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ABSTRACT 

 Initially, we apply the concept of Pythagorean fuzzy sets to UP (BCC)-algebras, and introduce 

eight types of Pythagorean fuzzy sets in UP (BCC)-algebras, namely, Pythagorean fuzzy UP (BCC)-

subalgebras, Pythagorean fuzzy near UP (BCC)-filters, Pythagorean fuzzy UP (BCC)-filters, Pythagorean 

fuzzy implicative UP (BCC)-filters, Pythagorean fuzzy comparative UP (BCC)-filters, Pythagorean fuzzy 

shift UP (BCC)-filters, Pythagorean fuzzy UP (BCC)-ideals, and Pythagorean fuzzy strong UP (BCC)-ideals. 

We discuss the relationship between some assertions of Pythagorean fuzzy sets and eight types of 

Pythagorean fuzzy sets in UP (BCC)-algebras for study the generalizations of eight Pythagorean fuzzy 

sets in UP (BCC)-algebras by finding sufficient conditions and study upper and lower approximations of 

Pythagorean fuzzy sets. Next, we apply the concept of rough sets to Pythagorean fuzzy sets in UP (BCC)-

algebras, and introduce twenty-four types of rough Pythagorean fuzzy sets in UP (BCC)-algebras, namely, 

(upper, lower) rough Pythagorean fuzzy UP (BCC)-subalgebras, (upper, lower) rough  Pythagorean fuzzy 

near UP (BCC)-filters, (upper, lower) rough Pythagorean fuzzy UP (BCC)-filters, (upper, lower) rough 

Pythagorean fuzzy implicative UP (BCC)-filters, (upper, lower) rough Pythagorean fuzzy comparative UP 

(BCC)-filters, (upper, lower) rough Pythagorean fuzzy shift UP (BCC)-filters, (upper, lower) rough 

Pythagorean fuzzy UP (BCC)-ideals, and (upper, lower) rough Pythagorean fuzzy strong UP (BCC)-ideals. 

We discuss t-level subsets of rough Pythagorean fuzzy sets in UP (BCC)-algebras. Finally, we apply the 

concept of Pythagorean fuzzy soft sets to UP (BCC)-algebras, and introduce eight types of Pythagorean 

fuzzy soft sets in UP (BCC)-algebras, namely, Pythagorean fuzzy soft UP (BCC)-subalgebras, Pythagorean 

fuzzy soft near UP (BCC)-filters, Pythagorean fuzzy soft UP (BCC)-filters, Pythagorean fuzzy soft 

implicative UP (BCC)-filters, Pythagorean fuzzy soft comparative UP (BCC)-filters, Pythagorean fuzzy soft 

shift UP (BCC)-filters, Pythagorean fuzzy soft UP (BCC)-ideals, and Pythagorean fuzzy soft strong UP 

(BCC)-ideals. In addition, we study the results of four operations of two Pythagorean fuzzy soft sets over 

UP (BCC)-algebras, namely, the union, the restricted union, the intersection, and the extended intersection 

and discuss t-level subsets of Pythagorean fuzzy soft sets over UP (BCC)-algebras. 
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CHAPTER I

INTRODUCTION

Among many algebraic structures, algebras of logic form an important

class of algebras. Examples of these are BCK-algebras [17], BCI-algebras [18], B-

algebras [32], BE-algebras [25], UP-algebras [12], fully UP-semigroups [13], topo-

logical UP-algebras [41], UP-hyperalgebras [15], extension of KU/UP-algebras

[37] and others. They are strongly connected with logic. For example, BCI-

algebras introduced by Iséki [18] in 1966 have connections with BCI-logic being

the BCI-system in combinatory logic which has application in the language of

functional programming. BCK and BCI-algebras are two classes of logical alge-

bras. They were introduced by Imai and Iséki [17, 18] in 1966 and have been

extensively investigated by many researchers. In 2022, Jun et al. [21] have shown

that the concept of UP-algebras (see [12]) and the concept of BCC-algebras (see

[27]) are the same concept. Therefore, in this dissertation and future research,

our research team will use the name BCC instead of UP in honour of Komori,

who first defined it in 1984.

The concept of fuzzy sets was first considered by Zadeh [53] in 1965.

Zadeh’s and others’ fuzzy set concepts have found numerous applications in math-

ematics and other fields. Following the introduction of the concept of fuzzy sets,

various researchers were interviewed about generalizations of the concept of fuzzy

sets, including: Atanassov [5] defined a new concept called an intuitionistic fuzzy

set which is a generalization of a fuzzy set, Torra and Narukawa [49, 48] intro-

duced the notion of hesitant fuzzy sets. Yager [51] introduced a new class of

non-standard fuzzy subsets called a Pythagorean fuzzy set and the related idea

of Pythagorean membership grades, and Satirad and Iampan [38] introduced sev-

eral types of subsets and of fuzzy sets of fully BCC-semigroups, and investigated
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the algebraic properties of fuzzy sets under the operations of intersection and

union.

The concept of rough sets was first considered by Pawlak [33] in 1982.

After the introduction of the concept of rough sets, several authors have applied

the concept of rough sets to the generalizations of the concept of fuzzy sets in

many algebraic structures such as: in 2002, Jun [20] and Dudek et al. [9] applied

rough set theory to BCK-algebras and BCI-algebras. In 2008, Chen and Wang

[6] combined rough sets and fuzzy subalgebras (fuzzy ideals) fruitfully by defining

rough fuzzy subalgebras (rough fuzzy ideals) of BCI-algebras. In 2016, Moradiana

et al. [30] presented a definition of the lower and upper approximation of subsets

of BCK-algebras concerning a fuzzy ideal. In the same year, Ahn and Kim [1]

introduced the concept of rough fuzzy filters in BE-algebras. In 2018, Ahn and Ko

[2] introduced the concept of rough ideals and rough fuzzy ideals in BCK/BCI-

algebras, In 2019-2020, Ansari et al. [4] and Klinseesook et al. [26] applied rough

set theory to BCC-algebras. In 2019, Hussain et al. [11] introduced the concept

of rough Pythagorean fuzzy ideals in semigroups.

The concept of Pythagorean fuzzy sets was applied to semigroups, ternary

semigroups, and many logical algebras. Then, this idea is extended to the lower

and upper approximations of Pythagorean fuzzy left (resp., right) ideals, bi-ideals,

interior ideals, (1, 2)-ideals in semigroups and some important properties related

to these concepts are given. Jansi and Mohana [19] introduced the concepts of

bipolar Pythagorean fuzzy A-ideals of BCI-algebras and investigated their proper-

ties. Also, relationships between bipolar Pythagorean fuzzy subalgebras, bipolar

Pythagorean fuzzy ideals, and bipolar Pythagorean fuzzy A-ideals are analyzed.

In 2020, Chinram and Panityakul [7] introduced rough Pythagorean fuzzy ideals

in ternary semigroups and gave some remarkable properties. This idea is extended

to the lower and upper approximations of Pythagorean fuzzy ideals.
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In 1999, to solve complicated problems in economics, engineering, and

the environment, we cannot successfully use classical methods because of various

uncertainties typical for those problems. Uncertainties cannot be handled using

traditional mathematical tools but may be dealt with using a wide range of ex-

isting theories such as the probability theory, the theory of (intuitionistic) fuzzy

sets, the theory of vague sets, the theory of interval mathematics, and the theory

of rough sets. However, all of these theories have their own difficulties which are

pointed out in [29]. In 2001, Maji et al. [28] introduced the concept of fuzzy soft

sets as a generalization of the standard soft sets, and presented an application of

fuzzy soft sets in a decision-making problem. In 2013, Rehman et al. [36] studied

properties of fuzzy soft sets and their interrelation with respect to different op-

erations such as union, intersection, restricted union and extended intersection.

Then, they illustrate properties of AND and OR operations by giving counter-

examples. In 2015, Peng et al. [34] introduced the concept of Pythagorean fuzzy

soft sets and defined the operations such as complement, union, intersection,

and, or, addition, multiplication, necessity, and possibility. In 2017, Satirad et

al. [44] discussed the relationships among (prime, weakly prime) hesitant fuzzy

BCC-subalgebras (resp., hesitant fuzzy BCC-filters, hesitant fuzzy BCC-ideals

and hesitant fuzzy strong BCC-ideals) and some level subsets of a hesitant fuzzy

set on BCC-algebras. In 2018, Satirad et al. [38] introduced eight types of subsets

and fuzzy sets of fully BCC-semigroups, and investigated the algebraic properties

of fuzzy sets under the operations of intersection and union. In 2019, Satirad and

Iampan [39, 40] introduced ten types of fuzzy soft sets over fully BCC-semigroups,

and investigated the algebraic properties of fuzzy soft sets under the operations of

(extended) intersection and (restricted) union. In 2020, Touqeer [50] introduced

the notion of intuitionistic fuzzy soft α-ideals in BCI-algebras, described connec-

tions between various types of intuitionistic fuzzy soft α-ideals and intuitionistic

fuzzy soft ideals and characterised using the idea of soft (δ, η)-level set.



 

 

 

CHAPTER II

PRELIMINARIES

Before we begin our study, let’s review the definition of BCC-algebras.

Definition 2.0.1 [12] An algebra X = (X, ·, 0) of type (2, 0) is called a BCC-

algebra, where X is a nonempty set, · is a binary operation on X, and 0 is a fixed

element of X (i.e., a nullary operation) if it satisfies the following axioms:

(BCC-1) (∀x, y, z ∈ X)((y · z) · ((x · y) · (x · z)) = 0),

(BCC-2) (∀x ∈ X)(0 · x = x),

(BCC-3) (∀x ∈ X)(x · 0 = 0), and

(BCC-4) (∀x, y ∈ X)(x · y = 0, y · x = 0 ⇒ x = y),

and is called a KU-algebra if it satisfies the following axioms: (BCC-2), (BCC-3),

(BCC-4), and

(KU) (∀x, y, z ∈ X)((x · y) · ((y · z) · (x · z)) = 0).

From [12], we know that the concept of BCC-algebras is a generalization

of KU-algebras (see [35]).

Example 2.0.2 [43] Let X be a universal set and let Ω ∈ P(X) where P(X)

means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary

operation · on PΩ(X) by putting A ·B = B∩(AC∪Ω) for all A,B ∈ PΩ(X) where

AC means the complement of a subset A. Then (PΩ(X), ·,Ω) is a BCC-algebra

and we shall call it the generalized power BCC-algebra of type 1 with respect to

Ω. Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X)

by putting A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is
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a BCC-algebra and we shall call it the generalized power BCC-algebra of type 2

with respect to Ω. In particular, (P(X), ·, ∅) is a BCC-algebra and we shall call

it the power BCC-algebra of type 1, and (P(X), ∗, X) is a BCC-algebra and we

shall call it the power BCC-algebra of type 2.

Example 2.0.3 [8] Let N0 be the set of all natural numbers with zero. Define

two binary operations ∗ and • on N0 by

(∀x, y ∈ N0)

x ∗ y =

 y if x < y,

0 otherwise


and

(∀x, y ∈ N0)

x • y =

 y if x > y or x = 0,

0 otherwise

 .

Then (N0, ∗, 0) and (N0, •, 0) are BCC-algebras.

For more examples of BCC-algebras, see [3, 4, 13, 16, 42, 43, 45, 46].

