y) and
W,e, Pi(2 - y) = inf{vpi(2 - y) bier
< inf{vp;(y) bier

— V\/iEI Py (y>

Hence, \/,.; P; is a Pythagorean fuzzy near BCC-filter of X. O

Theorem 3.5.5 The intersection of any nonempty family of Pythagorean fuzzy
BCC-filters of X 1is also a Pythagorean fuzzy BCC-filter.

Proof. Asusume that P; be a Pythagorean fuzzy BCC-filter of X for all i € I.
Then

HNier Pi(0> = inf{MPi(O)}z‘eI
> inf{up;(v)bier

= KA, Pi($)7
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Fiper P (y) = inf{pp;(y) Yier
> inf{min{up;(z - ), pp;(2)} bier
= min{inf{pp;(z - y) bier, nf{pp,;(2) bicr}
= min{up,_, p, (2 y), 1p,, pi(2)},
Vpep P (0) = sup{rp;(0) Jies
< sup{vp;(2) }ier
— v, pi(2), and
VA, Pi(y) = sup{ve(y) }ier
< sup{max{vp;(z - y), vpi(x)} Yies
= max{sup{ve;(z - y) bier, nf{vpi() bier }

= max{y/\iej Py (‘% ) y)’ V/\iEI Pz(x)}
Hence, A,.; P; is a Pythagorean fuzzy BCC-filter of X. O

The following example show that the union of two Pythagorean fuzzy

BCC-filters of BCC-algebra may be not a Pythagorean fuzzy BCC-filter.

Example 3.5.6 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

012 3
0j0 1 2 3
110 0 2 2
2/0 1 01
30 0 00

We define two Pythagorean fuzzy sets Py = (up,,vp,) and Py = (up,,vp,) as



follows:
X0 1 2 3
wp, | 0.7 0.7 04 04
vp, 102 0.2 0.5 0.5
wup, | 0.8 0.2 0.5 0.2
vp, 102 0.6 0.3 0.6
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Then P; and P,y are Pythagorean fuzzy BCC-filters of X. Since up,yp,(3) =

0.4 # 0.5 = min{0.5,0.7} = min{up,vp,(2) =, up,vp,(1)} = min{up,vp,(1 -

3), p,vp, (1)}, we have Py V Py is not a Pythagorean fuzzy BCC-filter of X.

Theorem 3.5.7 The intersection of any nonempty family of Pythagorean fuzzy

implicative BCC-filters of a BCC-algebra X is also a Pythagorean fuzzy implica-

tive BCC-filter.

Proof. Assume that P; is a Pythagorean fuzzy implicative BCC-filter of X for all

1€ 1. Let z,y € X. Then

tipe, p:(0) = inf{sp, (0) s
> inf{up, (%) }ier
= KAer P (x)v
A, Pi (2 - 2) = Inf{pp, (z - 2) bier

> inf{min{pp,(z - (y

= min{inf{up,(z - (y - 2)) bier, inf{up,(x - y) bier}

— min{u/\ielpi(x . (y . Z))’N’/\iEIPi('x . y)}7

V/\z‘el P; (O) = Sup{VPi (0)}161
< sup{vp,(z) }ies
= I//\ie[ Pi(aj)7 and

V/\ie] Pz‘(m ' Z) = Sup{ypi (17 : Z)}ie[

’ Z))? /’LPi(x ¥ y)}}iel
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< sup{max{vp,(z - (y - 2)),vp, (- y)}}icr
= max{sup{vp,(z - (y - 2)) bier, sup{vp,(x - y) }icr }

= max{vp,_,p, (¢ (y-2)),vp, P (T Y)}

Hence, A._; P; is a Pythagorean fuzzy implicative BCC-filter of X. O

iel

The following example shows that the union of two Pythagorean fuzzy
implicative BCC-filters of BCC-algebra may be not a Pythagorean fuzzy implica-
tive BCC-filter.

Example 3.5.8 Let X = {0,1,2,3} be a BCC-algebra with a fixed element 0

and a binary operation - defined by the following Cayley table:

012 3
0{0 1 2 3
110 0 2 2
2/0 1 01
3(0 0 0 0

We define two Pythagorean fuzzy sets Py = (up,,vp,) and Py = (up,,vp,) as

follows:
X |0 1 2 3

pp, | 0.8 08 0.1 0.1
vp, 0.2 02 03 0.3
pp, | 0.7 0.2 0.3 0.2
vp, |0.1 04 03 04

Then P; and P, are Pythagorean fuzzy implicative BCC-filters of X. Since

HPvPs (O ’ 3) = HUP,VPy (3)
=0.2
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#0.3
= min{0.3,0.8}
— min{MPl\/PQ (2)7 uP1VP2(]‘)}

= min{HPl\/Pz(O : (1 ) 3))7 HPivP,y (0 ’ 1)}7

we have P; V P is not a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.5.9 The intersection of any nonempty family of Pythagorean fuzzy
comparative BCC-filters of a BCC-algebra X is also a Pythagorean fuzzy compar-
ative BCC-filter.

Proof. Assume that P; is a Pythagorean fuzzy comparative BCC-filter of X for
all 2 € I. Then

[, Pi(0) = inf{pup, (0) bier
> inf{pp, () bier
= Up;, P:(T),
A, P (y) = inf{pp, (y) bier
> inf{min{pp,(z - ((y - 2) - y)), pe, (2)} hier
= min{inf{up,(z - ((y - 2) - y)) bier, inf{pp, (7) }ics }
= min{up,_, p,(x - ((y-2) v), 1, p(2)},
VA P:(0) = sup{vp, (0) bics
< sup{vp, () }ies
= VA, P:(7), and
Vpe, Pi(y) = sup{ve, () bics
< sup{max{vp,(z - ((y - 2) - y)), vp,(x)} hics

= max{sup{vp,(z - (v - 2) - ¥)) }ier, sup{vp,(x) }icr }
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= HlaX{V/\iel p(2-((y-2)-y)), V/\ieIPi('I)}'

Hence, A,.; P; is a Pythagorean fuzzy comparative BCC-filter of X. m

iel

The following example shows that the union of two Pythagorean fuzzy
comparative BCC-filters of BCC-algebra may be not a Pythagorean fuzzy com-
parative BCC-filter.

Example 3.5.10 By Example B2, we have P; and P, are Pythagorean fuzzy

comparative BCC-filters of X. Since

ftpyvp,(3) = 0.2
0.3
— min{0.3,0.8}
= min{up,ve,(2), tp,vp, (1)}

= min{upl\/Pz(l : ((3 : 0) i 3))a MP1VP2(1)}7

we have Py V P5 is not a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.5.11 The intersection of any nonempty family of Pythagorean fuzzy
shift BOC-filters of a BC'C-algebra X is also a Pythagorean fuzzy shift BCOC-filter.

Proof. Assume that P; be a Pythagorean fuzzy shift BCC-filter of X for all i € I.
Then

fippi(0) = inf{p, (0) }ier
> inf{pp, () }ier
= Mo, Pi(2)
tpe P (22 y) ) - 2) = inf{pp, (2 y) - y) - 2) bier

> inf{min{yup, (v - (y - 2)), pp,(T)} }ier
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= min{inf{up, (z - (y - 2)) bier, nf{pp, () }ier }
= min{up,_, p, (T (Y- 2)), pp,, p: (T},

VA, Pi(0) = sup{vp,(0) }ics
< sup{vp, (2) }ier
= Vp,., P:(2), and

Upier P (2 9) - y) - 2) = sup{ve,(((2 - y) - y) - 2) bier

< sup{max{vp, (2 - (y - 2)), vp, ()} }ier
= max{sup{vp, (2 - (y - 2)) }ier, nf{ve, (2) bicr}

= HlaX{V/\iE[ Pi ('I 1 (y ’ Z))7 V/\iEI Pi (I)}
Hence, \,.; P; is a Pythagorean fuzzy shift BCC-filter of X. O

The following example shows that the union of two Pythagorean fuzzy
shift BCC-filters of BCC-algebra may be not a Pythagorean fuzzy shift BCC-
filter.

Example 3.5.12 By Example B58, we have P; and P, are Pythagorean fuzzy
shift BCC-filters of X. Since

MP1VP2(((3 ’ 0) ’ 0) ’ 3) = HUP,vP, (3)

=0.2

#0.3

= min{0.8,0.3}
= min{,uP1VP2 (1)7 HP1vP, (2)}

= min{up,vp,(2- (0 3)), tp,vr,(2)},

we have Py V Py is not a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.5.13 The intersection of any nonempty family of Pythagorean fuzzy
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BCC-ideals of X is also a Pythagorean fuzzy BCC-ideal.

Proof. Asusume that P; be a Pythagorean fuzzy BCC-ideal of X for all i € I.

Then
fipe, Pi(0) = inf{up;(0) tier
> inf{up;(®) bier
= HKN;er Pi (z),
Fiper P - 2) = inf{pp (2 - 2)bies
> inf{min{sip; (- (y - 2)), pi(¥)} ier
= min{inf{pp;(z - (y - 2)) bier, inf{pp;(y) bier}
= min{pup, e, (2 (Y- 2) ba e (W)}
VAe; P:(0) = sup{vp;(0) }ier
< sup{vp;(z) }ier
=Vp,., p:(7), and
VN Pil@ - 2) = sup{vp;(z - 2) bier
< sup{max{vp;(z - (y - 2)), vpi(y)} tier
= max{sup{vp;(z - (y - 2)) bier, nf{vpi(y) bier }
=max{vp,_ p.(z- (¥ 2)), VA, r.(Y)}-
Hence, A,.; P; is a Pythagorean fuzzy BCC-ideal of X. ]

The following example show that the union of two Pythagorean fuzzy

BCC-ideals of BCC-algebra may be not a Pythagorean fuzzy BCC-ideal.

Example 3.5.14 In Example Bh@ We define two Pythagorean fuzzy sets P, =
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(up,,vp,) and Py = (up,, vp,) as follows:

X110 1 2 3

pp, | 104 07 04
vp, | 0 05 03 05
pp, |09 0.7 0.1 0.1
vp, |02 04 0.9 0.9

Then P; and P, are Pythagorean fuzzy BCC-ideals of X. Since pup,yp,(0 -
3) = wp,vp,(3) = 0.4 # 0.7 = min{0.7,0.7} = min{up,vp,(1), up,vr,(2)} =
min{/ip, vp,

(0-(2-3)) =, up,vp,(2)}, we have Py V Py is not a Pythagorean fuzzy BCC-ideal
of X.

Theorem 3.5.15 The intersection of any nonempty family of Pythagorean fuzzy
strong BCC-ideals of X is also a Pythagorean fuzzy strong BCC-ideal. Moreover,
the union of any nonempty family of Pythagorean fuzzy strong BCC-ideals of X

is also a Pythagorean fuzzy strong BCC-ideal.



CHAPTER IV

ROUGH PYTHAGOREAN FUZZY SETS

4.1 Rough Pythagorean fuzzy sets in BCC-algebras

We introduce necessary define for study rough Pythagorean fuzzy sets

in BCC-algebras.

Definition 4.1.1 Let p be an equivalence relation on X. Then a nonempty

subset S of X is called
(1) an upper rough implicative BCC-filter of X if p*(S) is an implicative BCC-
filter of X,

(2) an upper rough comparative BCC-filter of X if p*(S) is a comparative BCC-
filter of X,

(3) an upper rough shift BCC-filter of X if p™(S) is a shift BCC-filter of X,

(4) a lower rough implicative BCC-filter of X if O # p~(S) is an implicative
BCC-filter of X,

(5) a lower rough comparative BCC-filter of X if () # p~(S) is a comparative
BCC-filter of X,

(6) a lower rough shift BCC-filter of X if ) # p~(S) is a of X,

(7) a rough implicative BCC-filter of X if it is both an upper rough implicative
BCC-filter and a lower rough implicative BCC-filter of X,

(8) a rough comparative BCC-filter of X if it is both an upper rough compara-

tive BCC-filter and a lower rough comparative BCC-filter of X, and

(9) a rough shift BCC-filter of X if it is both an upper rough shift BCC-filter
and a lower rough shift BCC-filter of X.
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Next, we apply the concept of rough Pythagorean fuzzy sets to BCC-
algebras and introduce the twenty-four types of rough Pythagorean fuzzy sets in

BCC-algebras.

Definition 4.1.2 Let p be an equivalence relation on X. Then a Pythagorean

fuzzy sets P = (up,vp) in X is called

(1) an upper rough Pythagorean fuzzy BCC-subalgebra of X if p*(P) is a Pytha-

gorean fuzzy BCC-subalgebra of X,

(2) an upper rough Pythagorean fuzzy near BCC-filter of X if p™(P) is a Pytha-

gorean fuzzy near BCC-filter of X,

(3) an upper rough Pythagorean fuzzy BCC-filter of X if p*(P) is a Pythagorean
fuzzy BCC-ilter of X,

(4) an upper rough Pythagorean fuzzy implicative BCC-filter of X if p™(P) is a
Pythagorean fuzzy implicative BCC-filter of X,

(5) an upper rough Pythagorean fuzzy comparative BCC-filter of X if p*(P) is

a Pythagorean fuzzy comparative BCC-filter of X,

(6) an upper rough Pythagorean fuzzy shift BCC-filter of X if p(P) is a Pytha-
gorean fuzzy shift BCC-filter of X,

(7) an upper rough Pythagorean fuzzy BCC-ideal of X if p*(P) is a Pythagorean
fuzzy BCC-ideal of X,

(8) an wupper rough Pythagorean fuzzy strong BCC-ideal of X if p*(P) is a
Pythagorean fuzzy strong BCC-ideal of X,

(9) a lower rough Pythagorean fuzzy BCC-subalgebra of X if p~(P) is a Pythago-
rean fuzzy BCC-subalgebra of X,
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(10) a lower rough Pythagorean fuzzy near BCC-filter of X if p~(P) is a Pythago-

rean fuzzy near BCC-filter of X,

(11) a lower rough Pythagorean fuzzy BCC-filter of X if p~(P) is a Pythagorean
fuzzy BCC-filter of X,

(12) a lower rough Pythagorean fuzzy implicative BCC-filter of X if p~(P) is a
Pythagorean fuzzy implicative BCC-filter of X,

(13) a lower rough Pythagorean fuzzy comparative BCC-filter of X if p~(P) is a

Pythagorean fuzzy comparative BCC-filter of X,

(14) a lower rough Pythagorean fuzzy shift BCC-filter of X if p~(P) is a Pythago-
rean fuzzy shift BCC-filter of X,

(15) a lower rough Pythagorean fuzzy BCC-ideal of X if p~(P) is a Pythagorean
fuzzy BCC-ideal of X,

(16) a lower rough Pythagorean fuzzy strong BCC-ideal of X if p~(P) is a Pytha-

gorean fuzzy strong BCC-ideal of X,

(17) a rough Pythagorean fuzzy BCC-subalgebra of X if it is both an upper rough
Pythagorean fuzzy BCC-subalgebra and a lower rough Pythagorean fuzzy
BCC-subalgebra of X,

(18) a rough Pythagorean fuzzy near BCC-filter of X if it is both an upper rough
Pythagorean fuzzy near BCC-filter and a lower rough Pythagorean fuzzy
near BCC-filter of X,

(19) a rough Pythagorean fuzzy BCC-filter of X if it is both an upper rough
Pythagorean fuzzy BCC-filter and a lower rough Pythagorean fuzzy BCC-
filter of X,
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(20) a rough Pythagorean fuzzy implicative BCC-filter of X if it is both an
upper rough Pythagorean fuzzy implicative BCC-filter and a lower rough

Pythagorean fuzzy implicative BCC-filter of X,

(21) a rough Pythagorean fuzzy comparative BCC-filter of X if it is both an
upper rough Pythagorean fuzzy comparative BCC-filter and a lower rough

Pythagorean fuzzy comparative BCC-filter of X, and

(22) a rough Pythagorean fuzzy shift BCC-filter of X if it is both an upper rough
Pythagorean fuzzy shift BCC-filter and a lower rough Pythagorean fuzzy
shift BCC-filter of X.

(23) a rough Pythagorean fuzzy BCC-ideal of X if it is both an upper rough
Pythagorean fuzzy BCC-ideal and a lower rough Pythagorean fuzzy BCC-
ideal of X, and

(24) a rough Pythagorean fuzzy strong BCC-ideal of X if it is both an upper
rough Pythagorean fuzzy strong BCC-ideal and a lower rough Pythagorean
fuzzy strong BCC-ideal of X.

Definition 4.1.3 Let p be an equivalence relation on X and P = (up,vp) a
Pythagorean fuzzy sets in X. Then a rough Pythagorean fuzzy set P in X is
called constant rough Pythagorean fuzzy set in X if their membership functions

Fp, pt, and non-membership functions 7p, vp are constant.

It is simple to verify the generalizations of rough Pythagorean fuzzy sets
in BCC-algebras. As a result, we obtain the diagram of the generalization of
rough Pythagorean fuzzy sets in BCC-algebras, which is shown in Figures B, @,
and B.