In a BCC-algebra X = (X, ·, 0), the following assertions are valid (see

[12, 13]).

(∀x ∈ X)(x · x = 0), (2.0.1)

(∀x, y, z ∈ X)(x · y = 0, y · z = 0 ⇒ x · z = 0), (2.0.2)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (z · x) · (z · y) = 0), (2.0.3)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (y · z) · (x · z) = 0), (2.0.4)

(∀x, y ∈ X)(x · (y · x) = 0), (2.0.5)

(∀x, y ∈ X)((y · x) · x = 0 ⇔ x = y · x), (2.0.6)

(∀x, y ∈ X)(x · (y · y) = 0), (2.0.7)
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(∀a, x, y, z ∈ X)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (2.0.8)

(∀a, x, y, z ∈ X)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (2.0.9)

(∀x, y, z ∈ X)(((x · y) · z) · (y · z) = 0), (2.0.10)

(∀x, y, z ∈ X)(x · y = 0 ⇒ x · (z · y) = 0), (2.0.11)

(∀x, y, z ∈ X)(((x · y) · z) · (x · (y · z)) = 0), and (2.0.12)

(∀a, x, y, z ∈ X)(((x · y) · z) · (y · (a · z)) = 0). (2.0.13)

From [12], the binary relation ≤ on a BCC-algebra X = (X, ·, 0) defined

as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 0).

In a KU-algebra X = (X, ·, 0), the following assertions are valid (see

[31]).

(∀x, y, z ∈ X)(x · (y · z) = y · (x · z)), and (2.0.14)

(∀x, y ∈ X)(y · ((y · x) · x) = 0). (2.0.15)

Theorem 2.0.4 [12] In a BCC-algebra X = (X, ·, 0), the following statements

are equivalent:

(1) X is a KU-algebra,

(2) (∀x, y, z ∈ X)(x · (y · z) = y · (x · z)), and

(3) (∀x, y, z ∈ X)(x · (y · z) = 0 ⇒ y · (x · z) = 0).

For a nonempty subset S of a BCC-algebra X = (X, ·, 0) which satisfies

the following condition:

(∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S). (2.0.16)
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Then the constant 0 of X is in S. Indeed, let x ∈ S. By (2.0.1) and (2.0.16), we

have 0 = x · x ∈ S.

Definition 2.0.5 A nonempty subset S of a BCC-algebra X = (X, ·, 0) is called

(1) a BCC-subalgebra [12] of X if it satisfies the following condition:

(∀x, y ∈ S)(x · y ∈ S), (2.0.17)

(2) a near BCC-filter [14] of X if it satisfies the condition (2.0.16),

(3) a BCC-filter [47] of X if it satisfies the following conditions:

the constant 0 of X is in S, (2.0.18)

(∀x, y ∈ X)(x · y ∈ S, x ∈ S ⇒ y ∈ S), (2.0.19)

(4) an implicative BCC-filter [23] of X if it satisfies the condition (2.0.18) and

the following condition:

(∀x, y, z ∈ X)(x · (y · z) ∈ S, x · y ∈ S ⇒ x · z ∈ S), (2.0.20)

(5) a comparative BCC-filter [22] of X if it satisfies the condition (2.0.18) and

the following condition:

(∀x, y, z ∈ X)(x · ((y · z) · y) ∈ S, x ∈ S ⇒ y ∈ S), (2.0.21)

(6) a shift BCC-filter [24] of X if it satisfies the condition (2.0.18) and the

following condition:

(∀x, y, z ∈ X)(x · (y · z) ∈ S, x ∈ S ⇒ ((z · y) · y) · z ∈ S), (2.0.22)
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(7) a BCC-ideal [12] of X if it satisfies the condition (2.0.18) and the following

condition:

(∀x, y, z ∈ X)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S), (2.0.23)

(8) a strong BCC-ideal [10] of X if it satisfies the condition (2.0.18) and the

following condition:

(∀x, y, z ∈ X)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S). (2.0.24)

We have that the concept of BCC-subalgebras is a generalization of near

BCC-filters, near BCC-filters is a generalization of BCC-filters, BCC-filters is

a generalization of BCC-ideals, BCC-filters is a generalization of comparative

BCC-filters, BCC-filters is a generalization of shift BCC-filters, BCC-ideals is a

generalization of implicative BCC-filters, implicative BCC-filters is a generaliza-

tion of strong BCC-ideals, comparative BCC-filters is a generalization of strong

BCC-ideals, and shift BCC-filters is a generalization of strong BCC-ideals. Fur-

thermore, they proved that the only strong BCC-ideal of a BCC-algebra X is

X.

Definition 2.0.6 [53] A fuzzy set F in a nonempty set X (or a fuzzy subset of X)

is described by its membership function fF. To every point x ∈ X, this function

associates a real number fF(x) in the closed interval [0, 1]. The real number fF(x)

is interpreted for the point as a degree of membership of an object x ∈ X to the

fuzzy set F, that is, F := {(x, fF(x)) | x ∈ X}. We say that a fuzzy set F in X is

constant if its membership function fF is constant.

Definition 2.0.7 [53] Let F be a fuzzy set in a nonempty set X. The complement

of F, denoted by F̃, is described by its membership function fF̃ which defined as
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follows:

(∀x ∈ X)(fF̃(x) = 1− fF(x)). (2.0.25)

Definition 2.0.8 [53] Let F1 and F2 be fuzzy sets in a nonempty set X. The

relations ⊆ and =, and the operations ∪ and ∩ are defined as follows:

(1) F1 ⊆ F2 ⇔ (∀x ∈ X)(fF1(x) ≤ fF2(x)),

(2) F1 = F2 ⇔ F1 ⊆ F2,F1 ⊇ F2,

(3) (∀x ∈ X)((fF1 ∪ fF2)(x) = max{fF1(x), fF2(x)}), and

(4) (∀x ∈ X)((fF1 ∩ fF2)(x) = min{fF1(x), fF2(x)}).

The following two propositions are easy to verify.

Proposition 2.0.9 Let F be a fuzzy set in a nonempty set X. Then following

assertions are valid:

(1) (∀x, y ∈ X)(fF(x) ≤ fF(y) ⇔ fF̃(x) ≥ fF̃(y)),

(2) (∀x, y ∈ X)(fF(x) = fF(y) ⇔ fF̃(x) = fF̃(y)),

(3)
˜̃
F = F, and

(4) (∀x, y ∈ X)(1−min{fF(x), fF(y)} = max{fF̃(x), fF̃(y)} = max{1− fF(x), 1−

fF(y)}).

Proposition 2.0.10 Let {Fi}i∈I be a nonempty family of fuzzy sets in a nonempty

set X where I is an arbitrary index set. Then following assertions are valid:

(1) (∀x, y ∈ X)(inf
i∈I

{min{fFi(x), fFi(y)}} = min{inf
i∈I

{fFi(x)}, inf
i∈I

{fFi(y)}}),

(2) (∀x, y ∈ X)(sup
i∈I

{max{fFi(x), fFi(y)}} = max{sup
i∈I

{fFi(x)}, sup
i∈I

{fFi(y)}}),
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(3) (∀x, y ∈ X)(inf
i∈I

{max{fFi(x), fFi(y)}} ≥ max{inf
i∈I

{fFi(x)}, inf
i∈I

{fFi(y)}}),

(4) (∀x, y ∈ X)(sup
i∈I

{min{fFi(x), fFi(y)}} ≤ min{sup
i∈I

{fFi(x)}, sup
i∈I

{fFi(y)}}),

(5) (∀x ∈ X)(sup
i∈I

{fFi
(x)}2) = sup

i∈I
{fFi

(x)2}),

(6) (∀x ∈ X)(inf
i∈I

{fFi
(x)}2) = inf

i∈I
{fFi

(x)2}),

(7) (∀x ∈ X)(1− sup
i∈I

{fFi
(x)} = inf

i∈I
{1− fFi

(x)}), and

(8) (∀x ∈ X)(1− inf
i∈I

{fFi
(x)} = sup

i∈I
{1− fFi

(x)}).

For a fuzzy set F in a BCC-algebra X = (X, ·, 0) which satisfies the

following condition:

(∀x, y ∈ X)(fF(x · y) ≥ fF(y)). (2.0.26)

Then

(∀x ∈ X)(fF(0) ≥ fF(x)).

Indeed, let x ∈ X. By (2.0.1) and (2.0.26), we have fF(0) = fF(x · x) ≥ fF(x).

Definition 2.0.11 A fuzzy set F in a BCC-algebra X = (X, ·, 0) is called

(1) a fuzzy BCC-subalgebra [47] of X if it satisfies the following condition:

(∀x, y ∈ X)(fF(x · y) ≥ min{fF(x), fF(y)}), (2.0.27)

(2) a fuzzy near BCC-filter [39] of X if it satisfies the condition (2.0.26),

(3) a fuzzy BCC-filter [47] of X if it satisfies the following conditions:

(∀x ∈ X)(fF(0) ≥ fF(x)), (2.0.28)

(∀x, y ∈ X)(fF(y) ≥ min{fF(x · y), fF(x)}), (2.0.29)
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(4) a fuzzy implicative BCC-filter of X if it satisfies the condition (2.0.28) and

the following condition:

(∀x, y, z ∈ X)(fF(x · z) ≥ min{fF(x · (y · z)), fF(x · y)}), (2.0.30)

(5) a fuzzy comparative BCC-filter of X if it satisfies the condition (2.0.28) and

the following condition:

(∀x, y, z ∈ X)(fF(y) ≥ min{fF(x · ((y · z) · y)), fF(x)}), (2.0.31)

(6) a fuzzy shift BCC-filter of X if it satisfies the condition (2.0.28) and the

following condition:

(∀x, y, z ∈ X)(fF(((z · y) · y) · z) ≥ min{fF(x · (y · z)), fF(x)}), (2.0.32)

(7) a fuzzy BCC-ideal [47] of X if it satisfies the condition (2.0.28) and the

following condition:

(∀x, y, z ∈ X)(fF(x · z) ≥ min{fF(x · (y · z)), fF(y)}), (2.0.33)

(8) a fuzzy strong BCC-ideal [10] of X if it satisfies the condition (2.0.28) and

the following condition:

(∀x, y, z ∈ X)(fF(x) ≥ min{fF((z · y) · (z · x)), fF(y)}). (2.0.34)

We have that the concept of fuzzy BCC-subalgebras is a generalization of

fuzzy near BCC-filters, fuzzy near BCC-filters is a generalization of fuzzy BCC-

filters, fuzzy BCC-filters is a generalization of fuzzy BCC-ideals, and fuzzy BCC-

ideals is a generalization of fuzzy strong BCC-ideals. Furthermore, they proved
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that fuzzy strong BCC-ideals and constant fuzzy sets coincide in a BCC-algebras

X.

Let ρ be an equivalence relation on a BCC-algebra X = (X, ·, 0). If

x ∈ X, then the ρ-class of x is the set (x)ρ defined as follows:

(x)ρ = {y ∈ X | (x, y) ∈ ρ}.

An equivalence relation ρ on a BCC-algebra X = (X, ·, 0) is called a congruence

relation if

(∀x, y, z ∈ X)((x, y) ∈ ρ ⇒ (x · z, y · z) ∈ ρ and (z · x, z · y) ∈ ρ).

Definition 2.0.12 For nonempty subsets A and B of a BCC-algebra X =

(X, ·, 0), we denote

AB = A ·B = {a · b | a ∈ A and b ∈ B}.