Rough Pythagorean
fuzzy BCC-subalgebra

Rough Pythagorean
fuzzy near BCC-filter

» Rough Pythagorean
fuzzy BCC-filter

Rough Pythagorean
fuzzy BCC-ideal
Rough Pythagorean . Rough Pythagorean Rough Pythagorean
fuzzy comparative BCC-filter fuzzy implicative BCC-filter fuzzy shift BCC-filter
T Rough Pythagorean T

fuzzy strong BCC-ideal

Figure 3: Rough Pythagorean fuzzy sets in BCC-algebras

Upper rough Pythagorean
fuzzy BCC-subalgebra

Upper rough Pythagorean
fuzzy near BCC-filter

» Upper rough Pythagorean «
fuzzy BCC-filter

Upper rough Pythagorean

fuzzy BCC-ideal

Upper rough Pythagorean Upper rough Pythagorean Upper rough Pythagorean
fuzzy comparative BCC-filter fuzzy implicative BCC-filter fuzzy shift BCC-filter
T Upper rough Pythagorean T

fuzzy strong BCC-ideal

Figure 4: Upper rough Pythagorean fuzzy sets in BCC-algebras
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Lower rough Pythagorean
fuzzy BCC-subalgebra

Lower rough Pythagorean
fuzzy near BCC-filter

» Lower rough Pythagorean «
fuzzy BCC-filter

Lower rough Pythagorean
fuzzy BCC-ideal

Lower rough Pythagorean Lower rough Pythagorean Lower rough Pythagorean
fuzzy comparative BCC-filter fuzzy implicative BCC-filter fuzzy shift BCC-filter
T Lower rough Pythagorean T

fuzzy strong BCC-ideal

Figure 5: Lower rough Pythagorean fuzzy sets in BCC-algebras

Theorem 4.1.4 Let p be an equivalence relation (congruence relation) on X and
P = (up,vp) a Pythagorean fuzzy sets in X. If P is a Pythagorean fuzzy strong
BCC-ideal of X, then P is a rough Pythagorean fuzzy strong BCC-ideal of X.

Proof. Let P be a Pythagorean fuzzy strong BCC-ideal of X. Then it is constant.

For all z,y € X, up(x) = up(y) and vp(z) = vp(y). Let a,b € X. Then

fp(a) = sup {pp(x)} = sup {up(y)} = fp(b),
ze(a), ye®),

vp(a) = inf {vp(x)} = nf {ve(y)} =7e(b),

z€(a)p ye()p

pp(a) = inf {up(z)} =yie?£p{up(y)} = pp(b), and

z€(a)p

vp(a) = sup {vp(r)} = sup {ve(y)} = vp(h).

ze(a)p ye(d)p
So p*(P) and p~(P) are constant. This means that p™(P) and p~(P) are Pythago-
rean fuzzy strong BCC-ideals of X. Therefore, P is a rough Pythagorean fuzzy
strong BCC-ideal of X. O]

The following examples show the relationships between Pythagorean
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fuzzy sets in X and rough Pythagorean fuzzy sets in X with p is an equivalence

relation on X.

Example 4.1.5 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3} is
defined in the Cayley table below.

—
o o o O | O
=

o O N
S NN W | W

We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

X0 1 2 3

pp | 0.7 03 0.6 0.6
vp 0.1 0.8 04 04

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,
Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of
X. Let

p=1(0,0),(1,1),(2,2),(3,3),(0,1),(1,0), (0,3), (3,0, (1,3), (3, 1) }.

Then p is an equivalence relation on X. But p™(P) and p~ (P) are not Pythagorean
fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near
BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.6 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3} is
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defined in the Cayley table below.

[
o O o o | O
)

o O
o O O W | Ww

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

OC MOy e A IS

pp |1 04 04 04
vp |0 03 03 0.3

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Let

p= {(Oa 0)? (17 1)7 (2a 2)7 (37 3)7 (07 1)’ (17 0)7 (27 3)7 (37 2)}

Then p is an equivalence relation on X. But p*(P) is not a Pythagorean fuzzy

implicative BCC-filter of X.

Example 4.1.7 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3} is
defined in the Cayley table below.

—_
o o o O | O
o o O

o =
SO W w W Ww
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We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

up | 0.6 06 0.6 0.3
vp| 0O 0 0 01

Then P is a Pythagorean fuzzy comparative BCC-filter (resp., Pythagorean fuzzy
shift BCC-filter) of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3), (3,2)}.

Then p is an equivalence relation on X. But p~(P) is not a Pythagorean fuzzy

comparative BCC-filter (resp., Pythagorean fuzzy shift BCC-filter) of X.

From Examples B13, T4, and B174, we get the results that if P
is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-
filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter,
Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter,
and Pythagorean fuzzy BCC-ideal), then it may not be a rough Pythagorean
fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough
Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-filter,
rough Pythagorean fuzzy comparative BCC-filter, rough Pythagorean fuzzy shift
BCC-filter, and rough Pythagorean fuzzy BCC-ideal).

Example 4.1.8 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3} is
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defined in the Cayley table below.

[

o O o o | O

o o o =
(e} [\
_ NN W | W

We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

20| J0Y WX BZ2N S

up |08 05 04 05
vp | 0.2 04 0.7 04

Then P is not a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy
near BCC-filter, Pythagorean fuzzy BCC-filter, and Pythagorean fuzzy BCC-
ideal) of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2), (1,3), (3, D}.

Then p is an equivalence relation on X. But p™(P) and p~(P) are Pythagorean
fuzzy BCC-subalgebras (resp., Pythagorean fuzzy near BCC-filters, Pythagorean
fuzzy BCC-filters, and Pythagorean fuzzy BCC-ideals) of X.

Example 4.1.9 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3} is
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defined in the Cayley table below.

[
o O o o | O
o O
SN
S W W W W

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

20| J0Y WX BZ2N S

pp | 0.9 0.1 0.2 0.1
vp |01 0.5 0.4 0.5

Then P is not a Pythagorean fuzzy implicative BCC-filter of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2), (1,3), (3, D}.

Then p is an equivalence relation on X. But p*(P) and p~ (P) are Pythagorean

fuzzy implicative BCC-filters of X.

Example 4.1.10 By Example BT9, we define a Pythagorean fuzzy set P =

(up,vp) in X as follows:

X0 1 2 3

up |0.6 0.5 0.4 0.4
vp | 0.5 0.7 0.8 0.8

Then P is not a Pythagorean fuzzy comparative BCC-filter of X. Let

p=1(0,0),(1,1),(2,2),(3,3),(1,0),(0,1),(2,3),(3,2)}-
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Then p is an equivalence relation on X. But p™(P) and p~(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.11 Consider a BCC-algebra X = (X, -,0), where X = {0,1,2,3}

is defined in the Cayley table below.

—_
o O O O | O
o o O
o O N
S NN W W

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

pwp | 0.6 0.5 0.2 0.5
vp| 0 0.1 0.7 0.1

Then P is not a Pythagorean fuzzy shift BCC-filter of X. Let

p={(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2), (1,3), (3, D}

Then p is an equivalence relation on X. But p™(P) and p~(P) are Pythagorean
fuzzy shift BCC-filters of X.

Example 4.1.12 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}
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is defined in the Cayley table below.

—_

o o o o | O
= O

N O O

o o O w | w

We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

20| J0Y WX BZ2N S

pp | 0.5 0.4 0.3 0.2
vp |01 02 0.3 04

Then P is not a Pythagorean fuzzy strong BCC-ideal of X. Let p = {(0,0), (1, 1),
(2,2),(3,3),(0,1),(1,0),(0,2),(2,0),(0,3), (3,0), (1,2),(2,1),(2,3), (3,2), (1,3),
(3,1)}. Then p is an equivalence relation on X. But p™(P) and p~(P) are

Pythagorean fuzzy strong BCC-ideals of X.

From Examples B8, BE1T9 BT 10, AT 17, and 112, we get the results

that if P is a rough Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean
fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean
fuzzy implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter,
rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,
and rough Pythagorean fuzzy strong BCC-ideal), then it may not be a Pythago-
rean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythago-
rean fuzzy BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy
comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy
BCC-ideal, and Pythagorean fuzzy strong BCC-ideal).

Example 4.1.13 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}
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is defined in the Cayley table below.

012 3
0j0 1 2 3
110 0 2 3
2(0 1 00
3101 2 0

We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

OC MOy e A IS

pp |1 0.2 0.1 0.2
vp |0 0.6 09 0.6

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,
Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of
X. Let

pP= {(070)v (1’ 1)7 (272)7 (373)’ (172)7 (27 1)}

Then p is an equivalence relation on X. Thus p* (P) and p~(P) are Pythagorean
fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near
BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.14 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

—_

o O o o | O

o o O
SN

S W W W W
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We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

pp |09 03 0.2 0.1
vp |01 0.3 04 0.5

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3), (3,2)}.

Then p is an equivalence relation on X. Thus p™(P) and p~ (P) are Pythagorean

fuzzy implicative BCC-filters of X.

Example 4.1.15 By Example BTT14, we define a Pythagorean fuzzy set P =

(up,vp) in X as follows:

X0 1 2 3

up [0.6 0.6 0.3 0.1
vp | 0.5 0.5 0.6 0.7

Then P is a Pythagorean fuzzy comparative BCC-filter of X. Let

p=1(0,0),(1,1),(2,2),(3,3),(2,3), (3,2)}.

Then p is an equivalence relation on X. Thus p*(P) and p~(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.16 By Example BEETT1, we define a Pythagorean fuzzy set P =

(up,vp) in X as follows:

X0 1 2 3

pp |1 05 04 04
vp |0 0.1 05 05
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Then P is a Pythagorean fuzzy shift BCC-filter of X. Let

pP= {(070)v (1’ 1)7 (272)7 (373)’ (170)7 (07 1)}

Then p is an equivalence relation on X. Thus p*(P) and p~(P) are Pythagorean
fuzzy shift BCC-filters of X.

From Examples 113, AT 14, BT 15, and 118, and Theorem BT, we
get the results that P can be a rough Pythagorean fuzzy BCC-subalgebra (resp.,
rough Pythagorean fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter,
rough Pythagorean fuzzy implicative BCC-filter, rough Pythagorean fuzzy com-
parative BCC-filter, rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean
fuzzy BCC-ideal, and rough Pythagorean fuzzy strong BCC-ideal) and a Pythago-
rean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythago-
rean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean
fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean

fuzzy BCC-ideal, and Pythagorean fuzzy strong BCC-ideal) in the same time.

The following examples show the relationships between Pythagorean
fuzzy sets in X and rough Pythagorean fuzzy sets in X with p is a congruence

relation on X.

Example 4.1.17 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

01 2 3
0j0 1 2 3
110 0 2 3
2(0 1 0 3
3/01 20
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We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

X0 1 2 3

up |08 0.3 0.5 0.5
vp | 0.2 0.8 0.3 0.3

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,
Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of
X. Let

p= {(07 0)7 (1’ 1)7 (27 2)7 (37 3)’ (07 1)7 (17 0)}

Then p is a congruence relation on X. But p~(P) is not a Pythagorean fuzzy
BCC-ideal (resp., Pythagorean fuzzy BCC-filter, Pythagorean fuzzy near BCC-
filter, and Pythagorean fuzzy BCC-subalgebra) of X.

Example 4.1.18 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

01 2 3
0/0 1 2 3
110 0 2 3
2/0 1 0 3
3(0 1 2 0

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

up | 0.7 0.2 0.6 0.6
vp |03 0.6 0.5 0.5

Then P is a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean fuzzy
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comparative BCC-filter, and Pythagorean fuzzy shift BCC-filter) of X. Let

pP= {(070)v (1’ 1)7 (272)7 (373)’ (07 1)7 (170)}'

Then p is a congruence relation on X. But p~(P) is not a Pythagorean fuzzy shift
BCC-filter (resp., Pythagorean fuzzy comparative BCC-filter, and Pythagorean
fuzzy shift BCC-filter) of X.

From Examples 117 and BTT8, we get the results that if P is a
Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter,
Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pytha-
gorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, and
Pythagorean fuzzy BCC-ideal), then it may not be a rough Pythagorean fuzzy
BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough Pythago-
rean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-filter, rough
Pythagorean fuzzy comparative BCC-filter, rough Pythagorean fuzzy shift BCC-

filter, and rough Pythagorean fuzzy BCC-ideal).

Example 4.1.19 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2,3}

is defined in the Cayley table below.

—_

o o o o | O
o O

O N

o W W W Ww
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We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

X0 1 2 3

pp 0.5 04 03 0.2
vp |01 0.2 03 04

Then P is not a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy
near BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy strong
BCC-ideal) of X. Let p = {(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(0,2),(2,0),
(0,3),(3,0),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)}. Then p is a congruence rela-
tion on X. But p*(P) and p~(P) are Pythagorean fuzzy BCC-subalgebras (resp.,
Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy BCC-filters, Pythagorean
fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-ideals) of X.

Example 4.1.20 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

—_
o o o o | O©
o o O

S =
oSO W W W | w

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

up | 0.9 05 0.5 0.1
vp | 0.3 0.5 0.5 0.6

Then P is not a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean
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fuzzy comparative BCC-filter) of X. Let

p={(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(0,2),(2,0), (1,2), (2, 1)}

Then p is a congruence relation on X. But p~(P) and p~(P) are Pythagorean
fuzzy implicative BCC-filters (resp., Pythagorean fuzzy comparative BCC-filters)
of X.

Example 4.1.21 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

[

o O o o | O

o o O
SN

S W W W | W

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X110 1 2 3

up | 0.8 0.4 0.2 0.2
vp |02 0.3 0.6 0.6

Then P is not a Pythagorean fuzzy shift BCC-filter of X. Let

p=1(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(0,2), (2,0, (1,2), (2, 1)}.

Then p is a congruence relation on X. But p™(P) and p~(P) are Pythagorean
fuzzy shift BCC-filters of X.

From Examples 119, BET20, and ET21, we get the results that if P

is a rou agorean fuzz -subalgebra (resp., rou agorean fuzz
i gh Pythag fuzzy BCC-subalgebra (resp., rough Pythag fuzzy
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near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy
implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter, rough
Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal, and
rough Pythagorean fuzzy strong BCC-ideal), then it may not be a Pythagorean
fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythagorean
fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy
comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy
BCC-ideal, and Pythagorean fuzzy strong BCC-ideal).

Example 4.1.22 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

—_
o o o o | O
=

N O W
o O W W | w

We define a Pythagorean fuzzy sets P = (up,vp) in X as follows:

X0 1 2 3

pp 09 02 0.3 0.3
vp |02 0.6 0.5 0.5

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,
Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of
X. Let

p=1(0,0),(1,1),(2,2),(3,3),(0,3),(3,0)}.

Then p is a congruence relation on X. Thus p*(P) and p~(P) are Pythagorean

fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near
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BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.23 By Example 121, we have P is a Pythagorean fuzzy im-
plicative BCC-filter of X and p™(P), p~(P) are Pythagorean fuzzy implicative
BCC-filters of X.

Example 4.1.24 Consider a BCC-algebra X = (X, -,0), where X = {0, 1,2, 3}

is defined in the Cayley table below.

[

o o O O | O
O A4S
—_

S W W W W

We define a Pythagorean fuzzy set P = (up,vp) in X as follows:

X0 1 2 3

up | 0.6 0.6 0.6 0.4
vp |05 0.5 0.5 0.8

Then P is a Pythagorean fuzzy comparative BCC-filter of X. Let

P = {(070)7 (L 1)7 (272>7 (37?’)’ (170)7 (07 1)7 (2’0)7 (072)7 (17 2>’ (27 1)}

Then p is a congruence relation on X. Thus p*(P) and p~(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.25 By Example BET24, we define a Pythagorean fuzzy set P =
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(up,vp) in X as follows:

X0 1 2 3

up | 0.8 0.4 0.4 0.2
vp | 0.3 05 05 0.7

Then P is a Pythagorean fuzzy shift BCC-filter of X. Let

p=1{(0,0),(1,1),(2,2),(3,3),(1,0),(0,1),(2,0), (0, 2), (1,2), (2, 1)}

Then p is a congruence relation on X. Thus p™(P) and p~(P) are Pythagorean
fuzzy shift BCC-filters of X.

From Examples B122 B1T23 B T2, and 123, we get the results that
P can be a rough Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean
fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean
fuzzy implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter,
rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,
and rough Pythagorean fuzzy strong BCC-ideal) and a Pythagorean fuzzy BCC-
subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythagorean fuzzy BCC-
filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy comparative
BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy BCC-ideal,

and Pythagorean fuzzy strong BCC-ideal) in the same time.

4.2 t-Level subsets of rough Pythagorean fuzzy sets

In this section, we shall discuss the relationships between rough Pythago-
rean fuzzy BCC-subalgebras (rough Pythagorean fuzzy near BCC-filters, rough
Pythagorean fuzzy BCC-filters, rough Pythagorean fuzzy BCC-ideals, and rough
Pythagorean fuzzy strong BCC-ideals) of BCC-algebras and their ¢-level subsets.
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The following lemma shows the relationships between t-level subsets of
approximations and approximations of t-level subsets.