If ρ is a congruence on a BCC-algebra X = (X, ·, 0), then

(∀x, y ∈ X)((x)ρ(y)ρ ⊆ (x · y)ρ). (see [26])

A congruence relation ρ on a BCC-algebra X = (X, ·, 0) is said to be complete if

(∀x, y ∈ X)((x)ρ(y)ρ = (x · y)ρ).

Example 2.0.13 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 1

3 0 0 0 0

Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (2, 3), (3, 2)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (1)ρ = {0, 1}, (2)ρ = (3)ρ = {2, 3}.

We consider

(0 · 0)ρ = (0)ρ = {0, 1} = {0, 1} = {0, 1}{0, 1} = (0)ρ(0)ρ,

(0 · 1)ρ = (1)ρ = {0, 1} = {0, 1} = {0, 1}{0, 1} = (0)ρ(1)ρ,

(0 · 2)ρ = (2)ρ = {2, 3} = {2, 3} = {0, 1}{2, 3} = (0)ρ(2)ρ,

(0 · 3)ρ = (3)ρ = {2, 3} = {2, 3} = {0, 1}{2, 3} = (0)ρ(3)ρ,

(1 · 0)ρ = (0)ρ = {0, 1} = {0, 1} = {0, 1}{0, 1} = (1)ρ(0)ρ,

(1 · 1)ρ = (0)ρ = {0, 1} = {0, 1} = {0, 1}{0, 1} = (1)ρ(1)ρ,

(1 · 2)ρ = (2)ρ = {2, 3} = {2, 3} = {0, 1}{2, 3} = (1)ρ(2)ρ,

(1 · 3)ρ = (3)ρ = {2, 3} = {2, 3} = {0, 1}{2, 3} = (1)ρ(3)ρ,

(2 · 0)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{0, 1} = (2)ρ(0)ρ,
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(2 · 1)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{0, 1} = (2)ρ(1)ρ,

(2 · 2)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{2, 3} = (2)ρ(2)ρ,

(2 · 3)ρ = (1)ρ = {0, 1} = {0, 1} = {2, 3}{2, 3} = (2)ρ(3)ρ,

(3 · 0)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{0, 1} = (3)ρ(0)ρ,

(3 · 1)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{0, 1} = (3)ρ(1)ρ,

(3 · 2)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{2, 3} = (3)ρ(2)ρ,

(3 · 3)ρ = (0)ρ = {0, 1} = {0, 1} = {2, 3}{2, 3} = (3)ρ(3)ρ.

Hence, ρ is a complete congruence relation on X.

Definition 2.0.14 Let ρ be an equivalence relation on a nonempty set X and

S ∈ P(X). The upper approximation of S is defined by

ρ+(S) = {x ∈ X | (x)ρ ⊆ S},

the lower approximation of S is defined by

ρ−(S) = {x ∈ X | (x)ρ ∩ S ̸= ∅}.

We know that ρ+(S) and ρ−(S) are subset of X. Then we call S that a

rough set of X.

Definition 2.0.15 [26] Let ρ be an equivalence relation on a BCC-algebra X =

(X, ·, 0). Then a nonempty subset S of X is called

(1) an upper rough BCC-subalgebra of X if ρ+(S) is a BCC-subalgebra of X,

(2) an upper rough near BCC-filter of X if ρ+(S) is a near BCC-filter of X,
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(3) an upper rough BCC-filter of X if ρ+(P) is a BCC-filter of X,

(4) an upper rough BCC-ideal of X if ρ+(S) is a BCC-ideal of X,

(5) an upper rough strong BCC-ideal of X if ρ+(S) is a strong BCC-ideal of X,

(6) a lower rough BCC-subalgebra of X if ∅ ̸= ρ−(S) is a BCC-subalgebra of

X,

(7) a lower rough near BCC-filter of X if ∅ ≠ ρ−(S) is a near BCC-filter of X,

(8) a lower rough BCC-filter of X if ∅ ≠ ρ−(S) is a BCC-filter of X,

(9) a lower rough BCC-ideal of X if ∅ ̸= ρ−(S) is a BCC-ideal of X,

(10) a lower rough strong BCC-ideal of X if ∅ ≠ ρ−(S) is a strong BCC-ideal of

X,

(11) a rough BCC-subalgebra of X if it is both an upper rough BCC-subalgebra

and a lower rough BCC-subalgebra of X,

(12) a rough near BCC-filter of X if it is both an upper rough near BCC-filter

and a lower rough near BCC-filter of X,

(13) a rough BCC-filter of X if it is both an upper rough BCC-filter and a lower

rough BCC-filter of X,

(14) a rough BCC-ideal of X if it is both an upper rough BCC-ideal and a lower

rough BCC-ideal of X, and

(15) a rough strong BCC-ideal ofX if it is both an upper rough strong BCC-ideal

and a lower rough strong BCC-ideal of X.

Definition 2.0.16 [51, 52] A Pythagorean fuzzy set P in a nonempty set X is

described by their membership function µP and non-membership function νP. To
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every point x ∈ X, these functions associate real numbers µP(x) and νP(x) in the

closed interval [0, 1], with the following condition:

(∀x ∈ X)(0 ≤ µP(x)
2 + νP(x)

2 ≤ 1). (2.0.35)

The real numbers µP(x) and νP(x) are interpreted for the point as a degree

of membership and non-membership of an object x ∈ X, respectively, to the

Pythagorean fuzzy set P, that is, P := {(x, µP(x), νP(x)) | x ∈ X}. For the sake

of simplicity, a Pythagorean fuzzy set P is denoted by P = (µP, νP). We say that

a Pythagorean fuzzy set P in X is constant if their membership function µP and

non-membership function νP are constant.

Definition 2.0.17 Let P = (µP, νP) and Q = (µQ, νQ) be Pythagorean fuzzy sets

in X. The relations ⊆ and =, and the operations ∪ and ∩ are defined as follows:

(1) P ⊆ Q ⇔ (∀x ∈ X)(µP(x) ≤ µQ(x), νP(x) ≥ νQ(x)),

(2) P = Q ⇔ P ⊆ Q,P ⊇ Q,

(3) P ∪Q = (µP ∪ µQ, νP ∩ νQ), and

(4) P ∩Q = (µP ∩ µQ, νP ∪ νQ).

Note that, P ∪ Q and P ∩ Q are Pythagorean fuzzy sets in X. In-

deed, let x ∈ X. Then (µP ∪ µQ)(x) = max{µP(x), µQ(x)} and (νP ∩ νQ)(x) =

min{νP(x), νQ(x)}. Thus we consider

0 ≤ ((µP ∪ µQ)(x))
2 + ((νP ∩ νQ)(x))

2

= max{µP(x), µQ(x)}2 +min{νP(x), νQ(x)}2

= (µP(x))
2 +min{νP(x), νQ(x)}2

(WLOG, assume that max{µP(x), µQ(x)} = µP(x))
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≤ (µP(x))
2 + (νP(x))

2

≤ 1.

This implies that P ∪ Q is a Pythagorean fuzzy set in X. The proof of P ∩ Q is

similar to the proof of P∪Q. Hence, we can denote P∪Q = (µP∪µQ, νP∩ νQ) =

(µP∪Q, νP∪Q) and P ∩Q = (µP ∩ µQ, νP ∪ νQ) = (µP∩Q, νP∩Q).

Definition 2.0.18 [51] Let {Pi = (µPi, νPi)}i∈I be a nonempty family of Pythago-

rean fuzzy sets in a nonempty set X where I is an arbitrary index set. The

intersection of Pi, denoted by
∧

i∈I Pi, is described by theirs membership function

µ∧
i∈I Pi

and non-membership function ν∧
i∈I Pi

which defined as follows:

(∀x ∈ X)(µ∧
i∈I Pi

(x) = inf{µPi(x)}i∈I),

(∀x ∈ X)(ν∧
i∈I Pi

(x) = sup{νPi(x)}i∈I).

The union of Pi, denoted by
∨

i∈I Pi, is described by theirs membership function

µ∨
i∈I Pi

and non-membership function ν∨
i∈I Pi

which defined as follows:

(∀x ∈ X)(µ∨
i∈I Pi

(x) = sup{µPi(x)}i∈I),

(∀x ∈ X)(ν∨
i∈I Pi

(x) = inf{νPi(x)}i∈I).

In particular, if I = {1, 2, . . . , n}, the intersection of P1,P2, . . . ,Pn, de-

noted by P1∧P2∧. . .∧Pn, is described by theirs membership function µP1∧P2∧...∧Pn

and non-membership function νP1∧P2∧...∧Pn which defined as follows:

(∀x ∈ X)(µP1∧P2∧...∧Pn(x) = min{µP1(x), µP2(x), . . . , µPn(x)}),

(∀x ∈ X)(νP1∧P2∧...∧Pn(x) = max{νP1(x), νP2(x), . . . , νPn(x)}).
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The union of P1,P2, . . . ,Pn, denoted by P1 ∨P2 ∨ . . .∨Pn, is described by theirs

membership function µP1∨P2∨...∨Pn and non-membership function νP1∨P2∨...∨Pn

which defined as follows:

(∀x ∈ X)(µP1∨P2∨...∨Pn(x) = max{µP1(x), µP2(x), . . . , µPn(x)}),

(∀x ∈ X)(νP1∨P2∨...∨Pn(x) = min{νP1(x), νP2(x), . . . , νPn(x)}).

From now on, we shall let E be a set of parameters. Let PF(X) be the

set of all Pythagorean fuzzy sets in a universal set X. A subset A of E is called

a set of statistics.

Definition 2.0.19 [34] Let A ⊆ E. A pair (P̃, A) is called a Pythagorean fuzzy

soft set over X if P̃ is a mapping given by P̃ : A → PF(X), that is, a Pythagorean

fuzzy soft set is a statistic family of Pythagorean fuzzy sets in X. In general,

for every a ∈ A, P̃[a] := {(x, µP̃[a](x), νP̃[a](x)) | x ∈ X} is a Pythagorean fuzzy

set in X and it is called a Pythagorean fuzzy value set of statistic a. We call a

Pythagorean fuzzy soft set (P̃, A) over X that is a constant Pythagorean fuzzy soft

set based on the element a ∈ A (we shortly call an a-constant Pythagorean fuzzy

soft set) of X if a Pythagorean fuzzy set P̃[a] in X is a constant Pythagorean

fuzzy set. If (P̃, A) is an a-constant Pythagorean fuzzy soft set of X for all a ∈ A,

we say that (P̃, A) is a constant Pythagorean fuzzy soft set of X.

By Definition 2.0.19, we can find an example of Pythagorean fuzzy soft

sets over BCC-algebras X = (X, ·, 0) as follows:

Example 2.0.20 Let X = {0, 1, 2, 3} be a set which represents a collection of 4
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Thai paintings. Define binary operation · on X as the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 0 3

2 0 1 0 3

3 0 1 2 0

Then X = (X, ·, 0) is a BCC-algebra. Let

A = {identity, beauty, skill}

with P̃[identity], P̃[beauty], and P̃[skill] are Pythagorean fuzzy sets in X defined

as follows:

P̃ 0 1 2 3

identity (0.4, 0.5) (0.3, 0.3) (0.1, 0.6) (0.8, 0.2)

beauty (0.9, 0.3) (0.2, 0.5) (0.1, 0.2) (0.8, 0.4)

skill (0.3, 0.5) (0.3, 0.7) (0.5, 0.6) (0.7, 0.7)

Hence, (P̃, A) is a Pythagorean fuzzy soft set over X.

Definition 2.0.21 [34] Let A,B ⊆ E and (P̃, A), (Q̃, B) be two Pythagorean

fuzzy soft sets over X. If (P̃, A) and (Q̃, B) satisfy the following two conditions:

(1) B ⊆ A and

(2) (∀b ∈ B, x ∈ X)(µQ̃[b](x) ≤ µP̃[b](x), νQ̃[b](x) ≥ νP̃[b](x)),

then we call (Q̃, B) the Pythagorean fuzzy soft subset of (P̃, A), denoted by

(Q̃, B)⊆̃(P̃, A).
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Definition 2.0.22 [34] Let A,B ⊆ E and (P̃, A), (Q̃, B) be two Pythagorean

fuzzy soft sets over X. If (Q̃, B)⊆̃(P̃, A) and (P̃, A)⊆̃(Q̃, B), then we call (P̃, A)

equal (Q̃, B), denoted by (Q̃, B)=̃(P̃, A), meaning, A = B and P̃[a] = Q̃[a] for all

a ∈ A.

Definition 2.0.23 [34] Let (P̃1, A1) and (P̃2, A2) be two Pythagorean fuzzy soft

sets over X. The union of (P̃1, A1) and (P̃2, A2) is defined to be the Pythagorean

fuzzy soft set (P̃1, A1)∪̃(P̃2, A2) = (P̃, A) satisfying the following conditions:

(i) A = A1 ∪ A2 and

(ii) for all a ∈ A,

P̃[a] =


P̃1[a] if a ∈ A1 \ A2

P̃2[a] if a ∈ A2 \ A1

P̃1[a] ∨ P̃2[a] if a ∈ A1 ∩ A2.

The restricted union of (P̃1, A1) and (P̃2, A2) is defined to be the Pythagorean

fuzzy soft set (P̃1, A1)⋓̃(P̃2, A2) = (P̃, A) satisfying the following conditions:

(i) A = A1 ∩ A2 ̸= ∅ and

(ii) P̃[a] = P̃1[a] ∨ P̃2[a] for all a ∈ A.

Definition 2.0.24 Let (P̃1, A1) and (P̃2, A2) be two Pythagorean fuzzy soft sets

over X. The extended intersection of (P̃1, A1) and (P̃2, A2) is defined to be the

Pythagorean fuzzy soft set (P̃1, A1)∩̃(P̃2, A2) = (P̃, A) satisfying the following

conditions:

(i) A = A1 ∪ A2 and
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(ii) for all a ∈ A,

P̃[a] =


P̃1[a] if a ∈ A1 \ A2

P̃2[a] if a ∈ A2 \ A1

P̃1[a] ∧ P̃2[a] if a ∈ A1 ∩ A2.

The intersection [34] of (P̃1, A1) and (P̃2, A2) is defined to be the fuzzy soft set

(P̃1, A1)⋒̃(P̃2, A2) = (P̃, A) satisfying the following conditions:

(i) A = A1 ∩ A2 ̸= ∅ and

(ii) P̃[a] = P̃1[a] ∧ P̃2[a] for all a ∈ A.



 

 

 

CHAPTER III

PYTHAGOREAN FUZZY SETS

Next, we shall let X be a BCC-algebra X = (X, ·, 0).

3.1 Pythagorean fuzzy sets in BCC-algebras

We apply the concept of Pythagorean fuzzy sets to BCC-algebras and

introduce the eight types of Pythagorean fuzzy sets in BCC-algebras.

Definition 3.1.1 A Pythagorean fuzzy set P = (µP, νP) in X is called

(1) a Pythagorean fuzzy BCC-subalgebra of X if it satisfies the following condi-

tions:

(∀x, y ∈ X)(µP(x · y) ≥ min{µP(x), µP(y)}), (3.1.1)

(∀x, y ∈ X)(νP(x · y) ≤ max{νP(x), νP(y)}), (3.1.2)

(2) a Pythagorean fuzzy near BCC-filter of X if it satisfies the following condi-

tions:

(∀x, y ∈ X)(µP(x · y) ≥ µP(y)), (3.1.3)

(∀x, y ∈ X)(νP(x · y) ≤ νP(y)), (3.1.4)

(3) a Pythagorean fuzzy BCC-filter of X if it satisfies the following conditions:

(∀x ∈ X)(µP(0) ≥ µP(x)), (3.1.5)

(∀x ∈ X)(νP(0) ≤ νP(x)), (3.1.6)

(∀x, y ∈ X)(µP(y) ≥ min{µP(x · y), µP(x)}), (3.1.7)

(∀x, y ∈ X)(νP(y) ≤ max{νP(x · y), νP(x)}), (3.1.8)
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(4) a Pythagorean fuzzy implicative BCC-filter of X if it satisfies the conditions

(3.1.5) and (3.1.6) and the following conditions:

(∀x, y, z ∈ X)(µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)}), (3.1.9)

(∀x, y, z ∈ X)(νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)}), (3.1.10)

(5) a Pythagorean fuzzy comparative BCC-filter ofX if it satisfies the conditions

(3.1.5) and (3.1.6) and the following conditions:

(∀x, y, z ∈ X)(µP(y) ≥ min{µP(x · ((y · z) · y)), µP(x)}), (3.1.11)

(∀x, y, z ∈ X)(νP(y) ≤ max{νP(x · ((y · z) · y)), νP(x)}), (3.1.12)

(6) a Pythagorean fuzzy shift BCC-filter of X if it satisfies the conditions (3.1.5)

and (3.1.6) and the following conditions:

(∀x, y, z ∈ X)(µP(((z · y) · y) · z) ≥ min{µP(x · (y · z)), µP(x)}), (3.1.13)

(∀x, y, z ∈ X)(νP(((z · y) · y) · z) ≤ max{νP(x · (y · z)), νP(x)}). (3.1.14)

(7) a Pythagorean fuzzy BCC-ideal of X if it satisfies the conditions (3.1.5) and

(3.1.6) and the following conditions:

(∀x, y, z ∈ X)(µP(x · z) ≥ min{µP(x · (y · z)), µP(y)}), (3.1.15)

(∀x, y, z ∈ X)(νP(x · z) ≤ max{νP(x · (y · z)), νP(y)}), (3.1.16)

(8) a Pythagorean fuzzy strong BCC-ideal of X if it satisfies the conditions



 

 

 
24

(3.1.5) and (3.1.6) and the following conditions:

(∀x, y, z ∈ X)(µP(x) ≥ min{µP((z · y) · (z · x)), µP(y)}), (3.1.17)

(∀x, y, z ∈ X)(νP(x) ≤ max{νP((z · y) · (z · x)), νP(y)}). (3.1.18)

Theorem 3.1.2 A Pythagorean fuzzy set in X is a Pythagorean fuzzy strong

BCC-ideal if and only if it is constant.

Proof. Assume that P = (µP, νP) is a Pythagorean fuzzy strong BCC-ideal of X.

Then it satisfies (3.1.5) and (3.1.6). Thus for all x ∈ X,

µP(x) ≥ min{µP((x · 0) · (x · x)), µP(0)} ((3.1.17))

= min{µP(0 · (x · x)), µP(0)} ((BCC-3))

= min{µP(x · x), µP(0)} ((BCC-2))

= min{µP(0), µP(0)} ((2.0.1))

= µP(0)

and

νP(x) ≤ max{νP((x · 0) · (x · x)), νP(0)} ((3.1.18))

= max{νP(0 · (x · x)), νP(0)} ((BCC-3))

= max{νP(x · x), νP(0)} ((BCC-2))

= max{νP(0), νP(0)} ((2.0.1))

= νP(0).

Since µP(0) ≥ µP(x) and νP(0) ≤ νP(x), we have µP(x) = µP(0) and νP(x) =

νP(0) for all x ∈ X. Hence, µP and νP are constant, that is, P is constant.

The converse is obvious because P is constant.
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Theorem 3.1.3 Every Pythagorean fuzzy near BCC-filter of X is a Pythagorean

fuzzy BCC-subalgebra.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy near BCC-filter of X. Then for

all x, y ∈ X,

µP(x · y) ≥ µP(y) ((3.1.3))

≥ min{µP(x), µP(y)}

and

νP(x · y) ≤ νP(y) ((3.1.4))

≤ max{νP(x), νP(y)}.

Therefore, P is a Pythagorean fuzzy BCC-subalgebra of X.

The converse of Theorem 3.1.3 does not hold in general. This is shown

by the following example.

Example 3.1.4 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 1 1 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function
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µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.9 0.7 0.8 0.5

νP 0 0.4 0.1 0.6

Then P is a Pythagorean fuzzy BCC-subalgebra of X. Since µP(3 · 2) = µP(1) =

0.7 ̸≥ 0.8 = µP(2), we have P is not a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.1.5 Every Pythagorean fuzzy BCC-filter of X is a Pythagorean fuzzy

near BCC-filter.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-filter of X. Then for all

x, y ∈ X,

µP(x · y) ≥ min{µP(y · (x · y)), µP(y)} ((3.1.7))

= min{µP(0), µP(y)} ((2.0.5))

= µP(y)

and

νP(x · y) ≤ max{νPν(y · (x · y)), νP(y)} ((3.1.8))

= max{νP(0), νP(y)} ((2.0.5))

= νP(y).

Therefore, P is a Pythagorean fuzzy near BCC-filter of X.

The converse of Theorem 3.1.5 does not hold in general. This is shown

by the following example.

Example 3.1.6 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 1 0.7 0.8 0.75

νP 0 0.6 0.3 0.4

Then P is a Pythagorean fuzzy near BCC-filter of X. Since µP(1) = 0.7 ̸≥ 0.75 =

min{1, 0.75} = min{µP(0), µP(3)} = min{µP(3 · 1), µP(3)}, we have P is not a

Pythagorean fuzzy BCC-filter of X.

Theorem 3.1.7 Every Pythagorean fuzzy implicative BCC-filter of X is a Pytha-

gorean fuzzy BCC-filter.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy implicative BCC-filter of X.

Then for all x, y ∈ X,

µP(y) = µP(0 · y) ((BCC-2))

≥ min{µP(0 · (x · y)), µP(0 · x)} ((3.1.9))

= min{µP(x · y), µP(x)} ((BCC-2))
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and

νP(y) = νP(0 · y) ((BCC-2))

≤ max{νP(0 · (x · y)), νP(0 · x)} ((3.1.10))

= max{νP(x · y), νP(x)}. ((BCC-2))

Therefore, P is a Pythagorean fuzzy BCC-filter of X.

The converse of Theorem 3.1.7 does not hold in general. This is shown

by the following example.

Example 3.1.8 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 3 3

3 0 1 2 0 3

4 0 1 2 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.8 0.7 0.5 0.3 0.3

νP 0 0.2 0.3 0.5 0.5

Then P is a Pythagorean fuzzy BCC-filter of X. Since µP(3 · 4) = µP(3) = 0.3 ̸≥

0.8 = min{0.8, 0.8} = min{µP(0), µP(0)} = min{µP(3 · (3 · 4)), µP(3 · 3)}, we have

P is not a Pythagorean fuzzy implicative BCC-filter of X.
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Theorem 3.1.9 Every Pythagorean fuzzy comparative BCC-filter of X is a Pytha-

gorean fuzzy BCC-filter.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy comparative BCC-filter of X.