Lemma 4.2.1 Let p be a congruence relation on X and t € [0,1]. Then the

following statements hold:

(1) U(pp,t) = p~ (U(pp, 1)),

(2) Ut (mp,t) = p~ (U™ (pp, 1)),
(3) L(wp,t) = p*(L(ve, 1)),

(4) L™ (we,t) = p* (L™ (vp, 1)),
(5) Ulpp,t) = p(Ulpp, 1)),

(6) Ut (pp t) = p" (U (1p,t)),
(7) L(p,t) = p~(L(vp,1)), and

(8) L™ (vp,t) = p~ (L~ (vp, 1)),

Proof. (1) Let x € X. Then

x € U(fip,t) © fip(z) >t (Definition BZI)
< sup {up(a)} >t (Definition B=3)
a€(x),

&30 € (o), ppla) 2 ¢
< Ja€ (x),NU(up,t) #0 (Definition BZI)

sz ep (Ulpp,t)). (Definition 200T4)

(2) Let x € X. Then

x € U (fip,t) & fip(x) >t (Definition BZ)



< sup {pp(a)} >t
ag(x),

& da € (x),, pp(a) >t
& Ja € (1), N U (e, 1) £ 0

ez €p (U (up,t)).

(3) Let x € X. Then

x € L(Up,t) & Up(x) <t

< inf {vp(a)} <t

a€(x),

& Va e (x),,vpa) <t
& Va € (z),,a € L(vp,t)
g (x)P - L(VP’t)

&€ pt(Lvp,t)).

(4) Let x € X. Then

x € L™ (vp,t) & vp(x) <t

& éI(lf {vp(a)} <t

& Va € (x),,vp(a) <t
& Va € (x),,a € L™ (vp,t)
& (), € L™ (vp,t)

sz e pt (L (vp,t)).
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(Definition B=X)

(Definition BZ)

(Definition 20 T4)

(Definition BZ)

(Definition B=3)

(Definition B=T)

(Definition 21014)

(Definition BZI)

(Definition BZ3TI)

(Definition BZI)

(Definition 200T4)



(5) Let x € X. Then

r € Ulpp,t) & pp(x) >t

< inf {up(a)} >t

a€(x),

& Va € (z),, pp(a) >t
& Va € (x),,a € U(pp, 1)
& (2)p € Ulup, 1

& €p (Upe, 1))

(6) Let x € X. Then

x € U (phy,t) & p(x) >t

< inf {up(a)} >t

a(z),
& Va € (x),, pp(a) >t

& Va € (x),,a € Ut (up,t)
& (2), C U (e, )

& € p" (U (up,1)).

(7) Let © € X. Then

z € L(vp,t) & vp(z) <t

& sup {(m(a)} <t
a€(x),

< 3Ja € (x),,vp(a) <t
< Ja € (z),N L(vp,t) #0

s x € p (Livp,t)).

165

(Definition B=T)

(Definition BZ3TI)

(Definition BZI)

(Definition 200T4)

(Definition BZ)

(Definition BZ3)

(Definition BZ)

(Definition 200T4)

(Definition BZ)

(Definition B=3I)

(Definition BZ)

(Definition 210T4)
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(8) Let x € X. Then

x € L (vp,t) & vp(zr) <t (Definition B=T)
< sup {vp(a)} <t (Definition BZ3TI)
a€(z)p

& 3Ja € (x),,vp(a) <t

< Ja€ (x), N L (vp,t) #0 (Definition BZ)
s xep (L (vp,t)). (Definition 200T4)
[

The following theorems show the relationships between rough Pythago-

rean fuzzy sets and their ¢-level subsets.

Theorem 4.2.2 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-subalgebra of X if and only if U(up,t) and L(vp,t) are, if
the sets are nonempty, an upper rough BCC-subalgebra and a lower rough BCC-

subalgebra of X for every t € [0,1], respectively.

Proof. Tt is straightforward by Theorem BZ2 and Lemmas BZ1 1] and [3). O

Theorem 4.2.3 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-subalgebra of X if and only if Ut (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough BCC-subalgebra and a lower rough

BCC-subalgebra of X for every t € [0,1], respectively.

Proof. 1t is straightforward by Theorem B473 and Lemmas =271 and [4). O

Theorem 4.2.4 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy near BCC-filter of X if and only if U(up,t) and L(vp,t) are,
if the sets are nonempty, an upper rough near BCC-filter and a lower rough near

BCC-filter of X for every t € [0, 1], respectively.
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Proof. 1t is straightforward by Theorem B4 and Lemmas =271 and [3). O

Theorem 4.2.5 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy near BCC-filter of X if and only if U (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough near BCC-filter and a lower rough

near BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BZ4 and Lemmas BZ1 1] and [3). O

Theorem 4.2.6 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-filter of X if and only if U(up,t) and L(vp,t) are, if the
sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter of X

for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem BZ@ and Lemmas 2271 [T] and [3). O

Theorem 4.2.7 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-filter of X if and only if U (up,t) and L™ (vp,t) are, if
the sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter

of X for everyt € [0,1], respectively.

Proof. Tt is straightforward by Theorem BZ771 and Lemmas 271 [2] and [4). O

Theorem 4.2.8 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy implicative BCC-filter of X if and only if U(up,t) and L(vp,t)
are, if the sets are nonempty, an upper rough implicative BCC-filter and a lower

rough implicative BCC-filter of X for every t € [0,1], respectively.

Proof. 1t is straightforward by Theorem B48 and Lemmas B2 and [3). O

Theorem 4.2.9 Let p be a congruence relation on X. Then P is an upper

rough Pythagorean fuzzy implicative BCC-filter of X if and only if Ut (up,t) and
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L~ (vp,t) are, if the sets are nonempty, an upper rough implicative BCC-filter and

a lower rough implicative BCC-filter of X for every t € |0, 1], respectively.

Proof. 1t is straightforward by Theorem B2 and Lemmas 2271 2] and [4). O

Theorem 4.2.10 Let p be a congruence relation on X. Then P s an upper
rough Pythagorean fuzzy comparative BCC-filter of X if and only if U(up,t) and
L(vp,t) are, if the sets are nonempty, an upper rough comparative BCC-filter and

a lower rough comparative BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem BZ210 and Lemmas 221 1) and [3). O

Theorem 4.2.11 Let p be a congruence relation on X. Then P is an upper
rough Pythagorean fuzzy comparative BCC-filter of X if and only if UT (up,t) and
L~ (vp,t) are, if the sets are nonempty, an upper rough comparative BCC-filter

and a lower rough comparative BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem BZTT and Lemmas 221 [2) and [4). O

Theorem 4.2.12 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy shift BCC-filter of X if and only if U(up,t) and L(vp,t) are,
if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift
BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BAT2 and Lemmas E21 [1) and [3). O

Theorem 4.2.13 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy shift BCC-filter of X if and only if Ut (up,t) and L™ (vp,t) are,
if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift
BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 13 and Lemmas 21 [2) and [4). O
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Theorem 4.2.14 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-ideal of X if and only if U(up,t) and L(vp,t) are, if the
sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal of X

for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 14 and Lemmas B2 [T) and [3). O

Theorem 4.2.15 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy BCC-ideal of X if and only if Ut (up,t) and L™ (vp,t) are, if
the sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal

of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 T3 and Lemmas B21 [2) and [4). O

Theorem 4.2.16 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy strong BCC-ideal of X if and only if U(up,t) and L(vp,t) are,
if the sets are monempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t € |0, 1], respectively.

Proof. 1t is straightforward by Theorem BAT6 and Lemmas 21 [T] and [3). O

Theorem 4.2.17 Let p be a congruence relation on X. Then P is an upper rough
Pythagorean fuzzy strong BCC-ideal of X if and only if Ut (up,t) and L~ (vp,t)
are, if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 17 and Lemmas B2 [2] and [4). O

Theorem 4.2.18 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy BCC-subalgebra of X if and only if U(up,t) and L(vp,t) are, if
the sets are nonempty, an upper rough BCC-subalgebra and a lower rough BCC-

subalgebra of X for every t € [0, 1], respectively.
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Proof. 1t is straightforward by Theorem B4 and Lemmas =271 and [7). O

Theorem 4.2.19 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy BCC-subalgebra of X if and only if U (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough BCC-subalgebra and a lower rough

BCC-subalgebra of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BZ2-3 and Lemmas BZ1 6] and [8). O

Theorem 4.2.20 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy near BCC-filter of X if and only if U(up,t) and L(vp,t) are,
if the sets are nonempty, an upper rough near BCC-filter and a lower rough near

BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem BZ4 and Lemmas 271 [5] and [7). O

Theorem 4.2.21 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy near BCC-filter of X if and only if U (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough near BCC-filter and a lower rough

near BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BZH and Lemmas 221 6] and [8). [

Theorem 4.2.22 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy BCC-filter of X if and only if U(up,t) and L(vp,t) are, if the
sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter of X

for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem B48 and Lemmas B2 and [7). O

Theorem 4.2.23 Let p be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-filter of X if and only if U (up,t) and L™ (vp,t) are, if
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the sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter

of X for everyt € [0,1], respectively.

Proof. 1t is straightforward by Theorem BZ471 and Lemmas B—2T] and [8). O

Theorem 4.2.24 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy implicative BCC-filter of X if and only if U(up,t) and L(vp,t)
are, if the sets are nonempty, an upper rough implicative BCC-filter and a lower

rough implicative BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem BZ4R8 and Lemmas B—2T] and [7). O

Theorem 4.2.25 Let p be a congruence relation on X. Then P s a lower
rough Pythagorean fuzzy implicative BCC-filter of X if and only if Ut (up,t) and
L~ (vp,t) are, if the sets are nonempty, an upper rough implicative BCC-filter and

a lower rough implicative BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem B4 and Lemmas B—2T] and [8). O

Theorem 4.2.26 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy comparative BOC-filter of X if and only if U(up,t) and L(vp,t)
are, if the sets are nonempty, an upper rough comparative BCC-filter and a lower

rough comparative BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BZ210 and Lemmas E21 [5) and [7). O

Theorem 4.2.27 Let p be a congruence relation on X. Then P is a lower
rough Pythagorean fuzzy comparative BCC-filter of X if and only if U (up,t) and
L~ (vp,t) are, if the sets are nonempty, an upper rough comparative BCC-filter

and a lower rough comparative BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem BZ 11 and Lemmas E21[6) and [8). [
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Theorem 4.2.28 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy shift BCC-filter of X if and only if U(up,t) and L(vp,t) are,
if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift
BCC-filter of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 12 and Lemmas B2 [5) and [7). O

Theorem 4.2.29 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy shift BCC-filter of X if and only if Ut (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough shift BCC-filter and a lower rough
shift BCC-filter of X for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem and Lemmas 21 [6) and [8). O

Theorem 4.2.30 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy BCC-ideal of X if and only if U(up,t) and L(vp,t) are, if the
sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal of X

for every t € [0, 1], respectively.

Proof. 1t is straightforward by Theorem B2 14 and Lemmas 21 [5] and [7). O

Theorem 4.2.31 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy BCC-ideal of X if and only if U (up,t) and L~ (vp,t) are, if
the sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal

of X for every t € [0,1], respectively.

Proof. Tt is straightforward by Theorem B2 T3 and Lemmas B2 [6) and [8). O

Theorem 4.2.32 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy strong BCC-ideal of X if and only if U(up,t) and L(vp,t) are,
if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t € [0, 1], respectively.
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Proof. Tt is straightforward by Theorem BZ16 and Lemmas B21 [5) and [7). [

Theorem 4.2.33 Let p be a congruence relation on X. Then P is a lower rough
Pythagorean fuzzy strong BCC-ideal of X if and only if Ut (up,t) and L™ (vp,t)
are, if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t € [0, 1], respectively.

Proof. Tt is straightforward by Theorem B2 T4 and Lemmas B2 [6) and [8). O

Theorem 4.2.34 Let p be a congruence relation on X. Then P is a rough
Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-
filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy BCC-ideal,
and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if U(up,t) and
L(vp,t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough near
BCC-filters, rough BCC-filters, rough BCC-ideals, and rough strong BCC-ideals)
of X for everyt € [0,1].

Proof. 1t is straightforward by Theorems B2 (resp., Theorems B4 I,

214, B716) and B2T8 (resp., Theorems B220, B272, A2-30, B=2-37). ]

Theorem 4.2.35 Let p be a congruence relation on X. Then P is a rough
Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-
filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy BCC-ideal,
and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if Ut (up,t) and
L~ (vp,t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough near
BCC-filters, rough BCC-filters, rough BCC-ideals, and rough strong BCC-ideals)
of X for everyt € [0,1].

Proof. 1t is straightforward by Theorems B3 (resp., Theorems B2H, B2,

A2 T3, B217) and B219 (resp., Theorems B221, B—273, A—2-31, A=2-33). ]
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Theorem 4.2.36 Let p be a congruence relation on X. Then P s a rough
Pythagorean fuzzy implicative BCC-filter (resp., rough Pythagorean fuzzy com-
parative BCC-filter, and rough Pythagorean fuzzy shift BCC-filter) of X if and
only if U(up,t) and L(vp,t) are, if the sets are nonempty, rough implicative BCC-
filters (resp., rough comparative BCC-filters, and rough shift BCC-filters) of X

for every t € [0, 1].

Proof. 1t is straightforward by Theorems (resp., Theorems B0, A2 T7)
and (resp., Theorems B226, A27F). O

Theorem 4.2.37 Let p be a congruence relation on X. Then P is a rough
Pythagorean fuzzy implicative BCC-filter (resp., rough Pythagorean fuzzy com-
parative BCC-filter, and rough Pythagorean fuzzy shift BCC-filter) of X if and
only if U (up,t) and L™ (vp,t) are, if the sets are nonempty, rough implicative
BCC-filters (resp., rough comparative BCC-filters, and rough shift BCC-filters)
of X for every t € [0, 1].

Proof. 1t is straightforward by Theorems B9 (resp., Theorems BT, A—2T3)
and 2273 (resp., Theorems B0, A°279). O



CHAPTER V

PYTHAGOREAN FUZZY SOFT SETS

5.1 Pythagorean fuzzy soft sets over BCC-algebras

Definition 5.1.1 A Pythagorean fuzzy soft set (P, A) over X is called a Pythago-
rean fuzzy soft BCC-subalgebra based on the element a € A (we shortly call an
a-Pythagorean fuzzy soft BCC-subalgebra) of X if a Pythagorean fuzzy set ls[a] in
X is a Pythagorean fuzzy BCC-subalgebra. If (ﬁ, A) is an a-Pythagorean fuzzy
soft BCC-subalgebra of X for all a € A, we say that (ﬁ, A) is a Pythagorean fuzzy
soft BCC-subalgebra of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.2 If (?,A) 15 a Pythagorean fuzzy soft BCC-subalgebra of X and
) £ B C A, then (§|B, B) is a Pythagorean fuzzy soft BCC-subalgebra of X.

The following example shows that there exists a nonempty subset B of A
such that (P|g, B) is a Pythagorean fuzzy soft BCC-subalgebra of X, but (P, A)

is not a Pythagorean fuzzy soft BCC-subalgebra of X.

Example 5.1.3 By Example EZ020, we have ﬁ[beauty] is a Pythagorean fuzzy
BCC-subalgebra of X. But ﬁ[identity] and ﬁ[skill] are not Pythagorean fuzzy

BCC-subalgebras of X. Indeed, Vpjqeniny (1 1) = vp (0) = 0.5 £ 0.3 =

[identity]

min{0.3,0.3} = min{Vsenity) (1)s VBjentity) (1)} and
Nﬁ[skill](Q'Q) = Nﬁ[skill](o) = 0.3 # 0.5 =min{0.5,0.5} = mm{ﬂﬁ[skiu](z)a qu’[skill]<2)}'
Hence, (ﬁ, A) is not a Pythagorean fuzzy soft BCC-subalgebra over X. We take

B = {beauty}.
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Thus (§| B, B) is a Pythagorean fuzzy soft BCC-subalgebra of X.

Definition 5.1.4 A Pythagorean fuzzy soft set (ﬁ, A) over X is called a Pythago-
rean fuzzy soft near BCC-filter based on a € A (we shortly call an a-Pythagorean
fuzzy soft near BCC-filter) of X if a Pythagorean fuzzy set ﬁ[a] in X is a
Pythagorean fuzzy near BCC-filter. If (ﬁ,A) is an a-Pythagorean fuzzy soft
near BCC-filter of X for all a € A, we say that (ﬁ, A) is a Pythagorean fuzzy soft
near BCC-filter of X.

The proof of the following theorem can be verified easily.
Theorem 5.1.5 If (ﬁ,A) is a Pythagorean fuzzy soft near BCC-filter of X and
) £ B C A, then (§|B, B) is a Pythagorean fuzzy soft near BCC-filter of X.

From Figure M, we have the following theorem.

Theorem 5.1.6 Fvery a-Pythagorean fuzzy soft near BCC-filter of X is an a-
Pythagorean fuzzy soft BCC-subalgebra. Moreover, every Pythagorean fuzzy soft
near BCC-filter of X is a Pythagorean fuzzy soft BCC-subalgebra.

The following example shows that the converse of Theorem BT is not

true.