Then for all x, y ∈ X,

µP(y) ≥ min{µP(x · ((y · 0) · y)), µP(x)} ((3.1.11))

= min{µP(x · (0 · y)), µP(x)} ((BCC-3))

= min{µP(x · y), µP(x)} ((BCC-2))

and

νP(y) ≤ max{νP(x · ((y · 0) · y)), νP(x)} ((3.1.12))

= max{νP(x · (0 · y)), νP(x)} ((BCC-3))

= max{νP(x · y), νP(x)}. ((BCC-2))

Therefore, P is a Pythagorean fuzzy BCC-filter of X.

The converse of Theorem 3.1.9 does not hold in general. This is shown

by the following example.

Example 3.1.10 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 3 4

3 0 0 0 0 4

4 0 1 2 3 0
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We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 1 0.6 0.6 0.6 0.4

νP 0 0 0.1 0.1 0.4

Then P is a Pythagorean fuzzy BCC-filter of X. Since µP(2) = 0.6 ̸≥ 1 =

min{1, 1} = min{µP(0), µP(0)} = min{µP(0 · ((2 ·3) ·2)), µP(0)}, we have P is not

a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.1.11 Every Pythagorean fuzzy shift BCC-filter of X is a Pythagorean

fuzzy BCC-filter.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy shift BCC-filter of X. Then for

all x, y ∈ X,

µP(y) = µP(0 · y) ((BCC-2))

= µP((0 · 0) · y) ((2.0.1))

= µP(((y · 0) · 0) · y) ((BCC-3))

≥ min{µP(x · (0 · y)), µP(x)} ((3.1.13))

= min{µP(x · y), µP(x)} ((BCC-2))

and

νP(y) = νP(0 · y) ((BCC-2))

= νP((0 · 0) · y) ((2.0.1))

= νP(((y · 0) · 0) · y) ((BCC-3))

≤ max{νP(x · (0 · y)), νP(x)} ((3.1.14))



 

 

 
31

= max{νP(x · y), νP(x)}. ((BCC-2))

Therefore, P is a Pythagorean fuzzy BCC-filter of X.

The converse of Theorem 3.1.11 does not hold in general. This is shown

by the following example.

Example 3.1.12 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 2 4

2 0 0 0 2 4

3 0 0 0 0 4

4 0 1 2 3 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.9 0.5 0.2 0.2 0.2

νP 0.3 0.3 0.4 0.4 0.4

Then P is a Pythagorean fuzzy BCC-filter of X. Since µP(((1·2)·2)·1) = µP(1) =

0.5 ̸≥ 0.9 = min{0.9, 0.9} = min{µP(0), µP(0)} = min{µP(0 · (2 · 1)), µP(0)}, we

have P is not a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.1.13 Every Pythagorean fuzzy implicative BCC-filter of X is a Pytha-

gorean fuzzy BCC-ideal.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy implicative BCC-filter of X.
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By Theorem 3.1.7, we have P is a Pythagorean fuzzy BCC-filter, and so P is a

Pythagorean fuzzy near BCC-filter. Then for all x, y, z ∈ X,

µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)} ((3.1.9))

≥ min{µP(x · (y · z)), µP(y)} ((3.1.3))

and

νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)} ((3.1.10))

≤ max{νP(x · (y · z)), νP(y)}. ((3.1.4))

Therefore, P is a Pythagorean fuzzy BCC-ideal of X.

The converse of Theorem 3.1.13 does not hold in general. This is shown

by the following example.

Example 3.1.14 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 3 4

3 0 0 1 0 4

4 0 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function
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µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.6 0.5 0.2 0.1 0.1

νP 0.3 0.4 0.5 0.6 0.8

Then P is a Pythagorean fuzzy BCC-ideal of X. Since µP(3 · 2) = µP(1) = 0.5 ̸≥

0.6 = min{0.6, 0.6} = min{µP(0), µP(0)} = min{µP(3 · (3 · 2)), µP(3 · 3)}, we have

P is not a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.1.15 Every Pythagorean fuzzy strong BCC-ideal of X is a Pythago-

rean fuzzy implicative BCC-filter (resp., Pythagorean fuzzy comparative BCC-

filter, Pythagorean fuzzy shift BCC-filter).

Proof. Let P = (µP, νP) be a Pythagorean fuzzy strong BCC-ideal of X. Since

P is constant, we have P is a Pythagorean fuzzy implicative BCC-filter (resp.,

Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter)

of X.

The converse of Theorem 3.1.15 does not hold in general. This is shown

by the following examples.

Example 3.1.16 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 0 0 4

2 0 1 0 0 4

3 0 1 2 0 4

4 0 1 2 3 0
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We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.5 0.4 0.4 0.4 0.3

νP 0.4 0.5 0.5 0.5 0.8

Then P is a Pythagorean fuzzy implicative BCC-filter of X. But P is not a

constant Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy

strong BCC-ideal of X.

Example 3.1.17 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 2 4

2 0 0 0 2 4

3 0 0 0 0 4

4 0 0 0 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.9 0.9 0.9 0.9 0.3

νP 0.3 0.3 0.3 0.3 0.6

Then P is a Pythagorean fuzzy comparative BCC-filter of X. But P is not a

constant Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy

strong BCC-ideal of X.
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Example 3.1.18 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 2 4

2 0 0 0 1 4

3 0 0 0 0 4

4 0 1 2 3 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.5 0.2 0.2 0.2 0.1

νP 0.2 0.6 0.6 0.6 0.8

Then P is a Pythagorean fuzzy shift BCC-filter of X. But P is not a constant

Pythagorean fuzzy set of X. Therefore, P is not a Pythagorean fuzzy strong

BCC-ideal of X.

Theorem 3.1.19 Every Pythagorean fuzzy BCC-ideal of X is a Pythagorean

fuzzy BCC-filter.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-ideal of X. It is sufficient

to prove the conditions (3.1.7) and (3.1.8). Then for all x, y ∈ X,

µP(y) = µP(0 · y) ((BCC-2))

≥ min{µP(0 · (x · y)), µP(x)} ((3.1.15))

= min{µP(x · y), µP(x)} ((BCC-2))
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and

νP(y) = νP(0 · y) ((BCC-2))

≤ max{νP(0 · (x · y)), νP(x)} ((3.1.16))

= max{νP(x · y), νP(x)}. ((BCC-2))

Therefore, P is a Pythagorean fuzzy BCC-filter of X.

The converse of Theorem 3.1.19 does not hold in general. This is shown

by the following example.

Example 3.1.20 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.9 0.5 0.2 0.2

νP 0.1 0.4 0.5 0.5

Then P is a Pythagorean fuzzy BCC-filter of X. Since µP(2 · 3) = µP(2) = 0.2 ̸≥

0.5 = min{0.9, 0.5} = min{µP(0), µP(1)} = min{µP(2 · (1 · 3)), µP(1)}, we have P

is not a Pythagorean fuzzy BCC-ideal of X.
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Theorem 3.1.21 Every Pythagorean fuzzy strong BCC-ideal of X is a Pythago-

rean fuzzy BCC-ideal.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy strong BCC-ideal of X. By The-

orem 3.1.2, we have P is constant. Therefore, it is obvious that P is a Pythagorean

fuzzy BCC-ideal of X.

The converse of Theorem 3.1.21 does not hold in general. This is shown

by the following example.

Example 3.1.22 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 1 0.5 0.2 0.7

νP 0 0.6 0.8 0.4

Then P is a Pythagorean fuzzy BCC-ideal of X. But P is not constant and by

Theorem 3.1.2, we have P is not a Pythagorean fuzzy strong BCC-ideal of X.

Next, we shall find examples for study connection of Pythagorean fuzzy

sets in BCC-algebras.
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Example 3.1.23 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 0 0 2

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.5 0.2 0.1 0.1

νP 0.4 0.7 0.9 0.9

Then P is a Pythagorean fuzzy shift BCC-filter of X. Since µP(2 · 3) = µP(2) =

0.1 ̸≥ 0.5 = min{0.5, 0.5} = min{µP(0), µP(0)} = min{µP(2 · (2 · 3)), µP(2 · 2)},

we have P is not a Pythagorean fuzzy implicative BCC-filter of X.

Example 3.1.24 From Example 3.1.16, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3 4

µP 0.8 0.1 0.2 0.6 0.1

νP 0.1 0.7 0.6 0.2 0.7

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Since νP(((2 · 1) · 1) ·

2) = νP(2) = 0.6 ̸≤ 0.2 = max{0.1, 0.2} = max{νP(0), νP(3)} = max{νP(3 · (1 ·

2)), νP(3)}, we have P is not a Pythagorean fuzzy shift BCC-filter of X.

Example 3.1.25 From Example 3.1.16, we define a Pythagorean fuzzy set P =
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(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3 4

µP 0.5 0.2 0.3 0.4 0.2

νP 0.5 0.9 0.8 0.6 0.9

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Since νP(2) = 0.8 ̸≤

0.6 = max{0.5, 0.6} = max{νP(0), νP(3)} = max{νP(3 · ((2 · 1) · 2)), νP(3)}, we

have P is not a Pythagorean fuzzy comparative BCC-filter of X.

Example 3.1.26 Let X = {0, 1, 2, 3, 4} be a BCC-algebra with a fixed element

0 and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 0 0 0

2 0 1 0 0 4

3 0 1 2 0 4

4 0 1 2 3 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3 4

µP 0.7 0.1 0.4 0.6 0.1

νP 0.2 0.7 0.6 0.4 0.7

Then P is a Pythagorean fuzzy BCC-ideal of X. Since νP(4) = 0.8 ̸≤ 0.2 =

max{0.2, 0.2} = max{νP(0), νP(0)} = max{νP(0 · ((4 · 1) · 4)), νP(0)}, we have P

is not a Pythagorean fuzzy comparative BCC-filter of X.

Example 3.1.27 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.6 0.4 0.2 0.2

νP 0.3 0.5 0.9 0.9

Then P is a Pythagorean fuzzy BCC-ideal of X. Since νP(((1 ·2) ·2) ·1) = νP(1) =

0.5 ̸≤ 0.3 = max{0.3, 0.3} = max{νP(0), νP(0)} = max{νP(0 · (2 · 1)), νP(0)}, we

have P is not a Pythagorean fuzzy shift BCC-filter of X.

Example 3.1.28 From Example 3.1.23, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.7 0.7 0.4 0.4

νP 0.5 0.5 0.6 0.6

Then P is a Pythagorean fuzzy shift BCC-filter of X. Since νP(2 · 3) = νP(2) =

0.6 ̸≤ 0.5 = max{0.5, 0.5} = max{νP(0), νP(1)} = max{νP(2 · (1 · 3)), νP(1)}, we

have P is not a Pythagorean fuzzy BCC-ideal of X.

Example 3.1.29 From Example 3.1.23, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP
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as follows:

X 0 1 2 3

µP 0.5 0.5 0.1 0.1

νP 0.6 0.6 0.8 0.8

Then P is a Pythagorean fuzzy shift BCC-filter of X. Since νP(2) = 0.8 ̸≤ 0.6 =

max{0.6, 0.6} = max{νP(0), νP(0)} = max{νP(0 · ((2 · 3) · 2)), νP(0)}, we have P

is not a Pythagorean fuzzy comparative BCC-filter of X.