Example 5.1.7 Let X be a set of four drinks, that is,

X = {Chocolate, Thai tea, Latte, Espresso}.
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Define binary operation - on X as the following Cayley table:

Chocolate Thai tea Latte Espresso

Chocolate | Chocolate Thai tea Latte Espresso
Thai tea | Chocolate Chocolate Thai tea  Espresso
Latte Chocolate Chocolate Chocolate Espresso

Espresso | Chocolate Thai tea  Thai tea Chocolate

Then X = (X, -, Chocolate) is a BCC-algebra. Let (ﬁ, A) be a Pythagorean fuzzy
soft set over X where

A := {child, teen, adult}

with P[child], P[teen], and P[adult] are Pythagorean fuzzy sets in X defined as

follows:

P Chocolate Thaitea Latte Espresso

child  (1,0)  (0.3,0.4) (0.9,0.2) (0.2,0.5)
teen  (0.9,0.1) (0.8,0.2) (0.6,0.4) (0.7,0.4)
adult  (0.7,0.4) (0.6,0.4) (0.1,0.6) (0.6,0.8)

Then (f’, A) is a child-Pythagorean fuzzy soft BCC-subalgebra of X. But (P, A)

is not a child-Pythagorean fuzzy soft near BCC-filter of X since

Hp(nitq) (Thal tea - Latte) = i) (Thai tea)

=0.3

#0.9

= [ip[eninq) (Latte)
and

Vp(enita) (Thai tea - Latte) = vp 4 (Thai tea)
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=04

£0.2

Hence, ﬁ[child] is not a Pythagorean fuzzy near BCC-filter of X, that is, (ﬁ, A)

is not a child-Pythagorean fuzzy soft near BCC-filter of X.

Definition 5.1.8 A Pythagorean fuzzy soft set (ﬁ, A) over X is called a Pythago-
rean fuzzy soft BCC-filter based on a € A (we shortly call an a-Pythagorean fuzzy
soft BCC-filter) of X if a Pythagorean fuzzy set lg[a] in X is a Pythagorean fuzzy
BCC-filter. If (ﬁ, A) is an a-Pythagorean fuzzy soft BCC-filter of X for alla € A,
we say that (ﬁ, A) is a Pythagorean fuzzy soft BCC-filter of X.

The proof of the following theorem can be verified easily.
Theorem 5.1.9 If (ﬁ,A) is a Pythagorean fuzzy soft BCC-filter of X and () #
B C A, then (15|B, B) is a Pythagorean fuzzy soft BCC-filter of X.

From Figure M, we have the following theorem.

Theorem 5.1.10 FEvery a-Pythagorean fuzzy soft BCC-filter of X is an a-Pytha-
gorean fuzzy soft near BCC-filter. Moreover, every Pythagorean fuzzy soft BCC-
filter of X is a Pythagorean fuzzy soft near BCC-filter.

The following example shows that the converse of Theorem bTT0 is not

true.

Example 5.1.11 Let X be a set of four Apple’s product, that is,

X = {iPhone, iPad, Mac, Watch}.
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Define binary operation - on X as the following Cayley table:

iPhone iPad Mac  Watch

iPhone | iPhone iPad Mac  Watch
iPad |iPhone iPhone Mac  Watch
Mac | iPhone iPhone iPhone Watch
Watch | iPhone iPhone iPhone iPhone

Then X = (X, -,iPhone) is a BCC-algebra.

soft set over X where

Let (ﬁ, A) be a Pythagorean fuzzy

A := {student, athlete, programmer}

with P[student], Plathlete], and P[programmer] are Pythagorean fuzzy sets in X

defined as follows:

P iPhone iPad Mac Watch
student  (0.9,0.1) (0.7,0.4) (0.8,0.2) (0.2,0.6)
athlete (0.7,0.4) (0.6,0.5) (0.7,0.4) (0.2,0.6)

programmer (0.8,0.2)

(0.5,0.7) (0.6,0.5) (0.8,0.2)

Then (13, A) is a programmer-Pythagorean fuzzy soft near BCC-filter of X. But

(ﬁ, A) is not a programmer-Pythagorean fuzzy soft BCC-filter of X since

Hp [programmer]

(iPad) = 0.5

# 0.6

= min{0.8,0.6}

= H’lln{/,bf, [programmer] (iPhone), /’Lﬁ[programmer] (Mac)}

= min{uﬁ[programmer] (Mac ) IPad)? :uf’[programmer] (Mac)}
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and

iPad) = 0.7

£0.5

= max{0.2,0.5}

Vp [programmer] (

= maX{l/ﬁ [programmer] (iPhone) ' Vp [programmer] (Mac)}

= max{yﬁ [programmer] (MaC ’ 1Pad)7 Vp [programmer] (Mac) } :

Hence, ﬁ[programmer] is not a Pythagorean fuzzy BCC-filter of X, that is, (ﬁ, A)

is not a programmer-Pythagorean fuzzy soft BCC-filter of X.

Definition 5.1.12 A Pythagorean fuzzy soft set (ﬁ, A) over X is called a Pythago-
rean fuzzy soft implicative BCC-filter based on the element a € A (we shortly
call an a-Pythagorean fuzzy soft implicative BCC-filter of X if a Pythagorean
fuzzy set f’[a] in X is a Pythagorean fuzzy implicative BCC-filter. If (ﬁ, A) is an
a-Pythagorean fuzzy soft implicative BCC-filter of X for all a € A, we say that
(f’, A) is a Pythagorean fuzzy soft implicative BCC-filter of X.

The proof of the following theorem can be verified easily.
Theorem 5.1.13 If (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of
X and ) # B C A, then (§|B,B) is a Pythagorean fuzzy soft implicative BCC-
filter of X.

From Figure M, we have the following theorem.

Theorem 5.1.14 FEvery a-Pythagorean fuzzy soft implicative BCC-filter of X is
an a-Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft
implicative BCC-filter of X is a Pythagorean fuzzy soft BCC-filter.

The following example shows that the converse of Theorem bTT4 is not

true.
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Example 5.1.15 Let X be a set of 5 countries, that is,

X = {Australia, Korea, Japan, Malaysia, Singapore}.

Define a binary operation - on X as the following Cayley table:

Australia Malaysia  Japan Korea  Singapore
Australia | Australia Malaysia  Japan Korea  Singapore
Malaysia | Australia Australia  Japan Korea  Singapore

Japan | Australia Australia Australia  Korea  Singapore

Korea | Australia Australia Malaysia Australia Singapore

Singapore | Australia Australia Australia Australia Australia
Then X = (X, -, Australia) is a BCC-algebra. Let

A = {Employee, Chef, Musician}

be a set of 3 occupations of Thai people that live in X and (f’, A) a Pythagorean
fuzzy soft set over X. Then P[Employee], P[Chef], and P[Musician] are Pythago-

rean fuzzy sets in X defined as follows:

P Australia Malaysia  Japan Korea  Singapore

Employee  (1,0)  (0.5,0.3) (0.2,0.7) (0.1,0.8) (0,0.9)
Chef  (0.9,0.4) (0.6,0.6) (0.3,0.7) (0.1,0.8) (0.1,0.9)
Musician  (0.8,0.2) (0.4,0.3) (0.3,0.4) (0.2,0.8) (0.1,0.9)

Then (P, A) is a Pythagorean fuzzy soft BCC-filter of X. But (P, A) is not a
Pythagorean fuzzy soft implicative BCC-filter of X because (ﬁ,A) is not an
Employee-Pythagorean fuzzy soft implicative BCC-filter, a Chef-Pythagorean

fuzzy soft implicative BCC-filter, and a Musician-Pythagorean fuzzy soft im-
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plicative BCC-filter of X such as

Ip(chen (Korea - Japan)

= [ip|cnen (Malaysia)

=0.6

#0.9
= min{0.9,0.9}
= min{pcyeqn (Australia), g open (Australia) }

= min{ppcy,qq (Korea - (Korea - Japan)), fi5q,.q (Korea - Korea)}.

Hence, ﬁ[Chef] is not a Pythagorean fuzzy implicative BCC-filter of X, that is,

(157 A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Definition 5.1.16 A Pythagorean fuzzy soft set (P, A) over X is called a Pythago-
rean fuzzy soft comparative BCC-filter based on a € A (we shortly call an a-
Pythagorean fuzzy soft comparative BCC-filter of X if a Pythagorean fuzzy set
ﬁ[a] in X is a Pythagorean fuzzy comparative BCC-filter. If (ﬁ,A) is an a-
Pythagorean fuzzy soft comparative BCC-filter of X for all a € A, we say that

(ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.17 If (ﬁ,A) 1s a Pythagorean fuzzy soft comparative BCC-filter
of X and ) # B C A, then (13|B,B) is a Pythagorean fuzzy soft comparative
BCC-filter of X.

From Figure O, we have the following theorem.

Theorem 5.1.18 FEvery a-Pythagorean fuzzy soft comparative BCC-filter of X is
an a-Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft
comparative BCC-filter of X is a Pythagorean fuzzy soft BCC-filter.
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The following example shows that the converse of Theorem BTT8 is not

true.

Example 5.1.19 By Example BT T3, we have (ﬁ,A) is a Pythagorean fuzzy
soft BCC-filter of X. But (f’,A) is not a Pythagorean fuzzy soft comparative
BCC-filter of X because (15, A) is not an Employee-Pythagorean fuzzy soft com-
parative BCC-filter, a Chef-Pythagorean fuzzy soft comparative BCC-filter, and

a Musician-Pythagorean fuzzy soft comparative BCC-filter of X such as

Vp [Employee] ( J ap an)

=0.7

£0.3

= max{0, 0.3}

= MaxX{Vpgployee (AUStTalia), v, 1o (Malaysia) }

= MaX{Vp g pl0yee) (Malaysia - ((Japan - Korea) - Japan)), v g, piope (Malaysia) }.

Hence, lg[Employee] is not a Pythagorean fuzzy comparative BCC-filter of X,

that is, (f’, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Definition 5.1.20 A Pythagorean fuzzy soft set (P, A) over X is called a Pythago-
rean fuzzy soft shift BCC-filter based on a € A (we shortly call an a-Pythagorean
fuzzy soft shift BCC-filter of X if a Pythagorean fuzzy set Ig[a] in X is a Pythago-
rean fuzzy shift BCC-filter. If (ﬁ, A) is an a-Pythagorean fuzzy soft shift BCC-
filter of X for all a € A, we say that (ﬁ,A) is a Pythagorean fuzzy soft shift
BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.21 If (?, A) is a Pythagorean fuzzy soft shift BCC-filter of X and
) £ B C A, then (§|B, B) is a Pythagorean fuzzy soft shift BCC-filter of X.
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From Figure M, we have the following theorem.

Theorem 5.1.22 Fvery a-Pythagorean fuzzy soft shift BCC-filter of X is an a-
Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft shift
BCC-filter of X 1is a Pythagorean fuzzy soft BCC-filter.

The following example shows that the converse of Theorem hTT8 is not

true.

Example 5.1.23 By Example BIT3, we have (ﬁ, A) is a Pythagorean fuzzy soft
BCC-filter of X. But (13, A) is not a Pythagorean fuzzy soft shift BCC-filter of
X because (ﬁ, A) is not an Employee-Pythagorean fuzzy soft shift BCC-filter, a

Chef-Pythagorean fuzzy soft shift BCC-filter, and a Musician-Pythagorean fuzzy
soft shift BCC-filter of X such as

MIS[Musician](((Japan J KOI‘G&) ’ Korea) ’ Japan)

= HUp [Musician] (‘]apan)

=0.3

# 0.4

= min{0.4,0.8}

= min{MlS[Musician] (MalaySia)7 Mf’[Musician] (AuStra’ha>}

= MIN{ L pugician (Australia - (Korea - Japan)), (5 ugician (Australia) }.

Hence, P[Musician] is not a Pythagorean fuzzy shift BCC-filter of X, that is,
(ﬁ, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.

Definition 5.1.24 A Pythagorean fuzzy soft set (13, A) over X is called a Pythago-
rean fuzzy soft BCC-ideal based on a € A (we shortly call an a-Pythagorean fuzzy
soft BCC-ideal) of X if a Pythagorean fuzzy set f’[a] in X is a Pythagorean fuzzy
BCC-ideal. If (13, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a € A,
we say that (ﬁ, A) is a Pythagorean fuzzy soft BCC-ideal of X.
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The proof of the following theorem can be verified easily.
Theorem 5.1.25 If (ﬁ, A) is a Pythagorean fuzzy soft BCC-ideal of X and () #
B C A, then (13|B, B) is a Pythagorean fuzzy soft BCC-ideal of X .

From Figure 0, we have the following theorems.

Theorem 5.1.26 Every a-Pythagorean fuzzy soft BCC-ideal of X s an a-Pythago-
rean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft BCC-ideal of
X is a Pythagorean fuzzy soft BCC-filter.

Theorem 5.1.27 FEvery a-Pythagorean fuzzy soft implicative BCC-filter of X is
an a-Pythagorean fuzzy soft BCC-ideal. Moreover, every Pythagorean fuzzy soft
implicative BCC-filter of X is a Pythagorean fuzzy soft BCC-ideal.

The following example shows that the converse of Theorems and

BT 77 are not true.

Example 5.1.28 Let X be a set of four types of film, that is,
X = {Fantasy, Horror, Comedy, Action}.

Define binary operation - on X as the following Cayley table:

Comedy Fantasy Horror  Action

Comedy | Comedy Fantasy Horror  Action
Fantasy | Comedy Comedy Horror  Horror

Horror | Comedy Fantasy Comedy Horror

Action | Comedy Fantasy Comedy Comedy

Then X = (X, -, Comedy) is a BCC-algebra. Let (f’, A) be a Pythagorean fuzzy
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soft set over X where
A := {variety, violence, entertainment }

with P[variety], P[violence], and P[entertainment] are Pythagorean fuzzy sets in

X defined as follows:

P Comedy Fantasy Horror  Action

variety  (0.7,0.3) (0.3,0.5) (0.2,0.9) (0.2,0.9)
violence  (0.5,0.5) (0.2,0.7) (0.7,0.7) (0.4,0.8)
entertainment (0.8,0.2) (0.5,0.7) (0.6,0.5) (0.6,0.5)

Then (ﬁ,A) is a variety-Pythagorean fuzzy soft BCC-filter of X. But (f’, A) is

not a variety-Pythagorean fuzzy soft BCC-ideal of X since

[ variety (HoTTOT - Action) = pip . (Horror)
=0.2
#0.3
= min{0.7,0.3}
= {15ty (COMOAY), [ iy (Fantasy) }

= Min{ /4[5y (Horror - (Fantasy - Action)),

Hp [variety] (Fant aSY) }

and

Horror - Action) = v Horror)

Vp [variety] ( variety] (

= 0.9

£0.5
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= max{0.3,0.5}

= MaxX{Vp [y, i1y (Comedy), v Fantasy)}

variety] (

= max{Vp,ery) (Horror - (Fantasy - Action)),

Vp [variety] (Fa’nt aSY) } :

Hence, Plvariety] is not a Pythagorean fuzzy BCC-ideal of X, that is, (P, A) is

not a variety-Pythagorean fuzzy soft BCC-ideal of X.

Example 5.1.29 By Example BTT3, we have (ﬁ, A) is a Pythagorean fuzzy soft
BCC-ideal of X. But (ﬁ, A) is not a Pythagorean fuzzy soft implicative BCC-
filter of X because (ﬁ, A) is not an Employee-Pythagorean fuzzy soft implicative
BCC-filter, a Chef-Pythagorean fuzzy soft implicative BCC-filter, and a Musician-

Pythagorean fuzzy soft implicative BCC-filter of X such as

VIS[Musician] (KOI‘G& ) Ja’pan)

=Vp [Musician] (MalaySia)

=0.3

£02

= max{0.2,0.2}
= maX{Vﬁ [Musician] (Australia) ) Vﬁ[MuSician] (AuStralia’>}
= max{vp

Musician] (IS0T€2 - (Korea - Japan)), Vi pgician (Korea - Korea) }.

Hence, ﬁ[l\/[usician] is not a Pythagorean fuzzy implicative BCC-filter of X, that

is, (ﬁ, A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Definition 5.1.30 A Pythagorean fuzzy soft set (P, A) over X is called a Pythago-
rean fuzzy soft strong BCC-ideal based on a € A (we shortly call an a-Pythagorean
fuzzy soft strong BCC-ideal) of X if a Pythagorean fuzzy set ﬁ[a] in X is a

Pythagorean fuzzy strong BCC-ideal. If ﬁ[a] is an a-Pythagorean fuzzy soft
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strong BCC-ideal of X for all a € A, we say that 13[&] is a Pythagorean fuzzy soft
strong BCC-ideal of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.31 If (f’,A) is a Pythagorean fuzzy soft strong BCC-ideal of X
and ) # B C A, then (§|B,B) is a Pythagorean fuzzy soft strong BCC-ideal of
X.

From Figure M, we have the following theorems.

Theorem 5.1.32 a-Pythagorean fuzzy soft strong BCC-ideal and a-constant Py-
thagorean fuzzy soft set coincide in X. Moreover, Pythagorean fuzzy soft strong

BCC-ideal and constant Pythagorean fuzzy soft set coincide in X.

Theorem 5.1.33 Fvery a-Pythagorean fuzzy soft strong BCC-ideal of X is an a-
Pythagorean fuzzy soft BCC-ideal. Moreover, every Pythagorean fuzzy soft strong
BCC-ideal of X 1s a Pythagorean fuzzy soft BC'C-ideal.

Theorem 5.1.34 Fvery a-Pythagorean fuzzy soft strong BCC-ideal of X is an
a-Pythagorean fuzzy soft implicative BCC-filter (resp., a-Pythagorean fuzzy soft
comparative BCC-filter, a-Pythagorean fuzzy soft shift BCC-filter). Moreover, ev-
ery Pythagorean fuzzy soft strong BCC-ideal of X is a Pythagorean fuzzy soft im-
plicative BCC-filter (resp., Pythagorean fuzzy soft comparative BCC-filter, Pytha-
gorean fuzzy soft shift BCC-filter).

The following example shows that the converse of Theorems and

B 134 are not true.

Example 5.1.35 Let X be a set of four games of E-sports, that is,

X = {DOTA, Pokemon, Call of Duty, FIFA}.



Define binary operation - on X as the following Cayley table:

DOTA FIFA Call of Duty Pokemon

DOTA DOTA FIFA Call of Duty Pokemon

Pokemon |DOTA DOTA FIFA Pokemon

Call of Duty | DOTA DOTA DOTA Pokemon
FIFA DOTA FIFA Call of Duty DOTA
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Then X = (X,-,DOTA) is a BCC-algebra. Let (ﬁ,A) be a Pythagorean fuzzy

soft set over X where

A := {pressure, planning, relaxation}

with P[pressure], P[planning], and Plrelaxation] are Pythagorean fuzzy sets in X

defined as follows:

P DOTA  FIFA  Call of Duty Pokemon
pressure (1,0)  (0.7,0.3)  (0.7,0.3)  (0.2,0.8)
planning (0.8,0.4) (0.6,0.6)  (0.6,0.6)  (0.3,0.9)

relaxation (0.2,0.4) (0.3,0.4) (0.3,0.6)  (0.6,0.4)

Then (P, A) is a planning-Pythagorean fuzzy soft BCC-ideal of X. But (P, A) is

not a planning-Pythagorean fuzzy soft strong BCC-ideal of X since

Mﬁ[planning]

= 0.6

#0.8

(Call of Duty)

= min{0.8,0.8}

= min{ﬂﬁ[planning] (DOTA)7 Iuﬁ[planning] <DOTA)}
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= Min{ /45 nming ((Call of Duty - DOTA) - (Call of Duty-

Call of Duty)), pp

and

Call of Duty)

Vp [planning] (

= 0.6

£04

= max{0.4,0.4}

= max{vp

= max{vp

Call of Duty)), vp

planning]

planning] (

((Call of Duty - DOTA) - (Call of Duty-

planning

[planning] (

(DOTA)}

DOTA), Vf){

planning] (

DOTA)}.

DOTA)}

Hence, ls[planning] is not a Pythagorean fuzzy strong BCC-ideal of X, that is,

(ﬁ, A) is not a planning-Pythagorean fuzzy soft strong BCC-ideal of X.

Example 5.1.36 Let X be a set of 5 internet stocks, that is,

X b {:L‘h Lo, X3, Ty, 1'5}.

Define a binary operation - on X as the following Cayley table:

1

X2

Zs

Xy

Ts

T

T2

x3

Xy

Ts

X1

T

T

T

T

X2

T

T

T

Ty

xs

T2

T

T

T

Ly

T3

T3

T

xs3

Ts

Ts

Ts

Ts

T
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Then X = (X, -,21) is a BCC-algebra. Let
A = {Market trend, Annual performance, Circulation market value}

= {MT, AP, CMV}

be a set of 3 evaluations in X and (f’, A) a Pythagorean fuzzy soft set over X.
Then P[MT], P[AP], and P[CMV] are Pythagorean fuzzy sets in X defined as

follows:

P 1 T z3 T4 Zs5
MT (0.8,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) (0.4,0.7)
AP (0.5,0.3) (0.5,0.3) (0.5,0.3) (0.5,0.3) (0.5,0.3)

CMV (0.7,0.3) (0.7,0.3) (0.7,0.3) (0.7,0.3) (0.2,0.9)

Then (ﬁ,A) is a Pythagorean fuzzy soft implicative BCC-filter (Pythagorean
fuzzy soft comparative BCC-filter,Pythagorean fuzzy soft shift BCC-filter) of X.
But (P, A) is not a Pythagorean fuzzy soft strong BCC-ideal of X because (P, A)
is not a MT-constant Pythagorean fuzzy soft set (CMV-constant Pythagorean
fuzzy soft set) of X. Hence, P]MT] and P[CMV] are not a Pythagorean fuzzy
strong BCC-ideal of X, that is, (f’,A) is not a Pythagorean fuzzy soft strong
BCC-ideal of X.

Next, we shall find examples for study generalization of Pythagorean

fuzzy soft sets over BCC-algebras.

Example 5.1.37 By Example b T4, we have (ﬁ,A) is a Pythagorean fuzzy
soft BCC-ideal of X. But (f’,A) is not a Pythagorean fuzzy soft comparative
BCC-filter of X because (IND, A) is not an Employee-Pythagorean fuzzy soft com-

parative BCC-filter, a Chef-Pythagorean fuzzy soft comparative BCC-filter, and
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a Musician-Pythagorean fuzzy soft comparative BCC-filter of X such as

Hpicnen (Korea)
=01

#0.3

= min{0.9,0.3}

= min{ 4 qpeq (Australia), p5qp,eq (Japan) }

= min{p(cyqqn(Japan - ((Korea - Singapore) - Korea)), t5(cy,0q (Japan) }.

Hence, ﬁ[Chef] is not a Pythagorean fuzzy comparative BCC-filter of X, that is,

(f’, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.38 By Example T T3, we have (1~3, A) is a Pythagorean fuzzy soft
BCC-ideal of X. But (P, A) is not a Pythagorean fuzzy soft shift BOC-filter of
X because (ﬁ, A) is not an Employee-Pythagorean fuzzy soft shift BCC-filter, a
Chef-Pythagorean fuzzy soft shift BCC-filter, and a Musician-Pythagorean fuzzy
soft shift BCC-filter of X such as

Vp{Employee) ( ((KOT€a - Singapore) - Singapore) - Korea)

=Up [Employee] (KOI’G&)

=0.8

£0.7

= max{0,0.7}

= Ina“X{VI3 [Employee] (MalaySia)7 Vp [Employee] (Japan)}

= MaX{Vp(g,p10yeq (JPAD - (Singapore - Korea)), vp Japan)}.

Employee] (

Hence, ﬁ[Employee] is not a Pythagorean fuzzy shift BCC-filter of X, that is,
(ﬁ, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.
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Example 5.1.39 Let X be a set of 4 cars, that is, X = {¢1, ¢2, 3, ¢4}. Define a

binary operation - on X as the following Cayley table:

Ci C C3 (4

Ci|C1 Cy C3 (4

C2[C1 C1 C3 C3

3|1 € C1 C3

Cs|C1 C C1 C

Then X = (X, -, ¢ is a BCC-algebra. Let A = {Price, Modernity, Engine torque}
be a set of purchasing decisions in X and (ﬁ, A) a Pythagorean fuzzy soft set over
X. Then P[Price], P[Modernity], and P[Engine torque] are Pythagorean fuzzy

sets in X defined as follows:

P c1 Co Cs Cq
Price (0.7,0.5) (0.7,0.5) (0.3,0.6) (0.3,0.6)
Modernity  (0.9,0.4) (0.9,0.4) (0.1,0.8) (0.1,0.8)

Engine torque (0.8,0.3) (0.8,0.3) (0.2,0.4) (0.2,0.4))

Then (P, A) is a Pythagorean fuzzy soft shift BCC-filter of X. But (P, A) is
not a Pythagorean fuzzy soft implicative BCC-filter of X because (ﬁ, A) is not
a Price-Pythagorean fuzzy soft implicative BCC-filter, a Modernity-Pythagorean
fuzzy soft implicative BCC-filter, and an Engine torque-Pythagorean fuzzy soft

implicative BCC-filter of X such as

lu’f’[Price]<c3 ’ C4) = luﬁ[Price](C3)
=0.3

£0.7

= min{0.7,0.7}
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= min{lu’f’[Price] (1), HP[price] (c1)}

= min{uf’[Price]<c3 ’ (C3 ’ 04))7 luﬁ[lz’rice](c3 ) 03)}'

Hence, P[Price] is not a Pythagorean fuzzy implicative BCC-filter of X, that is,

(ﬁ, A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Example 5.1.40 By Example 6139, we have (ﬁ, A) is a Pythagorean fuzzy soft
shift BCC-filter of X. But (f’,A) is not a Pythagorean fuzzy soft comparative
BCC-filter of X because (ﬁ, A) is not a Price-Pythagorean fuzzy soft comparative
BCC-filter, a Modernity-Pythagorean fuzzy soft comparative BCC-filter, and an

Engine torque-Pythagorean fuzzy soft comparative BCC-filter of X such as

VIS[Modernity} (63) = 0.8

£ 0.4

= max{0.4,0.4}
= maX{Vls[Modernity] (Cl)’ Vls[Modernity] (Cl)}

= maX{Vf’[Modernity] (Cl i ((C3 ’ 04) ) 03))7 VIS[Modernity] (Cl)}'

Hence, ﬁ[Modernity] is not a Pythagorean fuzzy comparative BCC-filter of X,

that is, (13, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.41 By Example bT-39, we have (13, A) is a Pythagorean fuzzy soft
shift BCC-filter of X. But (13, A) is not a Pythagorean fuzzy soft BCC-ideal of
X because (ﬁ, A) is not a Price-Pythagorean fuzzy soft BCC-ideal, a Modernity-
Pythagorean fuzzy soft BCC-ideal, and an Engine torque-Pythagorean fuzzy soft
BCC-ideal of X such as

/“LIS[Engine torque] (C3 ’ 64) = luf’[Engine torque] (63)

=0.2



195

#08

= min{0.8,0.8}
= min{lulg[Engine torque] (Cl)’ qu’[Engine torque] (Cz)}

- min{/‘tf’[Engine torque] (C3 ) (62 ’ 04))’ /’LIS[Engine torque] (62)}'

Hence, ?[Engine torque| is not a Pythagorean fuzzy BCC-ideal of X, that is,
(ﬁ, A) is not a Pythagorean fuzzy soft BCC-ideal of X.

Example 5.1.42 Let X be a set of 5 cities in Thailand, that is,
X = {Bangkok, Chiang Mai, Chiang Rai, Phuket, Khon Kaen}.

Define a binary operation - on X as the following Cayley table:

Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen

Bangkok | Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen
Chiang Mai | Bangkok  Bangkok Bangkok  Bangkok Khon Kaen
Chiang Rai | Bangkok Chiang Mai  Bangkok Bangkok Khon Kaen

Phuket Bangkok Chiang Mai Chiang Rai Bangkok Khon Kaen
Khon Kaen | Bangkok Chiang Mai Chiang Rai  Phuket Bangkok

Then X = (X, -, Bangkok) is a BCC-algebra. Let A = {Crowed, Cost of living}
be a set of 2 factors in X and (ﬁ, A) a Pythagorean fuzzy soft set over X. Then
P[Crowed] and a P[Cost of living] are Pythagorean fuzzy sets in X defined as

follows:

P Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen

Crowed  (0.7,0.1)  (0.2,0.3)  (0.2,03) (02,0.3)  (0,0.9)
Cost of living (0.6,0.5)  (0.3,0.7) (0.3,0.7)  (0.4,0.6) (0.1,0.8)
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Then (P, A) is a Pythagorean fuzzy soft implicative BCC-filter of X. But (P, A)
is not a Pythagorean fuzzy soft comparative BCC-filter of X because (f’, A) is
not a Crowed-Pythagorean fuzzy soft comparative BCC-filter and Cost of living-

Pythagorean fuzzy soft comparative BCC-filter of X such as

luﬁ[Crowod](Phuket) =02

#0.7

= min{0.7,0.7}

= min{:uﬁ[(]rowed] <Bangk0k)7 Iuﬁ[Crowed] (BangkOk)}
= MiIN{ 15, pneq (Bangkok - ((Phuket - Chiang Rai) - Phuket))

) Mﬁ[Crowed} (BangkOk) } :

Hence, ﬁ[Crowed] is not a Pythagorean fuzzy comparative BCC-filter of X, that

is, (iS, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.43 By Example bT42, we have (lg,A) is a Pythagorean fuzzy
soft implicative BCC-filter of X. But (13,14) is not a Pythagorean fuzzy soft
shift BCC-filter of X because (ﬁ, A) is not a Crowed-Pythagorean fuzzy soft shift
BCC-filter and a Cost of living-Pythagorean fuzzy soft shift BCC-filter of X such

as

VB(Cost of living (((Phuket - Chiang Mai) - Chiang Mai) - Phuket)

- VlS[COSt of living] (PhUket)

= 0.6

£0.5
= max{0.5,0.5}

= max{vp, (Bangkok), Vg o of 1iving (Bangkok) }

Cost of living]

= MaX{Vp|og of living (Bangkok - (Chiang Mai - Phuket)),
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Vls[Cost of living] (BangkOk) } :

Hence, f’[Cost of living] is not a Pythagorean fuzzy shift BCC-filter of X, that
is, (13, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.

We got the diagram of generalization of Pythagorean fuzzy soft sets over

BCC-algebras, which is shown with Figure B.

Pythagorean fuzzy soft
BCC-subalgebra

Pythagorean fuzzy soft
near BCC-filter

Pythagorean fuzzy soft
BCC-filter

\J

A

Pythagorean fuzzy soft

ﬁ BCC:deal ‘—\—l

Pythagorean fuzzy soft . Pythagorean fuzzy soft . Pythagorean fuzzy soft
comparative BCC-filter implicative BCC-filter shift BCC-filter

T Pythagorean fuzzy soft T
strong BCC-ideal

:

Constant Pythagorean
fuzzy soft set

Figure 6: Pythagorean fuzzy soft sets over BCC-algebras

9.2 The operations on Pythagorean fuzzy soft sets

Theorem 5.2.1 The extended intersection of two Pythagorean fuzzy soft BCC-
subalgebras of X is also a Pythagorean fuzzy soft BCC-subalgebra. Moreover,
the intersection of two Pythagorean fuzzy soft BCC-subalgebras of X s also a

Pythagorean fuzzy soft BCC-subalgebra.
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Proof. Assume that (P, A1) and (Py, A3) are two Pythagorean fuzzy soft BCC-
subalgebras of X. We denote (P, A1) (Ps, A3) by (P, A) where A = A; U A,.

Next, let a € A.

Case 1: a € Ay \ Ay. Then Pla] = Py]a] is a Pythagorean fuzzy BCC-
subalgebra of X.

Case 2: a € Ay \ A;. Then Pla] = P, [a] is a Pythagorean fuzzy BCC-
subalgebra of X.

Case 3: a € A; N Ay. By Theorem B50, we have Pla] = Py[a] A Py[a] is

a Pythagorean fuzzy BCC-subalgebra of X.

Thus (13, A) is an a-Pythagorean fuzzy soft BCC-subalgebra of X for all
a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra of X. ]

Theorem 5.2.2 The union of two Pythagorean fuzzy soft BCC-subalgebras of
X is also a Pythagorean fuzzy soft BC'C-subalgebra if sets of statistics of two

Pythagorean fuzzy soft BC'C-subalgebras are disjoint.

Proof. Assume that (Py, A;) and (Ps, Ay) are two Pythagorean fuzzy soft BCC-
subalgebras of X such that A; N Ay = (). We denote (ﬁ, AU(P,, A3) by (P, A)
where A = A; U Ay. Since A; N Ay = (), we have a € A} \ Ay or a € Ay \ A;.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = Py]d] is a Pythagorean fuzzy BCC-
subalgebra of X.

Case 2: a € Ay \ A;. Then Pla] = P,la] is a Pythagorean fuzzy BCC-
subalgebra of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft BCC-subalgebra of X for all
a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra of X. O
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The following example shows that Theorem B2 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-subalgebras are not disjoint.

Example 5.2.3 Let X be a set of four Thai foods, that is,

X = {Pad Thai, Som Tam, Laab, Tom Yum Goong}.