We get the diagram of the generalization of Pythagorean fuzzy sets in

BCC-algebras, which is shown with Figure 1

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✌✍✍✎✏☛✑☎✒✆✟✑✞☎

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✠✟☎✞ ✌✍✍✎✡✓✒✂✟✞

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✌✍✍✎✡✓✒✂✟✞

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✌✍✍✎✓✔✟☎✒

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✏✂✞✝✠✆ ✌✍✍✎✓✔✟☎✒

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✓✕✖✒✓✗☎✂✓✘✟ ✌✍✍✎✡✓✒✂✟✞

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✏✄✓✡✂ ✌✍✍✎✡✓✒✂✟✞

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁

✗✝✕✖☎✞☎✂✓✘✟ ✌✍✍✎✡✓✒✂✟✞

✍✝✠✏✂☎✠✂ �✁✂✄☎✆✝✞✟☎✠

✡☛☞☞✁ ✏✟✂

Figure 1: Pythagorean fuzzy sets in BCC-algebras
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If F is a fuzzy set in X, then (fF, fF̃) is a Pythagorean fuzzy set in X.

Indeed, for all x ∈ X,

0 ≤ (fF(x))
2 + (fF̃(x))

2

= (fF(x))
2 + (1− fF(x))

2

≤ fF(x) + 1− 2fF(x) + (fF(x))
2

≤ fF(x) + 1− 2fF(x) + fF(x)

= 1.

Theorem 3.1.30 Let F be a fuzzy set in X. Then the following statements hold:

(1) (fF, fF̃) is a Pythagorean fuzzy set in X,

(2) F is a fuzzy BCC-subalgebra of X if and only if (fF, fF̃) is a Pythagorean

fuzzy BCC-subalgebra of X,

(3) F is a fuzzy near BCC-filter of X if and only if (fF, fF̃) is a Pythagorean

fuzzy near BCC-filter of X,

(4) F is a fuzzy BCC-filter of X if and only if (fF, fF̃) is a Pythagorean fuzzy

BCC-filter of X,

(5) F is a fuzzy implicative BCC-filter of X if and only if (fF, fF̃) is a Pythago-

rean fuzzy implicative BCC-filter of X,

(6) F is a fuzzy comparative BCC-filter of X if and only if (fF, fF̃) is a Pythago-

rean fuzzy comparative BCC-filter of X,

(7) F is a fuzzy shift BCC-filter of X if and only if (fF, fF̃) is a Pythagorean

fuzzy shift BCC-filter of X.

(8) F is a fuzzy BCC-ideal of X if and only if (fF, fF̃) is a Pythagorean fuzzy

BCC-ideal of X, and



 

 

 
43

(9) F is a fuzzy strong BCC-ideal of X if and only if (fF, fF̃) is a Pythagorean

fuzzy strong BCC-ideal of X.

Proof. (1) Let x ∈ X. Then 0 ≤ fF(x)
2 + fF̃(x)

2 = fF(x)
2 + (1 − fF(x))

2 ≤

fF(x) + (1− fF(x)) = 1. Hence, (fF, fF̃) is a Pythagorean fuzzy set in X.

(2) Assume that F is a fuzzy BCC-subalgebra ofX. Then for all x, y ∈ X,

fF(x · y) ≥ min{fF(x), fF(y)} ((2.0.27))

and

fF̃(x · y) = 1− fF(x · y)

≤ 1−min{fF(x), fF(y)} ((2.0.27))

= max{fF̃(x), fF̃(y)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy BCC-subalgebra of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy BCC-subalgebra

of X. Then F satisfies the condition (3.1.1). Hence, F is a fuzzy BCC-subalgebra

of X.

(3) Assume that F is a fuzzy near BCC-filter of X. Then for all x, y ∈ X,

fF(x · y) ≥ fF(y) ((2.0.26))

and

fF̃(x · y) ≤ fF̃(y). (Proposition 2.0.9 (1))

This implies that (fF, fF̃) is a Pythagorean fuzzy near BCC-filter of X.
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Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy near BCC-filter

of X. Then F satisfies the condition (3.1.3). Hence, F is a fuzzy near BCC-filter

of X.

(4) Assume that F is a fuzzy BCC-filter of X. Then for all x, y ∈ X,

fF(0) ≥ fF(x), ((2.0.28))

fF̃(0) ≤ fF̃(x), (Proposition 2.0.9 (1))

fF(y) ≥ min{fF(x · y), fF(x)}, ((2.0.29))

and

fF̃(y) = 1− fF(y)

≤ 1−min{fF(x · y), fF(x)} ((2.0.29))

= max{fF̃(x · y), fF̃(x)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy BCC-filter of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy BCC-filter of X.

Then F satisfies the conditions (3.1.5) and (3.1.7). Hence, F is a fuzzy BCC-filter

of X.

(5) Assume that F is a fuzzy implicative BCC-filter of X. Then for all

x, y ∈ X,

fF(0) ≥ fF(x), ((2.0.28))

fF̃(0) ≤ fF̃(x), (Proposition 2.0.9 (1))
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fF(x · z) ≥ min{fF(x · (y · z)), fF(x · y)}, ((2.0.30))

and

fF̃(x · z) = 1− fF(x · z)

≤ 1−min{fF(x · (y · z)), fF(x · y)} ((2.0.30))

= max{fF̃(x · (y · z)), fF̃(x · y)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy implicative BCC-filter of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy implicative BCC-

filter of X. Then F satisfies the conditions (3.1.5) and (3.1.9). Hence, F is a fuzzy

implicative BCC-filter of X.

(6) Assume that F is a fuzzy comparative BCC-filter of X. Then for all

x, y ∈ X,

fF(0) ≥ fF(x), ((2.0.28))

fF̃(0) ≤ fF̃(x), (Proposition 2.0.9 (1))

fF(y) ≥ min{fF(x · ((y · z) · y)), fF(x)}, ((2.0.31))

and

fF̃(y) = 1− fF(y)

≤ 1−min{fF(x · ((y · z) · y)), fF(x)} ((2.0.31))

= max{fF̃(x · ((y · z) · y)), fF̃(x)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy comparative BCC-filter of X.
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Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy comparative BCC-

filter of X. Then F satisfies the conditions (3.1.5) and (3.1.11). Hence, F is a

fuzzy comparative BCC-filter of X.

(7) Assume that F is a fuzzy shift BCC-filter of X. Then for all x, y ∈ X,

fF(0) ≥ fF(x), ((2.0.28))

fF̃(0) ≤ fF̃(x), (Proposition 2.0.9 (1))

fF(((z · y) · y) · z) ≥ min{fF(x · (y · z)), fF(x)}, ((2.0.32))

and

fF̃(((z · y) · y) · z) = 1− fF(((z · y) · y) · z)

≤ 1−min{fF(x · (y · z)), fF(x)} ((2.0.32))

= max{fF̃(x · (y · z)), fF̃(x)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy shift BCC-filter of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy shift BCC-filter

of X. Then F satisfies the conditions (3.1.5) and (3.1.13). Hence, F is a fuzzy

shift BCC-filter of X.

(8) Assume that F is a fuzzy BCC-ideal of X. Then for all x, y ∈ X,

fF(0) ≥ fF(x), ((2.0.28))

fF̃(0) ≤ fF̃(x), (Proposition 2.0.9 (1))

fF(x · z) ≥ min{fF(x · (y · z)), fF(y)}, ((2.0.33))



 

 

 
47

and

fF̃(x · z) = 1− fF(x · z)

≤ 1−min{fF(x · (y · z)), fF(y)} ((2.0.33))

= max{fF̃(x · (y · z)), fF̃(y)}. (Proposition 2.0.9 (4))

This implies that (fF, fF̃) is a Pythagorean fuzzy BCC-ideal of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy BCC-ideal of X.

Then F satisfies the conditions (3.1.5) and (3.1.15). Hence, F is a fuzzy BCC-ideal

of X.

(9) Assume that F is a fuzzy strong BCC-ideal of X. Then fF is constant

and so fF̃ is constant. By Theorem 3.1.2, we have (fF, fF̃) is a Pythagorean fuzzy

strong BCC-ideal of X.

Conversely, assume that (fF, fF̃) is a Pythagorean fuzzy strong BCC-ideal

of X. By Theorem 3.1.2, we have fF is constant. Hence, F is a fuzzy strong BCC-

ideal of X.

3.2 Properties of Pythagorean fuzzy sets

In this section, we shall find some properties and examples for study the

generalizations of Pythagorean fuzzy sets in BCC-algebras.

Proposition 3.2.1 If P = (µP, νP) is a Pythagorean fuzzy BCC-subalgebra of X,

then it satisfies the conditions (3.1.5) and (3.1.6).

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-subalgebra of X. Then for

all x ∈ X,

µP(0) = µP(x · x) ≥ min{µP(x), µP(x)} = µP(x) ((2.0.1) and (3.1.1))
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and

νP(0) = νP(x · x) ≤ max{νP(x), νP(x)} = νP(x). ((2.0.1) and (3.1.2))

Proposition 3.2.2 If P = (µP, νP) is a Pythagorean fuzzy BCC-filter of X, then

(∀x, y ∈ X)

 x ≤ y ⇒ µP(x) ≤ µP(y),

x ≤ y ⇒ νP(x) ≥ νP(y)

 , (3.2.1)

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-filter of X and let x, y ∈ X

be such that x ≤ y. Then x · y = 0, so

µP(y) ≥ min{µP(x · y), µP(x)} = min{µP(0), µP(x)} = µP(x) ((3.1.7))

and

νP(y) ≤ max{νP(x · y), νP(x)} = max{νP(0), νP(x)} = νP(x). ((3.1.8))

Corollary 3.2.3 If P = (µP, νP) is a Pythagorean fuzzy BCC-filter of X, then

(∀x, y ∈ X)

 µP(y) ≤ µP(x · y),

νP(y) ≥ νP(x · y)

 , (3.2.2)

Proof. By (2.0.5), we have y · (x · y) = 0, that is, y ≤ x · y. By (3.2.1), we have

µP(y) ≤ µP(x · y) and νP(y) ≥ νP(x · y).

Proposition 3.2.4 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the
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following conditions:

(∀x, y, z ∈ X)

 z ≤ x ⇒ µP(x · y) ≥ min{µP(z), µP(y)},

z ≤ x ⇒ νP(x · y) ≤ max{νP(z), νP(y)}

 , (3.2.3)

then it is a Pythagorean fuzzy BCC-subalgebra of X.

Proof. Let x, y ∈ X. By (2.0.1), we have x ≤ x. It follows from (3.2.3) that

µP(x · y) ≥ min{µP(x), µP(y)} and νP(x · y) ≤ max{νP(x), νP(y)}. Hence, P is a

Pythagorean fuzzy BCC-subalgebra of X.

Theorem 3.2.5 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.3), then it satisfies the conditions (3.1.5) and (3.1.6).

Proof. It is straightforward by Proposition 3.2.4.

In general, the converse of Theorem 3.2.5 may be not true by the following

example.