Define binary operation - on X as the following Cayley table:

Pad Thai Som Tam Laab Tom Yum Goong

Pad Thai Pad Thai Som Tam Laab Tom Yum Goong
Som Tam Pad Thai Pad Thai Som Tam Tom Yum Goong
Laab Pad Thai Pad Thai Pad Thai Tom Yum Goong

Tom Yum Goong | Pad Thai Pad Thai Som Tam Pad Thai

Then X = (X,- Pad Thai) is a BCC-algebra. Let (Py,A4;) and (P, Ay) are

Pythagorean fuzzy soft sets over X where
A; := {popularity, aroma}

and

A,y := {popularity, deliciousness}

with Py [popularity], Py [aroma], Py[popularity], and Ps[deliciousness] are Pythago-

rean fuzzy sets in X defined as follows:

P, Pad Thai Som Tam  Laab  Tom Yum Goong

popularity  (0.9,0)  (0.5,0.4)  (0.9,0) (0.3,0.5)
aroma  (0.5,0.4) (0.4,0.8) (0.4,0.8) (0.4,0.8)
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P, Pad Thai Som Tam  Laab  Tom Yum Goong
popularity  (0.9,0.1) (0.3,0.7) (0.2,0.8) (0.7,0.2)
deliciousness (0.5,0.5) (0.3,0.7) (0.2,0.8) (0.1,0.9)

Then (Py, A;) and (P, A5) are Pythagorean fuzzy soft BCC-subalgebras of X.
Since popularity € A; N A,, we have

Tom Yum Goong - Laab)

Hp 1 [popularity] VP2 [popularity] (

(Som Tam)

= Hp 1[popularity] VPsy [popularity

= 0.5

£0.7

= min{0.7,0.9}

- mln{lu’f’l[popularity}vf’g[popularity} (TOID Yum GOOIlg),

(Laab)}.

lufﬁ [popularity] VP2 [popularity]

Thus P, [popularity]| V P, [popularity] is not a Pythagorean fuzzy BCC-subalgebra
of X, that is, (ﬁl, A1>O<§2, A,) is not a popularity-Pythagorean fuzzy soft BCC-
subalgebra of X. Hence, (Py, A1)U(Pa, As) is not a Pythagorean fuzzy soft BCC-
subalgebra of X. Moreover, (P, A;)U(Ps, A5) is not a Pythagorean fuzzy soft
BCC-subalgebra of X.

Theorem 5.2.4 The extended intersection of two Pythagorean fuzzy soft near
BCC-filters of X 1is also a Pythagorean fuzzy soft near BCC-filter. Moreover,
the intersection of two Pythagorean fuzzy soft near BCC-filters of X is also a
Pythagorean fuzzy soft near BCC-filter.

Proof. Assume that (Py, A;) and (Ps, Ay) are two Pythagorean fuzzy soft near
BCC-filters of X. We denote (P, A;)N(Ps, A3) by (P, A) where A = A; U Ay.

Next, let a € A.
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Case 1: a € A; \ Ay. Then Pla] = Pya] is a Pythagorean fuzzy near
BCC-filter of X.

Case 2: a € Ay \ A, Then Pla] = Psla] is a Pythagorean fuzzy near
BCC-filter of X.

Case 3: a € A; N Ay. By Theorem B53, we have Pla] = Py[a] A Py[a] is

a Pythagorean fuzzy near BCC-filter of X.

Thus (13, A) is an a-Pythagorean fuzzy soft near BCC-filter of X for all
a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft near BCC-filter of X. O

Theorem 5.2.5 The union of two Pythagorean fuzzy soft near BCC-filters of X
s also a Pythagorean fuzzy soft near BCC-filter. Moreover, the restricted union

of two Pythagorean fuzzy soft near BCC-filters of X 1is also a Pythagorean fuzzy
soft near BCC-filter.

Proof. Assume that (Py, A;) and (Ps, Ay) are two Pythagorean fuzzy soft near
BCC-filters of X. We denote (P, A;)U(Ps, 43) by (P, A) where A = A; U Ay.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = Pya] is a Pythagorean fuzzy near
BCC-filter of X.

Case 2: a € Ay \ A, Then Pla] = Psla] is a Pythagorean fuzzy near
BCC-filter of X.

Case 3: a € A; N Ay. By Theorem B54, we have Pla] = Py[a] V Py[d] is

a Pythagorean fuzzy near BCC-filter of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft near BCC-filter of X for all
a € A. Hence, (f’, A) is a Pythagorean fuzzy soft near BCC-filter of X. O

Theorem 5.2.6 The extended intersection of two Pythagorean fuzzy soft BCC-
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filters of X is also a Pythagorean fuzzy soft BCC-filter. Moreover, the intersection
of two Pythagorean fuzzy soft BCC-filters of X is also a Pythagorean fuzzy soft
BCC-filter.

Proof. Assume that (P1, A;) and (Ps, Ay) are two Pythagorean fuzzy soft BCC-
filters of X. We denote (P, A;)N(Pa, A3) by (P, A) where A = A; U Ay. Next, let

ac A.

Case 1: a € A;\ As. Then P[a] = P;[a] is a Pythagorean fuzzy BCC-filter
of X.

Case 2: a € A\ A;. Then P[a] = Py[a] is a Pythagorean fuzzy BCC-filter
of X.

Case 3: a € A; N Ay. By Theorem B53H, we have Pla] = Py[a] A Py[a] is
a Pythagorean fuzzy BCC-filter of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft BCC-filter of X for all a € A.
Hence, (f’, A) is a Pythagorean fuzzy soft BCC-filter of X. O

Theorem 5.2.7 The union of two Pythagorean fuzzy soft BCC-filters of X is
also a Pythagorean fuzzy soft BCC-filter if sets of statistics of two Pythagorean
fuzzy soft BCC-filters are disjoint.

Proof. Assume that (ﬁl, Ap) and (ﬁg, Ay) are two Pythagorean fuzzy soft BCC-
filters of X such that 4; N Ay = 0. We denote (P, A;)U(Py, A) by (P, A) where
A= A;UA,. Since A; N Ay =0, we have a € Ay \ Ay or a € Ay \ A;. Next, let

a€ A

Case 1: a € A;\ Ay. Then P[a] = P;[a] is a Pythagorean fuzzy BCC-filter
of X.

Case 2: a € A\ A;. Then P[a] = Py[a] is a Pythagorean fuzzy BCC-filter



203

of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft BCC-filter of X for all a € A.
Hence, (15, A) is a Pythagorean fuzzy soft BCC-filter of X. O

The following example shows that Theorem B2 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-filters are not disjoint.

Example 5.2.8 Let X be a set of four seasons, that is,
X = {Spring, Rains, Summer, Winter}.

Define binary operation - on X as the following Cayley table:

Winter Rains Spring Summer

Winter | Winter Rains Spring Summer
Rains | Winter Winter Spring Spring
Spring | Winter Rains Winter Rains

Summer | Winter Winter Winter Winter

Then X = (X, -, Winter) is a BCC-algebra. Let (f’l, Ap) and (f’z, Ay) are Pythago-

rean fuzzy soft sets over X where
Ay, := {coldness, moisture}

and

Ay := {moisture, excitement, warmth}

with P [coldness], P;[moisture], Po[moisture], Ps[excitement], and Po[warmth] are
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Pythagorean fuzzy sets in X defined as follows:

f’l Winter Rains Spring  Summer

coldness (0.9,0.4) (0.2,0.7) (0.2,0.7) (0.2,0.7)
moisture (0.8,0.2) (0.8,0.2) (0.3,0.4) (0.3,0.4)

P, Winter Rains Spring  Summer

moisture  (0.9,0.1) (0.1,0.7) (0.5,0.4) (0.1,0.7)
excitement (0.6,0.5) (0.3,0.8) (0.6,0.5) (0.3,0.8)
warmth  (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5)

Then (Py, A1) and (Py, Ay) are Pythagorean fuzzy soft BCC-filters of X. Since

moisture € A; N As, we have

Summer) = 0.3

0.5

= min{0.5,0.8}

[,6131 [moisture]VPs [moisture] (

N mln{uﬁl [moisture]VPs [moisture] <Sprlng)’

Rains)}

e P [moisture] VP2 [moisture] (
- mln{”?ﬁ[moisture}vf’g[moisture] (Rams ) Summer)’

Rains)}.

Mf’l [moisture]VPa[moisture] (

Thus P;[moisture] V Py[moisture] is not a Pythagorean fuzzy BCC-filter of X,
that is, (Py, A;)U(Ps, As) is not a moisture-Pythagorean fuzzy soft BCC-filter of
X. Hence, (?1,141)0(?2,142) is not a Pythagorean fuzzy soft BCC-filter of X.
Moreover, (P1, A;)U(P,, A) is not a Pythagorean fuzzy soft BCC-filter of X.

Theorem 5.2.9 The extended intersection of two Pythagorean fuzzy soft im-

plicative BCC-filters of X s also a Pythagorean fuzzy soft implicative BCC-filter.
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Moreover, the intersection of two Pythagorean fuzzy soft implicative BCC-filters

of X is also a Pythagorean fuzzy soft implicative BCC-filter.

Proof. Assume that (ﬁl, Ap) and (ﬁg, Ay) are two Pythagorean fuzzy soft implica-
tive BCC-filters of X. We denote (P, A1)A(Py, A) by (P, A) where A = A, U A,.

Next, let a € A.

Case 1: a € A;\A,. Then Pla] = Py[a] is a Pythagorean fuzzy implicative
BCC-filter of X.

Case 2: a € Ay\A;. Then Pla] = Py[a] is a Pythagorean fuzzy implicative
BCC-ilter of X.

Case 3: a € A; N Ay. By Theorem B35, we have Pla] = Py[a] A Po[d] is

a Pythagorean fuzzy implicative BCC-filter of X.

Thus (f’, A) is an a-Pythagorean fuzzy soft implicative BCC-filter of X
for all a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of
X. O

Theorem 5.2.10 The union of two Pythagorean fuzzy soft implicative BCC-
filters of X is also a Pythagorean fuzzy soft implicative BCC-filter if sets of

statistics of two Pythagorean fuzzy soft implicative BCC-filters are disjoint.

Proof. Assume that (P, 4;) and (Ps, A3) are two Pythagorean fuzzy soft im-
plicative BCC-filters of X such that A; N Ay = (. We denote (ﬁ, A1>O<§2, Ay) by
(ﬁ,A) where A = A;UA,. Since A;NAy =), we have a € A1\ Ay or a € Ay\ Ay

Next, let a € A.

Case 1: a € A;\Ay. Then Pla] = P,[a] is a Pythagorean fuzzy implicative
BCC-filter of X.

Case 2: a € Ay\A;. Then Pla] = Py[a] is a Pythagorean fuzzy implicative
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BCC-ilter of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft implicative BCC-filter of X
for all a € A. Hence, (13, A) is a Pythagorean fuzzy soft implicative BCC-filter of
X. O

The following example shows that Theorem B2ZT0 is not valid if sets of

statistics of two Pythagorean fuzzy soft implicative BCC-filters are not disjoint.

Example 5.2.11 Let X be a set of 4 musicians, that is, X = {my, ma, mg, my}.

Define a binary operation - on X as the following Cayley table:

my Mg M3 My

Then X = (X, -,m;) is a BCC-algebra. Let
A; = {Creative thinking, Professionalism} and

Ay = {Identity, Professionalism}

be sets of properties in X and (ﬁl, Ay) and (132, Ay) are Pythagorean fuzzy soft

sets over X. Then P;[Creative thinking], P;[Professionalism], Ps[Identity], and

Ps[Professionalism| are Pythagorean fuzzy sets in X defined as follows:

Py ma mo ms3 my

Creative thinking (0.5,0.6) (0.1,0.8) (0.4,0.7) (0.1,0.8)
Professionalism  (0.9,0.2) (0.4,0.5) (0.6,0.4) (0.4,0.5)
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P2 mq mo ms Ty

Identity (1,0)  (0.2,0.9) (0.7,0.2) (0.2,0.9)
Professionalism (0.6,0) (0.6,0) (0.5,0.4) (0.5,0.4)

Then (Py, A1) and (P, A5) are Pythagorean fuzzy soft implicative BCC-filters of

X. Since Professionalism € A; N Ay, we have

Hp 1 [Professionalism]VPs [Professionalism] (ml ’ m4)

= flipy [Professionalism]V Py [Professionalism] <m4 )

= 0.5

#0.6

= min{0.6,0.6}

= mln{'uf’l[Professionalism]\/ﬁz[Professionalism} (m3>7
Mf)l [Professionalism]\/ﬁg [Professionalism)] (m2) }
- mln{lulgl[Professionalism]\/ﬁz[Professionalism} (ml y (m2 ) m4))7

lul~31[Professionalism]\/ﬁg[Professionalism] (ml ’ mQ)}

Thus Py [Professionalism] V' Py[Professionalism] is not a Pythagorean fuzzy im-
plicative BCC-filter of X, that is, (ﬁl,Al)G(ﬁg,AQ) is not a Professionalism-
Pythagorean fuzzy soft implicative BCC-filter of X. Hence, (P, 4;)J(Pa, A,) is
not a Pythagorean fuzzy soft implicative BCC-filter of X. Moreover, (ﬁl, AU

(ﬁg, As) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Theorem 5.2.12 The extended intersection of two Pythagorean fuzzy soft com-
parative BCC-filters of X is also a Pythagorean fuzzy soft comparative BCC-filter.
Moreover, the intersection of two Pythagorean fuzzy soft comparative BCC-filters

of X s also a Pythagorean fuzzy soft comparative BCC-filter.

Proof. Assume that (ﬁl, Ap) and @2, Ay) are two Pythagorean fuzzy soft compar-
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ative BCC-filters of X. We denote (P, 4;)7(Pa, A3) by (P, A) where A = AU A,.

Next, let a € A.

Case 1: a € Ay \ Ay. Then Pla] = Py[a] is a Pythagorean fuzzy compar-
ative BCC-filter of X.

Case 2: a € Ay \ A;. Then Pla] = Py[a] is a Pythagorean fuzzy compar-
ative BCC-ilter of X.

Case 3: a € A; N Ay. By Theorem B59, we have Pa] = Py[a] A Py[d] is

a Pythagorean fuzzy comparative BCC-filter of X.

Thus (f’, A) is an a-Pythagorean fuzzy soft comparative BCC-filter of X
for all a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter
of X. O]

Theorem 5.2.13 The union of two Pythagorean fuzzy soft comparative BCC-
filters of X s also a Pythagorean fuzzy soft comparative BCC-filter if sets of

statistics of two Pythagorean fuzzy soft comparative BCC-filters are disjoint.

Proof. Assume that (P1, A;) and (Ps, Ay) are two Pythagorean fuzzy soft com-
parative BCC-filters of X such that A; N Ay, = (). We denote (13, Al)O(ﬁg, As) by
(ﬁ,A) where A = A;U Ay, Since AN Ay =), we have a € A;\ Ay or a € Ay\ A;.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = P1[a] is a Pythagorean fuzzy compar-
ative BCC-filter of X.

Case 2: a € Ay \ A;. Then Pla] = Py[a] is a Pythagorean fuzzy compar-
ative BCC-filter of X.

Thus (f’, A) is an a-Pythagorean fuzzy soft comparative BCC-filter of X

for all a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter
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of X. O

The following example shows that Theorem B™2T3 is not valid if sets of

statistics of two Pythagorean fuzzy soft comparative BCC-filters are not disjoint.

Example 5.2.14 By Example 5211, we have (Py, A;) and (Ps, A,) are Pythago-
rean fuzzy soft comparative BCC-filters of X. Since Professionalism € A; N A,,

we have

Hp 1 [Professionalism]VP5 [Professionalism] <m4 )

=0.5

#0.6

= min{0.6,0.6}

= mln{luﬁl[Professionalism}\/lsg[Professionalism} (m2)’
,Ltf)l [Professionalism]\/lsg [Professionalism] (m3>}
= mln{luﬁl[Professionalism]vﬁg[Professionalism](m3 ) ((m4 ’ mQ) ) m4))7

Hp, [Professionalism]VPs [Professionalism] (m3) } :

Thus Py [Professionalism] V P,[Professionalism] is not a Pythagorean fuzzy com-
parative BCC-filter of X, that is, (ﬁl,Al)O(ﬁz,Az) is not a Professionalism-
Pythagorean fuzzy soft comparative BCC-filter of X. Hence, (Py, A;)U(P,, Ay)
is not a Pythagorean fuzzy soft comparative BCC-filter of X. Moreover, (ﬁl, AU

(ﬁg, As) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Theorem 5.2.15 The extended intersection of two Pythagorean fuzzy soft shift
BCC-filters of X is also a Pythagorean fuzzy soft shift BCC-filter. Moreover,
the intersection of two Pythagorean fuzzy soft shift BCC-filters of X 1is also a
Pythagorean fuzzy soft shift BCC-filter.

Proof. Assume that (ﬁl,Al) and (§2,A2) are two Pythagorean fuzzy soft shift
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BCC-filters of X. We denote (P, A;)N(Ps, A3) by (P, A) where A = A; U Aj.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = Py[a] is a Pythagorean fuzzy shift
BCC-filter of X.

Case 2: a € Ay \ A;. Then Pla] = Py[a] is a Pythagorean fuzzy shift
BCC-filter of X.

Case 3: a € A; N Ay. By Theorem BAIT, we have Pla] = P1]a] A Psla] is
a Pythagorean fuzzy shift BCC-filter of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft shift BCC-filter of X for all
a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft shift BCC-filter of X. O

Theorem 5.2.16 The union of two Pythagorean fuzzy soft shift BCC-filters of
X is also a Pythagorean fuzzy soft shift BCC-filter if sets of statistics of two

Pythagorean fuzzy soft shift BCC-filters are disjoint.

Proof. Assume that (Py, A;) and (Ps, ;) are two Pythagorean fuzzy soft shift
BCC-filters of X such that A; N Ay = . We denote (P, A;)U(Ps, 43) by (P, A)
where A = A; U Ay. Since A; N Ay = (), we have a € A} \ Ay or a € Ay \ A;.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = Py[a] is a Pythagorean fuzzy shift
BCC-ilter of X.

Case 2: a € Ay \ A;. Then Pla] = P,[d] is a Pythagorean fuzzy shift
BCC-ilter of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft shift BCC-filter of X for all
a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft shift BCC-filter of X. ]

The following example shows that Theorem BZZT8 is not valid if sets of



211

statistics of two Pythagorean fuzzy soft shift BCC-filters are not disjoint.

Example 5.2.17 By Example 2211, we have (ﬁl, Ay) and (PN’2, A,y) are Pythago-

rean fuzzy soft shift BCC-filters of X. Since Professionalism € A; N Ay, we have

Hp, [Professionalism]VPs [Professionalism] (((m4 ) ml) ) ml) ) m4)

= M151 [Professionalism]VPs [Professionalism] <m4)

=0.5

#0.6

= min{0.6,0.6}

= mln{'ulsl[Profossionalism]\/lsz[Professionalism} (m2>7
Iu’f)l [Professionalism]\/lsz [Professionalism] (m3) }
- mln{luf’l[Professionalism]\/ﬁg[Professionalism} (m3 ’ (ml ) m4))7

Hp, [Professionalism]VP3 [Professionalism] (m3 ) } :

Thus Py [Professionalism] V P,[Professionalism] is not a Pythagorean fuzzy shift
BCC-filter of X, that is, (P, A1)J(Pa, A5) is not a Professionalism-Pythagorean
fuzzy soft shift BCC-filter of X. Hence, (Py, A;)U(P,, Ay) is not a Pythagorean
fuzzy soft shift BCC-filter of X. Moreover, (P1, A;)U(Pa, A,) is not a Pythagorean
fuzzy soft shift BCC-filter of X.

Theorem 5.2.18 The extended intersection of two Pythagorean fuzzy soft BCC-
ideals of X is also a Pythagorean fuzzy soft BCC-ideal. Moreover, the intersection

of two Pythagorean fuzzy soft BCC-ideals of X is also a Pythagorean fuzzy soft
BCC-ideal.

Proof. Assume that (131, Ay) and (i%, As) are two Pythagorean fuzzy soft BCC-
ideals of X. We denote (P, A;)A(Ps, A3) by (P, A) where A = A; U A,. Next, let
a€ A
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Case 1: a € A;\ Ay. Then P[a] = P;[a] is a Pythagorean fuzzy BCC-ideal
of X.

Case 2: a € A\ A;. Then P[a] = Py[a] is a Pythagorean fuzzy BCC-ideal
of X.

Case 3: a € A; N Ay. By Theorem BAI3, we have Pla] = P1]a] A Psla] is
a Pythagorean fuzzy BCC-ideal of X.

Thus (13, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a € A.
Hence, (ﬁ, A) is a Pythagorean fuzzy soft BCC-ideal of X. O

Theorem 5.2.19 The union of two Pythagorean fuzzy soft BCC-ideals of X is
also a Pythagorean fuzzy soft BCC-ideal if sets of statistics of two Pythagorean
fuzzy soft BCC-ideals are disjoint.

Proof. Assume that (P1, A;) and (Ps, Ay) are two Pythagorean fuzzy soft BCC-
ideals of X such that A; N Ay = 0. We denote (P, A1)U(Py, Ay) by (P, A) where
A= A; UA,. Since AyN Ay =0, we have a € Ay \ Ay or a € Ay \ A;. Next, let

ac A

Case 1: a € A1\ Ay. Then ﬁ[a] ¥ ﬁl[a] is a Pythagorean fuzzy BCC-ideal
of X.

Case 2: a € Ay\ A;. Then Pla] = Py[a] is a Pythagorean fuzzy BCC-ideal
of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a € A.
Hence, (P, A) is a Pythagorean fuzzy soft BCC-ideal of X. O

The following example shows that Theorem BZ2ZT9 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-ideals are not disjoint.
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Example 5.2.20 In Example 2R, we have (P, 4;) and (Py, A,) are Pythagorean

fuzzy soft BCC-ideals of X. Since moisture € A; N Ay, we have

luf’l[moisture]vf’z[moisture] <W1nter ’ Summer)

= N’ﬁl[rnoisture]\/ﬁz[rnoisture] (Summer)

=0.3

#0.5

= min{0.8,0.5}

= mm{,u P [moisture] VP [moisture] (Rains) )
Mf’l [moisture]vf’g [moisture] (Sprlng)}

=S min{lu’lsl[moisture]\/ﬁz[moisture] (Winter 1 (Sprlng ’ Summer)),

,Uﬁl [moisture] VvPsy [moisture] (Sprlng) } .

Thus P,[moisture] V Py[moisture] is not a Pythagorean fuzzy BCC-ideal of X,
that is, (Py, A;)J(Ps, As) is not a moisture-Pythagorean fuzzy soft BCC-ideal of
X. Hence, (Py, A;)U(P,, Ay) is not a Pythagorean fuzzy soft BCC-ideal of X.
Moreover, (ﬁl, Al)@(ﬁg, As) is not a Pythagorean fuzzy soft BCC-ideal of X.

Theorem 5.2.21 The extended intersection of two Pythagorean fuzzy soft strong
BCC-ideals of X is also a Pythagorean fuzzy soft strong BCC-ideal. Moreover,
the intersection of two Pythagorean fuzzy soft strong BC'C-ideals of X is also a

Pythagorean fuzzy soft strong BC'C-ideal.

Proof. Assume that (ﬁl, Aj) and (?2, As) are two Pythagorean fuzzy soft strong
BCC-ideals of X. We denote (P, A;)N(Py, As) by (P, A) where A = A; U A,.

Next, let a € A.

Case 1: a € Ay \ Ay. Then P[a] = P[] is a Pythagorean fuzzy strong
BCC-ideal of X.
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Case 2: a € Ay \ A;. Then Pla] = Py[a] is a Pythagorean fuzzy strong
BCC-ideal of X.

Case 3: a € A; N Ay. By Theorem BAIH, we have Pla] = P1]a] A Psla] is

a Pythagorean fuzzy strong BCC-ideal of X.

Thus (f’, A) is an a-Pythagorean fuzzy soft strong BCC-ideal of X for
all a € A. Hence, (13, A) is a Pythagorean fuzzy soft strong BCC-ideal of X. [

Theorem 5.2.22 The union of two Pythagorean fuzzy soft strong BCC-ideals
of X is also a Pythagorean fuzzy soft strong BCC-ideal. Moreover, the restricted
union of two Pythagorean fuzzy soft strong BCC-ideals of X is also a Pythagorean
fuzzy soft strong BC'C-ideal.

Proof. Assume that (151, A;) and (?2, Ap) are two Pythagorean fuzzy soft strong
BCC-ideals of X. We denote (P, A;)U(Py, As) by (P, A) where A = A; U A,.

Next, let a € A.

Case 1: a € A; \ Ay. Then Pla] = Py[d] is a Pythagorean fuzzy strong
BCC-ideal of X.

Case 2: a € Ay \ A;. Then Pla] = Py[a] is a Pythagorean fuzzy strong
BCC-ideal of X.

Case 3: a € A; N Ay. By Theorem BAIH, we have Pla] = P1]a] V Ps|a] is

a Pythagorean fuzzy strong BCC-ideal of X.

Thus (ﬁ, A) is an a-Pythagorean fuzzy soft strong BCC-ideal of X for
all a € A. Hence, (f’, A) is a Pythagorean fuzzy soft strong BCC-ideal of X. [
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5.3 t-Level subsets of Pythagorean fuzzy soft sets

Theorem 5.3.1 (ﬁ,A) is a Pythagorean fuzzy soft BCC-subalgebra of X if and
only if U(,uf)[a],t) and L(Vlg[a},ﬂ are, if the sets are nonempty, BCC-subalgebras

for every a € At € [0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra of X, that is,
ﬁ[a] = (Upla)» Vf,[a}) is a Pythagorean fuzzy BCC-subalgebra of X for all a € A.
Let ¢ € [0,1] be such that U(up;,,t), L(vp,,t) # 0. By Theorem B4, we have

U(ulg[a], t) and L(ylg[a],t) are BCC-subalgebras of X for all a € A,t € [0, 1].

Conversely, assume for all a € A,t € [0,1], U(upy,, t) and L(vp,,t) are
BCC-subalgebras of X if the sets are nonempty. By Theorem BZ74, we have
ﬁ[a] = (u}:[a], VI;M) is a Pythagorean fuzzy BCC-subalgebra of X for all a € A.
Hence, (13, A) is a Pythagorean fuzzy soft BCC-subalgebra of X. [

Theorem 5.3.2 (ﬁ,A) 1s a Pythagorean fuzzy soft BCC-subalgebra of X if and
only if U*(uff,[a], t) and L_(Vﬁ[a], t) are, if the sets are nonempty, BCC-subalgebras

for every a € At € 0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra of X, that is,
ﬁ[a] = (uf,[a], I/ls[a}) is a Pythagorean fuzzy BCC-subalgebra of X for all a € A.
Let ¢ € [0, 1] be such that U™ (up(,),t), L™ (5, ) # 0. By Theorem B3, we have
U*(pﬁ[a], t) and L~ (vp,,t) are BCC-subalgebras of X for all a € A, € [0, 1].

Conversely, assume for all a € A,t € [0,1], U" (up,,t) and L™ (vp,, t)
are BCC-subalgebras of X if the sets are nonempty. By Theorem B3, we have
Pla] = () Vpla)) is @ Pythagorean fuzzy BCC-subalgebra of X for all a € A.
Hence, (ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra of X. O

Theorem 5.3.3 (ﬁ, A) is a Pythagorean fuzzy soft near BCC-filter of X if and

only if U(p@[a},t) and L(ulg[a],t) are, if the sets are nonempty, near BCC-filters
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for every a € At € [0,1].

Proof. Assume (f’, A) is a Pythagorean fuzzy soft near BCC-filter of X, that is,
Pla] = (M) Vpla) 18 @ Pythagorean fuzzy near BCC-filter of X for all a € A.
Let ¢ € [0,1] be such that U(up;,,t), L(vp,,t) # 0. By Theorem BZ4, we have
U(pppt) and L(vp,, t) are near BCCilters of X for all a € A,t € [0, 1].

Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
near BCC-filters of X if the sets are nonempty. By Theorem B4, we have
Pla] = () Vpla) 18 @ Pythagorean fuzzy near BCC-filter of X for all a € A.
Hence, (13, A) is a Pythagorean fuzzy soft near BCC-filter of X. [

Theorem 5.3.4 (ﬁ, A) is a Pythagorean fuzzy soft near BCC-filter of X if and
only if U™ (uls[a],t) and L*(Vﬁ[a}, t) are, if the sets are nonempty, near BCC-filters

for every a € At € [0, 1].

Proof. Assume (f’, A) is a Pythagorean fuzzy soft near BCC-filter of X, that is,
ﬁ[a] = (,ulg[a], VISM) is a Pythagorean fuzzy near BCC-filter of X for all a € A. Let
t € [0,1] be such that U™ (up(,,t), L™ (Vp,,t) # 0. By Theorem B, we have
U™ (kppy» t) and L~ (v, t) are near BCCHilters of X for all a € A,¢ € [0, 1].

Conversely, assume for all @ € At € |0, 1],U+(u§[a],t) and L’(l/g[a},t)
are near BCC-filters of X if the sets are nonempty. By Theorem B2, we have
Pla] = (M) Vpla) 18 & Pythagorean fuzzy near BCC-filter of X for all a € A.
Hence, (ﬁ, A) is a Pythagorean fuzzy soft near BCC-filter of X. O

Theorem 5.3.5 (f’,A) is a Pythagorean fuzzy soft BCC-filter of X if and only
if U(ulg[a],t) and L(Vﬁ[a},t) are, if the sets are nonempty, BCC-filters for every
ae Atel|0,1].

Proof. Assume (P, A) is a Pythagorean fuzzy soft BCC-filter of X, that is, Pa] =
(,uﬁ[a], l/lg[a]) is a Pythagorean fuzzy BCC-filter of X for alla € A. Let ¢t € [0, 1] be
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such that U(up,, t), L(vp,, t) # (. By Theorem BZ0, we have Ul t) and
L(vp,,t) are BCCHilters of X for all a € A,t € [0,1].

Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
BCC-filters of X if the sets are nonempty. By Theorem B2, we have ﬁ[a] =
(KB Vpla)) 18 @ Pythagorean fuzzy BCC-filter of X for all a € A. Hence, (P, A)
is a Pythagorean fuzzy soft BCC-filter of X. [

Theorem 5.3.6 (IS,A) is a Pythagorean fuzzy soft BCC-filter of X if and only
if U+<lul~>[a]7 t) and L*(I/I;[a], t) are, if the sets are nonempty, BCC-filters for every
aec Atel0,1].

Proof. Assume (f’, A) is a Pythagorean fuzzy soft BCC-filter of X, that is, ﬁ[a] =
(Nﬁ[ap I/f,[a]) is a Pythagorean fuzzy BCC-filter of X for all a € A. Let t € [0, 1]
be such that U (g1, t), L™ (Vg 1) # 0. By Theorem BT, we have U™ (pp,, t)
and L™ (vp,,t) are BCCilters of X for all a € A,¢ € [0,1].

Conversely, assume for all a € A,t € [0,1], U"(up,,t) and L™ (vp,,t)
are BCC-filters of X if the sets are nonempty. By Theorem B274, we have IB[a] =
() Vpla)) 18 @ Pythagorean fuzzy BCC-filter of X for all a € A. Hence, (P, A)
is a Pythagorean fuzzy soft BCC-filter of X. [

Theorem 5.3.7 (P, A) is a Pythagorean fuzzy soft implicative BCC-filter of X
if and only if U(Mﬁ[a}a t) and L(Vlg[a],t) are, if the sets are nonempty, implicative
BCC-filters for every a € A,t € [0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of X,
that is, Pla] = (M) Vpla)) 18 @ Pythagorean fuzzy implicative BCC-filter of X

for all a € A. Let ¢ € [0, 1] be such that U(up,,t), L(vp,, 1) # 0. By Theorem

al’
B2, we have U(upy,,t) and L(vp,,t) are implicative BCC-filters of X for all
a€ Atel0,1].



218

Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
implicative BCC-filters of X if the sets are nonempty. By Theorem BZR, we
have Pla] = (M) Vpla)) is & Pythagorean fuzzy implicative BCC-filter of X for
all a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of
X. [

Theorem 5.3.8 (13, A) is a Pythagorean fuzzy soft implicative BCC-filter of X if
and only if U*(uﬁ[a},t) and L’(Vﬁ[a},t) are, if the sets are nonempty, implicative

BCC-filters for every a € At € [0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of X,
that is, P[a] = (Hpa): Vpla)) Is @ Pythagorean fuzzy implicative BCC-filter of X for
all a € A. Let ¢ € [0,1] be such that U™ (up,,t), L™ (V5 ) # 0. By Theorem
B2, we have U™ (pp,),t) and L™ (vp,, t) are implicative BCC-filters of X for all
a€ Atel0,1].

Conversely, assume for all a € A,t € [0,1], U"(up,,t) and L™ (vp,, t)
are implicative BCC-filters of X if the sets are nonempty. By Theorem BZ9, we
have Pla] = (B VBla) 18 @ Pythagorean fuzzy implicative BCC-filter of X for
all a € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft implicative BCC-filter of
X. O

Theorem 5.3.9 (P, A) is a Pythagorean fuzzy soft comparative BCC-filter of X
if and only if U(pﬁ[a},t) and L(Vlg[a],t) are, if the sets are nonempty, comparative
BCC-filters for every a € A,t € [0,1].

Proof. Assume (13, A) is a Pythagorean fuzzy soft comparative BCC-filter of X,
that is, Pla] = (KB Vpla)) 1s & Pythagorean fuzzy comparative BCC-filter of X
for all a € A. Let ¢ € [0,1] be such that U(up,,t), L(vp,,t) # 0. By Theorem
B2 10, we have U(upy,, t) and L(vpy,, t) are comparative BCC-filters of X for all
a€ Atel|0,1].
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Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
comparative BCC-filters of X if the sets are nonempty. By Theorem BZT0, we
have Pla] = (o) VBla)) 18 @ Pythagorean fuzzy comparative BCC-ilter of X for
all @ € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter of
X. [

Theorem 5.3.10 (ﬁ,A) is a Pythagorean fuzzy soft comparative BCC-filter of
X if and only if U*(uf)[a],t) and L_(I/ﬁ[a},t) are, if the sets are nonempty, com-
parative BCC-filters for every a € A,t € [0, 1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter of X,
that is, Pla] = (HBa) VBla)) 18 @ Pythagorean fuzzy comparative BCC-filter of X
foralla € A. Let t € [0,1] be such that U™ (up(,,t), L™ (Vp(,, t) # 0. By Theorem
B2TH, we have U™ (ppp,, t) and L™ (vp,, t) are comparative BCC-filters of X for
alla € At €[0,1].