Example 3.2.6 From Example 3.1.20, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 1 0.5 0.1 0.7

νP 0 0.5 0.6 0.4

Then P satisfies the conditions (3.1.5) and (3.1.6) but it does not satisfy the con-

dition (3.2.3). Indeed, 1 ≤ 1 but µP(1 · 3) = µP(2) = 0.1 ̸≥ 0.5 = min{0.5, 0.7} =

min{µP(1), µP(3)} and νP(1·3) = νP(2) = 0.6 ̸≤ 0.5 = max{0.5, 0.4} = max{νP(1)

, νP(3)}.

Proposition 3.2.7 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the
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following conditions:

(∀x, y, z ∈ X)

 µP(x · y) ≥ min{µP(z), µP(y)},

νP(x · y) ≤ max{νP(z), νP(y)}

 , (3.2.4)

then it satisfies the condition (3.2.3).

In general, the converse of Proposition 3.2.7 may be not true by the

following example.

Example 3.2.8 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 1 0 0

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.8 0.1 0.3 0.2

νP 0.4 0.9 0.6 0.8

Then P satisfies the condition (3.2.3) but it does not satisfy the condition (3.2.4).

Indeed, µP(1 · 2) = µP(3) = 0.2 ̸≥ 0.3 = min{0.8, 0.3} = min{µP(0), µP(2)} and

νP(1 · 2) = νP(3) = 0.8 ̸≤ 0.6 = max{0.4, 0.6} = max{νP(0),

νP(2)}.

Proposition 3.2.9 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the
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condition (3.2.1), then it is a Pythagorean fuzzy near BCC-filter of X.

Proof. Let x, y ∈ X. By (2.0.5), we have y ≤ x · y. It follows from (3.2.1) that

µP(x · y) ≥ µP(y) and νP(x · y) ≤ νP(y). Hence, P is a Pythagorean fuzzy near

BCC-filter of X.

Theorem 3.2.10 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.1), then it satisfies the condition (3.2.4).

Proof. Let x, y, z ∈ X. By (2.0.5), we have y ≤ x · y. It follows from (3.2.1) that

µP(x·y) ≥ µP(y) ≥ min{µP(z), µP(y)} and νP(x·y) ≤ νP(y) ≤ max{νP(z), νP(y)}.

In general, the converse of Theorem 3.2.10 may be not true by the fol-

lowing example.

Example 3.2.11 From Example 3.1.6, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.8 0.3 0.4 0.7

νP 0.2 0.7 0.5 0.4

Then P satisfies the condition (3.2.4) but it does not satisfy the condition (3.2.1).

Indeed, 3 ≤ 1 but µP(3) = 0.7 ̸≤ 0.3 = µP(1) and νP(3) = 0.4 ̸≥ 0.7 = νP(1).

Theorem 3.2.12 If P = (µP, νP) is a Pythagorean fuzzy BCC-subalgebra of X

satisfying the following conditions:

(∀x, y, z ∈ X)

 x · y ̸= 0 ⇒ µP(x) ≥ µP(y),

x · y ̸= 0 ⇒ νP(x) ≤ νP(y)

 , (3.2.5)

then it is a Pythagorean fuzzy near BCC-filter of X.
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Proof. Let x, y ∈ X.

Case 1: x·y = 0. By Proposition 3.2.1, we have µP(x·y) = µP(0) ≥ µP(y)

and νP(x · y) = νP(0) ≤ νP(y).

Case 2: x · y ̸= 0. By (3.2.5), we have µP(x · y) ≥ min{µP(x),

µP(y)} = µP(y) and νP(x · y) ≤ max{νP(x), νP(y)} = νP(y). Hence, P is a

Pythagorean fuzzy near BCC-filter of X.

Proposition 3.2.13 A Pythagorean fuzzy set P = (µP, νP) in X satisfies the

following conditions:

(∀x, y, z ∈ X)

 z ≤ x · y ⇒ µP(y) ≥ min{µP(z), µP(x)},

z ≤ x · y ⇒ νP(y) ≤ max{νP(z), νP(x)}

 , (3.2.6)

if and only if it is a Pythagorean fuzzy BCC-filter of X.

Proof. Let x ∈ X. By (BCC-3), we have x ≤ x · 0. It follows from (3.2.6) that

µP(0) ≥ min{µP(x), µP(x)} = µP(x) and νP(0) ≤ max{νP(x), νP(x)} = νP(x).

Next, let x, y ∈ X. By (2.0.1), we have x · y ≤ x · y. It follows from (3.2.6) that

µP(y) ≥ min{µP(x · y), µP(x)} and νP(y) ≤ max{νP(x · y), νP(x)}. Hence, P is a

Pythagorean fuzzy BCC-filter of X.

Conversely, let x, y, z ∈ X be such that z ≤ x · y. Then z · (x · y) = 0, so

µP(x · y) ≥ min{µP(z · (x · y)), µP(z)} = min{µP(0), µP(z)} = µP(z) ((3.1.7))

and

νP(x · y) ≤ max{νP(z · (x · y)), νP(z)} = max{νP(0), νP(z)} = νP(z). ((3.1.8))

Thus
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µP(y) ≥ min{µP(x · y), µP(x)} ≥ min{µP(z), µP(x)}

and

νP(y) ≤ max{νP(x · y), νP(x)} ≤ max{νP(z), νP(x)}.

Theorem 3.2.14 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.6), then it satisfies the condition (3.2.1).

Proof. Let x, y ∈ X be such that x ≤ y. By (2.0.11), we have x ≤ x · y.

It follows from (3.2.6) that µP(y) ≥ min{µP(x), µP(x)} = µP(x) and νP(y) ≤

max{νP(x), νP(x)} = νP(x).

In general, the converse of Theorem 3.2.14 may be not true by the fol-

lowing example.

Example 3.2.15 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 1

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function
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µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.7 0.3 0.5 0.1

νP 0.3 0.7 0.5 0.8

Then P satisfies the condition (3.2.1) but it does not satisfy the condition (3.2.6).

Indeed, 2 ≤ 1 · 3 but µP(3) = 0.1 ̸≥ 0.3 = min{0.5, 0.3} = min{µP(2), µP(1)} and

νP(3) = 0.8 ̸≤ 0.7 = max{0.5, 0.7} = max{νP(2), νP(1)}.

Theorem 3.2.16 If P = (µP, νP) is a Pythagorean fuzzy near BCC-filter of X

satisfying the following conditions:

(∀x, y ∈ X)

 µP(x · y) = µP(y),

νP(x · y) = νP(y)

 , (3.2.7)

then it is a Pythagorean fuzzy BCC-filter of X.

Proof. Let x, y ∈ X. By Theorem 3.1.3 and Proposition 3.2.1, we have P is a

Pythagorean fuzzy BCC-subalgebra of X which satisfies the conditions (3.1.5)

and (3.1.6). By (3.2.7), we have µP(y) ≥ min{µP(y), µP(x)} = min{µP(x ·

y), µP(x)} and νP(y) ≤ max{νP(y), νP(x)} = max{νP(x · y), νP(x)}. Hence, P

is a Pythagorean fuzzy BCC-filter of X.

Theorem 3.2.17 If P is a Pythagorean fuzzy BCC-ideal of X satisfying the

following condition:

(∀x, y, z ∈ X)

 µP(x · (y · z)) ≥ µP(y) ⇒ µP(y) ≥ µP(x · y),

νP(x · (y · z)) ≤ νP(y) ⇒ νP(y) ≤ νP(x · y)

 , (3.2.8)

then P is a Pythagorean fuzzy implicative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-ideal of X satisfying the
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condition (3.2.8). Then P satisfies the conditions (3.1.5) and (3.1.6). In case of

µP(x · (y · z)) < µP(y) and νP(x · (y · z)) > νP(y) are easy to verify. Next, let

x, y, z ∈ X,

µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} ((3.1.15))

≥ min{µP(x · (y · z)), µP(x · y)} ((3.2.8) for µP)

and

νP(x · z) ≤ max{νP(x · (y · z)), νP(y)} ((3.1.16))

≤ max{νP(x · (y · z)), νP(x · y)}. ((3.2.8) for νP)

Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.2.18 If P is a Pythagorean fuzzy BCC-ideal of X satisfying the

following condition:

(∀x, y, z ∈ X)


µP(x · y) ≥ µP(x · ((x · y) · z))

⇒ µP(x · ((x · y) · z)) ≥ µP(x · (y · z)),

νP(x · y) ≤ νP(x · ((x · y) · z))

⇒ νP(x · ((x · y) · z)) ≤ νP(x · (y · z))


, (3.2.9)

then P is a Pythagorean fuzzy implicative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-ideal of X satisfying the

condition (3.2.9). Then P satisfies the conditions (3.1.5) and (3.1.6). In case of

µP(x · y) < µP(x · ((x · y) · z)) and νP(x · y) > νP(x · ((x · y) · z)) are easy to verify.

Next, let x, y, z ∈ X,

µP(x · z) ≥ min{µP(x · ((x · y) · z)), µP(x · y)} ((3.1.15))
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≥ min{µP(x · (y · z)), µP(x · y)} ((3.2.9) for µP)

and

νP(x · z) ≤ max{νP((x · y) · z)), νP(x · y)} ((3.1.16))

≤ max{νP(x · (y · z)), νP(x · y)}. ((3.2.9) for νP)

Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.2.19 If P is a Pythagorean fuzzy BCC-filter of X satisfying the

following condition:

(∀x, y, z ∈ X)


µP(x) ≥ µP(x · y)

⇒ µP(x · y) ≥ µP(x · ((y · z) · y)),

νP(x) ≤ νP(x · y)

⇒ νP(x · y) ≤ νP(x · ((y · z) · y))


, (3.2.10)

then P is a Pythagorean fuzzy comparative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-filter of X satisfying the

condition (3.2.10). Then P satisfies the conditions (3.1.5) and (3.1.6). In case of

µP(x) < µP(x · y) and νP(x) > νP(x · y) are easy to verify. Next, let x, y, z ∈ X,

µP(y) ≥ min{µP(x · y), µP(x)} ((3.1.7))

≥ min{µP(x · ((y · z) · y)), µP(x)} ((3.2.10) for µP)

and

νP(y) ≤ max{νP(x · y), νP(x)} ((3.1.8))

≤ max{νP(x · ((y · z) · y)), νP(x)}. ((3.2.10) for νP)
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Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.2.20 If P is a Pythagorean fuzzy BCC-filter of X satisfying the

following condition:

(∀x, y, z ∈ X)


µP(x) ≥ µP(x · (((z · y) · y) · z))

⇒ µP(x · (((z · y) · y) · z)) ≥ µP(x · (y · z)),

νP(x) ≤ νP(x · (((z · y) · y) · z))

⇒ νP(x · (((z · y) · y) · z)) ≤ νP(x · (y · z))


, (3.2.11)

then P is a Pythagorean fuzzy shift BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy BCC-filter of X satisfying the

condition (3.2.11). Then P satisfies the conditions (3.1.5) and (3.1.6). In case of

µP(x) < µP(x · (((z · y) · y) · z)) and νP(x) > νP(x · (((z · y) · y) · z)) are easy to

verify. Next, let x, y, z ∈ X,

µP(((z · y) · y) · z) ≥ min{µP(x · (((z · y) · y) · z)), µP(x)} ((3.1.7))

≥ min{µP(x · (y · z)), µP(x)} ((3.2.11) for µP)

and

νP(((z · y) · y) · z) ≤ max{νP(x · (((z · y) · y) · z)), νP(x)} ((3.1.8))

≤ max{νP(x · (y · z)), νP(x)}. ((3.2.11) for νP)

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.2.21 If P is a Pythagorean fuzzy set in X satisfying the following
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condition:

(∀a, x, y, z ∈ X)


(a ≤ x · (y · z)

⇒ µP(x · z) ≥ min{µP(a), µP(x · y)},

(a ≤ x · (y · z)

⇒ νP(x · z) ≤ max{νP(a), νP(x · y)}


, (3.2.12)

then P is a Pythagorean fuzzy implicative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy set in X satisfying the condition

(3.2.12). Let x ∈ X. By (BCC-3), we have x ·(0 ·(x ·0)) = 0, that is, x ≤ 0 ·(x ·0).