Conversely, assume for all @ € A,t € [0,1], U (upy,, t) and L™ (vp,,1)
are comparative BCC-filters of X if the sets are nonempty. By Theorem BZTT,
we have ﬁ[a] = (,ulg[a], Vﬁ[a]) is a Pythagorean fuzzy comparative BCC-filter of X
for all @ € A. Hence, (ﬁ, A) is a Pythagorean fuzzy soft comparative BCC-filter
of X. O

Theorem 5.3.11 (f’, A) is a Pythagorean fuzzy soft shift BCC-filter of X if and
only if U(,uf,[a],t) and L(Vﬁ[a],t) are, if the sets are nonempty, shift BCC-filters

for every a € At € [0,1].

Proof. Assume (f’, A) is a Pythagorean fuzzy soft shift BCC-filter of X, that is,
Pla] = (Hp(a) Vpla)) 18 @ Pythagorean fuzzy shift BCC-filter of X for all a € A.
Let ¢ € [0,1] be such that U(up;,,t), L(vp,,t) # 0. By Theorem BT, we have

U(pppt) and L(vp,, t) are shift BCC-filters of X for all a € A,t € [0, 1].
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Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
shift BCC-filters of X if the sets are nonempty. By Theorem BZ T2, we have
Pla] = (M) Vpla)) 18 @ Pythagorean fuzzy shift BCC-filter of X for all a € A.
Hence, (13, A) is a Pythagorean fuzzy soft shift BCC-filter of X. O

Theorem 5.3.12 (ﬁ, A) is a Pythagorean fuzzy soft shift BCC-filter of X if and
only if Ut (yp[a t) and L*(Vlg[a], t) are, if the sets are nonempty, shift BCC-filters

for every a € At € [0, 1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft shift BCC-filter of X, that is,
Pla] = () Vpla)) 18 @ Pythagorean fuzzy shift BCC-filter of X for all a € A. Let
t € [0,1] be such that U™ (kg t), L™ (v, t) # 0. By Theorem BAT3, we have
U™ (kppy- t) and L~ (v, t) are shift BCC-filters of X for all a € A,t € [0,1].

Conversely, assume for all a € A,t € [0,1], U" (up,),t) and L™ (vp,, 1)
are shift BCC-filters of X if the sets are nonempty. By Theorem BZ13, we have
Pla] = (M) Vpla) 18 @ Pythagorean fuzzy shift BCC-filter of X for all a € A.
Hence, (13, A) is a Pythagorean fuzzy soft shift BCC-filter of X. [

Theorem 5.3.13 (ﬁ,A) is a Pythagorean fuzzy soft BCC-ideal of X if and only
if U(Mﬁ[a}vt) and L(Vls[a],t) are, if the sets are nonempty, BCC-ideals for every
aecAtel0,1].

Proof. Assume (P, A) is a Pythagorean fuzzy soft BCC-ideal of X, that is, P[a] =
(Nﬁ[ap I/f,[a]) is a Pythagorean fuzzy BCC-ideal of X for all a € A. Let t € [0, 1]
be such that U(pp,, 1), L(vpy,:t) # 0. By Theorem BATA, we have U (g, t)
and L(vp,,t) are BCC-ideals of X for all a € A, ¢ € [0, 1].

Conversely, assume for all a € At € [0,1],U(up,t) and L(vp,,1t)

are BCC-ideals of X if the sets are nonempty. By Theorem BZT4, we have

Pla] = (1) Vp|e)) 18 @ Pythagorean fuzzy BCC-ideal of X for all a € A. Hence,
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(?, A) is a Pythagorean fuzzy soft BCC-ideal of X. O

Theorem 5.3.14 (ﬁ,A) is a Pythagorean fuzzy soft BCC-ideal of X if and only
if Ut (ulg[a], t) and L_(V'f,[a],t) are, if the sets are nonempty, BCC-ideals for every
a€ Atel01].

Proof. Assume (f’, A) is a Pythagorean fuzzy soft BCC-ideal of X, that is, ﬁ[a] =
(,uﬁ[a], Vﬁ[a]) is a Pythagorean fuzzy BCC-ideal of X for alla € A. Let ¢t € [0, 1] be

such that U*(uﬁ[a},t),[f(ylg[ t) # (. By Theorem BZ4TH, we have U*(pﬁ[a],t)

al’

and L™ (vp(,,t) are BCC-ideals of X for all a € A,¢ € [0, 1].

Conversely, assume for all a € A,t € [0,1], U"(up,,t) and L™ (vp,, t)
are BCC-ideals of X if the sets are nonempty. By Theorem BZTH, we have

Pla] = (151 Vp|y)) 18 @ Pythagorean fuzzy BCC-ideal of X for all a € A. Hence,
(157 A) is a Pythagorean fuzzy soft BCC-ideal of X. O

Theorem 5.3.15 (1~3, A) is a Pythagorean fuzzy soft strong BCC-ideal of X if and
only if U(ulg[a], t) and L(I/f)[a], t) are, if the sets are nonempty, strong BCC-ideals
for every a € At €[0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that is,
ﬁ[a] = (pf,[a], z/lg[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a € A.
Let ¢ € [0,1] be such that U(up;,,t), L(vp,,t) # 0. By Theorem BZTH, we have

U(ulg[a], t) and L(ylg[a],t) are strong BCC-ideals of X for all a € A,t € [0, 1].

Conversely, assume for all a € At € [0,1], U(upy,,t) and L(vp,,t) are
strong BCC-ideals of X if the sets are nonempty. By Theorem BZ14, we have

Pla] = (/Lﬁ[a}, Vﬁ[a]> is a Pythagorean fuzzy strong BCC-ideal of X for all a € A.
Hence, (ﬁ, A) is a Pythagorean fuzzy soft strong BCC-ideal of X. [

Theorem 5.3.16 (IS,A) 1s a Pythagorean fuzzy soft strong BCC-ideal of X if

and only if U+<M13[a]7 t) and L’(Uﬁ[a], t) are, if the sets are nonempty, strong BCC-
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ideals for every a € At € [0,1].

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that
is, ﬁ[a] = Wﬁw”ﬁw) is a Pythagorean fuzzy strong BCC-ideal of X for all
a € A. Let t € [0,1] be such that U"(up,,t), L™ (vp,,t) # 0. By Theorem
BAT1, we have U™ (up,.t) and L~ (vp,,t) are strong BCC-ideals of X for all
a€ Atel|0,1].

Conversely, assume for all a € A,t € [0,1], U"(up,,t) and L™ (vp,, t)
are strong BCC-ideals of X if the sets are nonempty. By Theorem BZ2T4, we have
ﬁ[a] = (/Lﬁ[a}, Vﬁ[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a € A.
Hence, (ﬁ, A) is a Pythagorean fuzzy soft strong BCC-ideal of X. [

Theorem 5.3.17 (ﬁ,A) is a Pythagorean fuzzy soft strong BCC-ideal of X if
and only if E(ppp, #5,(0)) and E(vp,), vp,(0)) are strong BCC-ideals of X.

Proof. Assume (ﬁ, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that is,
ﬁ[a] = (p@[a}, 1/15[&]) is a Pythagorean fuzzy strong BCC-ideal of X for all a € A.
By Theorem BATS, we have E(upy,, tpp,(0)) and E(vpy,, Vs, (0)) are strong

BCC-ideals of X.

Conversely, assume for all a € A, E(up(,), tp,(0)) and E(vp,, Vi, (0))
are strong BCC-ideals of X. By Theorem BZIR, we have Pla] = (o) VBla)) 18
a Pythagorean fuzzy strong BCC-ideal of X for all @ € A. Hence, (ﬁ,A) is a
Pythagorean fuzzy soft strong BCC-ideal of X. m



CHAPTER VI

CONCLUSIONS

The following results are all the main theorems of this dissertation.

1. Let F be a fuzzy set in X. Then the following statements hold:

(1) (fp,fz) is a Pythagorean fuzzy set in X and

(2) F is a fuzzy BCC-subalgebra (resp., fuzzy near BCC-filter, fuzzy BCC-
filter, fuzzy implicative BCC-filter, fuzzy comparative BCC-filter, fuzzy
shift BCC-filter, fuzzy BCC-ideal, and fuzzy strong BCC-ideal) of X
if and only if (fp,f;) is a Pythagorean fuzzy BCC-subalgebra (resp.,
Pythagorean fuzzy near BCC-filter, Pythagorean fuzzy BCC-filter,
Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy com-
parative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean
fuzzy BCC-ideal, and Pythagorean fuzzy strong BCC-ideal) of X.

2. Let p be an equivalence relation on a nonempty set X and P = (up,vp)
a Pythagorean fuzzy set in X. Then p*(P) and p~(P) are a Pythagorean

fuzzy set in X.

3. Let p be an congruence relation on a BCC-algebra X = (X,-,0) and P =

(up,vp) a Pythagorean fuzzy set in X. Then the following statements hold:

(1) if P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy
near BCC-filter) of X and p is complete, then p~(P) is a Pythagorean
fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter) of
X

Y

(2) if P is a Pythagorean fuzzy BCC-filter of X and (0), = {0}, then
p~(P) is a Pythagorean fuzzy BCC-filter of X,



224

(3) if P is a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean
fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, and
Pythagorean fuzzy BCC-ideal) of X, (0), = {0}, and p is complete,
then p~(P) is a Pythagorean fuzzy implicative BCC-filter (resp., Pytha-
gorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-
filter, and Pythagorean fuzzy BCC-ideal) of X, and

(4) if P is a Pythagorean fuzzy strong BCC-ideal of X, then p~(P) is a

Pythagorean fuzzy strong BCC-ideal of X.

4. Let p be an congruence relation on a BCC-algebra X = (X,-,0) and P =
(up,vp) a Pythagorean fuzzy set in X. If P is a Pythagorean fuzzy BCC-
subalgebra (resp., Pythagorean fuzzy near BCC-filter and Pythagorean
fuzzy strong BCC-ideal) of X, then p™(P) is a Pythagorean fuzzy BCC-
subalgebra (resp., Pythagorean fuzzy near BCC-filter and Pythagorean
fuzzy strong BCC-ideal) of X.

5. P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near
BCC-filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative
BCC-filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy
shift BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy
strong BCC-ideal) of X if and only if U(up, t) and L(vp,t) are, if the sets are
nonempty, BCC-subalgebras (resp., near BCC-filters, BCC-filters, implica-
tive BCC-filters, comparative BCC-filters, shift BCC-filters, BCC-ideals,
and strong BCC-ideals) of X for every ¢ € [0, 1].

6. P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near
BCC-filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative
BCC-filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy
shift BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy
strong BCC-ideal) of X if and only if U™ (up,t) and L™ (vp,t) are, if the
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sets are nonempty, BCC-subalgebras (resp., near BCC-filters, BCC-filters,
implicative BCC-filters, comparative BCC-filters, shift BCC-filters, BCC-
ideals, and strong BCC-ideals) of X for every ¢ € [0, 1].

P is a Pythagorean fuzzy strong BCC-ideal of X if and only if F(up, up(0))
and E(vp,vp(0)) are strong BCC-ideals of X.

The intersection of any nonempty family of Pythagorean fuzzy BCC-subal-
gebras (resp., Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy BCC-
filters, Pythagorean fuzzy implicative BCC-filters, Pythagorean fuzzy com-
parative BCC-filters, Pythagorean fuzzy shift BCC-filters, Pythagorean
fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-ideals) of X is also a
Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-
filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-
filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift
BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy strong
BCC-ideal).

The union of any nonempty family of Pythagorean fuzzy near BCC-filters
(resp., Pythagorean fuzzy strong BCC-ideals) of X is also a Pythagorean

fuzzy near BCC-filter (resp., Pythagorean fuzzy strong BCC-ideal).

Let p be an equivalence relation (congruence relation) on X and P =
(up,vp) a Pythagorean fuzzy sets in X. If P is a Pythagorean fuzzy strong
BCC-ideal of X, then P is a rough Pythagorean fuzzy strong BCC-ideal of
X.

Let p be a congruence relation on X. Then P is a rough Pythagorean
fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter,
rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implica-

tive BCC-filter, rough Pythagorean fuzzy comparative BCC-filter, rough
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Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,
and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if U(up, t)
and L(vp,t) are, if the sets are nonempty, rough BCC-subalgebras (resp.,
rough near BCC-filters, rough BCC-filters, rough implicative BCC-filters,
rough comparative BCC-filters, rough shift BCC-filters, rough BCC-ideals,
and rough strong BCC-ideals) of X for every ¢ € [0, 1].

Let p be a congruence relation on X. Then P is a rough Pythagorean fuzzy
BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough
Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-
filter, rough Pythagorean fuzzy comparative BCC-filter, rough Pythagorean
fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal, and rough
Pythagorean fuzzy strong BCC-ideal) of X if and only if U™ (up,t) and
L~ (vp,t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough
near BCC-filters, rough BCC-filters, rough implicative BCC-filters, rough
comparative BCC-filters, rough shift BCC-filters, rough BCC-ideals, and
rough strong BCC-ideals) of X for every t € [0, 1].

The extended intersection of two Pythagorean fuzzy soft BCC-subalgebras
(resp., Pythagorean fuzzy soft near BCC-filters, Pythagorean fuzzy soft
BCC-filters, Pythagorean fuzzy soft implicative BCC-filters, Pythagorean
fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft shift BCC-
filters, Pythagorean fuzzy soft BCC-ideals, and Pythagorean fuzzy soft
strong BCC-ideals) of X is also a Pythagorean fuzzy soft BCC-subalgebra
(resp., Pythagorean fuzzy soft near BCC-filter, Pythagorean fuzzy soft
BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean
fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,
Pythagorean fuzzy soft BCC-ideal, and Pythagorean fuzzy soft strong BCC-

ideal). Moreover, the intersection of two Pythagorean fuzzy soft BCC-
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subalgebras (resp., Pythagorean fuzzy soft near BCC-filters, Pythagorean
fuzzy soft BCC-filters, Pythagorean fuzzy soft implicative BCC-filters, Py-
thagorean fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft shift
BCC-filters, Pythagorean fuzzy soft BCC-ideals, and Pythagorean fuzzy
soft strong BCC-ideals) of X is also a Pythagorean fuzzy soft BCC-subalge-
bra (resp., Pythagorean fuzzy soft near BCC-filter, Pythagorean fuzzy soft
BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean
fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,
Pythagorean fuzzy soft BCC-ideal, and Pythagorean fuzzy soft strong BCC-
ideal).

The union of two Pythagorean fuzzy soft BCC-subalgebras (resp., Pythago-
rean fuzzy soft BCC-filters, Pythagorean fuzzy soft implicative BCC-filters,
Pythagorean fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft
shift BCC-filters, and Pythagorean fuzzy soft BCC-ideals) of X is also
a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean fuzzy soft
BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean
fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,
and Pythagorean fuzzy soft BCC-ideal) if sets of statistics of two Pythago-
rean fuzzy soft BCC-subalgebras (resp., Pythagorean fuzzy soft BCC-filters,
Pythagorean fuzzy soft implicative BCC-filters, Pythagorean fuzzy soft
comparative BCC-filters, Pythagorean fuzzy soft shift BCC-filters, and Py-

thagorean fuzzy soft BCC-ideals) are disjoint.

The union of two Pythagorean fuzzy soft near BCC-filters (resp., Pythago-
rean fuzzy soft strong BCC-ideals) of X is also a Pythagorean fuzzy soft near
BCC-filter (resp., Pythagorean fuzzy soft strong BCC-ideal). Moreover,
the restricted union of two Pythagorean fuzzy soft near BCC-filters (resp.,

Pythagorean fuzzy soft strong BCC-ideals) of X is also a Pythagorean fuzzy
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soft near BCC-filter (resp., Pythagorean fuzzy soft strong BCC-ideal).

(ﬁ,A) is a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean
fuzzy soft near BCC-filter, Pythagorean fuzzy soft BCC-filter, Pythagorean
fuzzy soft implicative BCC-filter, Pythagorean fuzzy soft comparative BCC-
filter, Pythagorean fuzzy soft shift BCC-filter, Pythagorean fuzzy soft BCC-
ideal, and Pythagorean fuzzy soft strong BCC-ideal) of X if and only if
U (ulg[a],t) and L(Vﬁ[a},t) are, if the sets are nonempty, BCC-subalgebras
(resp., near BCC-filters, BCC-filters, implicative BCC-filters, comparative
BCC-filters, shift BCC-filters, BCC-ideals, and strong BCC-ideals) for every
a€ A tel|0,1].

(ﬁ, A) is a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean
fuzzy soft near BCC-filter, Pythagorean fuzzy soft BCC-filter, Pythagorean
fuzzy soft implicative BCC-filter, Pythagorean fuzzy soft comparative BCC-
filter, Pythagorean fuzzy soft shift BCC-filter, Pythagorean fuzzy soft BCC-
ideal, and Pythagorean fuzzy soft strong BCC-ideal) of X if and only if
U +(u13[a}, t) and L~ (z/f)[a], t) are, if the sets are nonempty, BCC-subalgebras
(resp., near BCC-filters, BCC-filters, implicative BCC-filters, comparative
BCC-filters, shift BCC-filters, BCC-ideals, and strong BCC-ideals) for every
a€ Ate|0,1].

(ﬁ,A) is a Pythagorean fuzzy soft strong BCC-ideal of X if and only if
E(ppi,), 154 (0)) and E(vp,), Vg, (0)) are strong BCC-ideals of X.
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