It follows from (3.2.12) that

µP(0) = µP(0 · 0)

≥ min{µP(x), µP(0 · x)}

= min{µP(x), µP(x)} ((BCC-2))

= µP(x),

νP(0) = νP(0 · 0)

≤ max{νP(x), νP(0 · x)}

= max{νP(x), νP(x)} ((BCC-2))

= νP(x).

Next, let x, y, z ∈ X. By (2.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,

x · (y · z) ≤ x · (y · z). It follows from (3.2.12) that

µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)},

νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)}.

Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X.
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Theorem 3.2.22 If P is a Pythagorean fuzzy set in X satisfying the following

condition:

(∀a, x, y, z ∈ X)


(a ≤ x · ((y · z) · y)

⇒ µP(y) ≥ min{µP(a), µP(x)},

(a ≤ x · ((y · z) · y)

⇒ νP(y) ≤ max{νP(a), νP(x)}


, (3.2.13)

then P is a Pythagorean fuzzy comparative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy set in X satisfying the condition

(3.2.13). Let x ∈ X. By (BCC-3), we have x · (x · ((0 · x) · 0)) = 0, that is,

x ≤ x · ((0 · x) · 0). It follows from (3.2.13) that

µP(0) ≥ min{µP(x), µP(x)} = µP(x),

νP(0) ≤ max{νP(x), νP(x)} = νP(x).

Next, let x, y, z ∈ X. By (2.0.1), we have (x · ((y · z) · y)) · (x · ((y · z) · y)) = 0,

that is, x · ((y · z) · y) ≤ x · ((y · z) · y). It follows from (3.2.13) that

µP(y) ≥ min{µP(x · ((y · z) · y)), µP(x)},

νP(y) ≤ max{νP(x · ((y · z) · y)), νP(x)}.

Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.2.23 If P is a Pythagorean fuzzy set in X satisfying the conditions
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(3.1.7) and (3.1.8) and the following condition:

(∀x, y, z ∈ X)


µP(x · ((y · z) · y)) ≥ µP((x · ((y · z) · y)) · y)

⇒ µP((x · ((y · z) · y)) · y) ≥ µP(x),

νP(x · ((y · z) · y)) ≤ νP((x · ((y · z) · y)) · y)

⇒ νP(((x · ((y · z) · y)) · y)) ≤ νP(x)


, (3.2.14)

then P is a Pythagorean fuzzy comparative BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy set in X satisfying the conditions

(3.1.7), (3.1.8), and (3.2.14). Let x ∈ X. By (BCC-2) and (BCC-3), we have

µP(x · ((0 · x) · 0)) = µP(0) ≥ µP(0) = µP((x · ((0 · x) · 0)) · 0),

νP(x · ((0 · x) · 0)) = νP(0) ≤ νP(0) = νP((x · ((0 · x) · 0)) · 0).

It follows from (3.2.14) that

µP(0) = µP((x · ((0 · x) · 0)) · 0) ≥ µP(x),

νP(0) = νP((x · ((0 · x) · 0)) · 0) ≤ νP(x).

Thus P satisfies the conditions (3.1.5) and (3.1.6). In case of µP(x · ((y · z) · y)) <

µP((x · ((y · z) · y)) · y) and νP(x · ((y · z) · y)) > νP((x · ((y · z) · y)) · y) are easy to

verify. Next, let x, y, z ∈ X. Then

µP(y) ≥ min{µP((x · ((y · z) · y)) · y), µP(x · ((y · z) · y))} ((3.1.7))

= min{µP(x · ((y · z) · y)), µP(x)}, ((3.2.14) for µP)

νP(y) ≤ max{νP((x · ((y · z) · y)) · y), νP(x · ((y · z) · y))} ((3.1.8))

= max{νP(x · ((y · z) · y)), νP(x)}. ((3.2.14) for νP)

Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X.
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Theorem 3.2.24 If P is a Pythagorean fuzzy set in X satisfying the following

condition:

(∀a, x, y, z ∈ X)


(a ≤ x · (y · z)

⇒ µP(((z · y) · y) · z) ≥ min{µP(a), µP(x)},

(a ≤ x · (y · z)

⇒ νP(((z · y) · y) · z) ≤ max{νP(a), νP(x)}


, (3.2.15)

then P is a Pythagorean fuzzy shift BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy set in X satisfying the condition

(3.2.15). Let x ∈ X. By (BCC-3), we have x ·(x ·(x ·0)) = 0, that is, x ≤ x ·(x ·0).

It follows from (3.2.15) that

µP(0) = µP(((0 · x) · x) · 0) ≥ min{µP(x), µP(x)} = µP(x), ((BCC-2))

νP(0) = νP(((0 · x) · x) · 0) ≤ max{νP(x), νP(x)} = νP(x). ((BCC-2))

Next, let x, y, z ∈ X. By (2.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,

x · (y · z) ≤ x · (y · z). It follows from (3.2.15) that

µP(((z · y) · y) · z) ≥ min{µP(x · (y · z)), µP(x)},

νP(((z · y) · y) · z) ≤ max{νP(x · (y · z)), νP(x)}.

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.2.25 If P is a Pythagorean fuzzy set in X satisfying the conditions
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(3.1.7) and (3.1.8) and the following condition:

(∀x, y, z ∈ X)


µP(x · (y · z)) ≥ µP((x · (y · z)) · (((z · y) · y) · z)

⇒ µP((x · (y · z)) · (((z · y) · y) · z) ≥ µP(x),

νP(x · (y · z)) ≤ νP((x · (y · z)) · (((z · y) · y) · z)

⇒ νP((x · (y · z)) · (((z · y) · y) · z) ≤ νP(x)


, (3.2.16)

then P is a Pythagorean fuzzy shift BCC-filter of X.

Proof. Let P = (µP, νP) be a Pythagorean fuzzy set in X satisfying the conditions

(3.1.7), (3.1.8), and (3.2.16). Let x ∈ X. By (BCC-2) and (BCC-3), we have

µP(x · (x · 0)) = µP(0) ≥ µP(0) = µP((x · (x · 0)) · (((0 · x) · x) · 0),

νP(x · (x · 0)) = νP(0) ≤ νP(0) = νP((x · (x · 0)) · (((0 · x) · x) · 0).

It follows from (3.2.16) that

µP(0) = µP((x · (x · 0)) · (((0 · x) · x) · 0) ≥ µP(x),

νP(0) = νP((x · (x · 0)) · (((0 · x) · x) · 0) ≤ νP(x).

Thus P satisfies the conditions (3.1.5) and (3.1.6). In case of µP(x · (y · z)) <

µP((x · (y · z)) · (((z · y) · y) · z) and νP(x · (y · z)) > νP((x · (y · z)) · (((z · y) · y) · z)

are easy to verify. Next, let x, y, z ∈ X. Then

µP(((z · y) · y) · z)

≥ min{µP((x · (y · z)) · (((z · y) · y) · z), µP(x · (y · z))} ((3.1.7))

= min{µP(x · (y · z)), µP(x)}, ((3.2.16) for µP)

νP(((z · y) · y) · z)

≤ max{νP((x · (y · z)) · (((z · y) · y) · z), νP(x · (y · z))} ((3.1.7))
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= max{νP(x · (y · z)), νP(x)}. ((3.2.16) for µP)

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X.

Proposition 3.2.26 A Pythagorean fuzzy set P = (µP, νP) in X satisfies the

following conditions:

(∀a, x, y, z ∈ X)


a ≤ x · (y · z)

⇒ µP(x · z) ≥ min{µP(a), µP(y)},

a ≤ x · (y · z)

⇒ νP(x · z) ≤ max{νP(a), νP(y)}


, (3.2.17)

if and only if it is a Pythagorean fuzzy BCC-ideal of X.

Proof. Let x ∈ X. By (BCC-3), we have x ≤ x · (x · 0). Then

µP(0) = µP(x · 0) ≥ min{µP(x), µP(x)} = µP(x) ((BCC-3) and (3.2.17))

and

νP(0) = νP(x · 0) ≤ max{νP(x), νP(x)} = νP(x). ((BCC-3) and (3.2.17))

Let x, y, z ∈ X. By (2.0.1), we have x · (y · z) ≤ x · (y · z). Then

µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} ((3.2.17))

and

νP(x · z) ≤ max{νP(x · (y · z)), νP(y)}. ((3.2.17))

Hence, P is a Pythagorean fuzzy BCC-ideal of X.
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Conversely, let a, x, y, z ∈ X be such that a ≤ x · (y · z). By (3.2.1) and

(3.2.1), we have µP(a) ≤ µP(x · (y · z)) and νP(a) ≥ νP(x · (y · z)). Thus

µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} ≥ min{µP(a), µP(y)} ((3.1.15))

and

νP(x · z) ≤ max{νP(x · (y · z)), νP(y)} ≤ max{νP(a), νP(y)}. ((3.1.16))

Proposition 3.2.27 If P = (µP, νP) is a Pythagorean fuzzy BCC-ideal of X,

then

(∀a, x, y, z ∈ X)


a ≤ x · (y · z)

⇒ µP(a · z) ≥ min{µP(x), µP(y)},

a ≤ x · (y · z)

⇒ νP(a · z) ≤ max{νP(x), νP(y)}


, (3.2.18)

Proof. Let a, x, y, z ∈ X such that a ≤ x · (y · z). Then a · (x · (y · z)) = 0, so

µP(a · (y · z)) ≥ min{µP(a · (x · (y · z))), µP(x)}

= min{µP(0), µP(x)}

= µP(x) ((3.1.15))

and

νP(a · (y · z)) ≤ max{νP(a · (x · (y · z))), νP(x)}

= max{νP(0), νP(x)}

= νP(x). ((3.1.16))
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Thus

µP(a · z) ≥ min{µP(a · (y · z)), µP(y)} ≥ min{µP(x), µP(y)} ((3.1.15))

and

νP(a · z) ≤ max{νP(a · (y · z)), νP(y)} ≤ max{νP(x), νP(y)}. ((3.1.16))

Corollary 3.2.28 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.17), then it satisfies the condition (3.2.18).

Proof. It is straightforward by Propositions 3.2.26 and 3.2.27.

Theorem 3.2.29 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

conditions (2.0.14) and (3.2.18), then it satisfies the condition (3.2.17).

Proof. Let a, x, y, z ∈ X be such that a ≤ x · (y · z). By (2.0.14), we have

0 = a · (x · (y · z)) = x · (a · (y · z)), that is, x ≤ a · (y · z). It follows from (3.2.18)

that µP(x · z) ≥ min{µP(a), µP(y)} and νP(x · z) ≤ max{νP(a), νP(y)}.

Theorem 3.2.30 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.18), then it satisfies the condition (3.2.6).

Proof. Let x, y, z ∈ X be such that z ≤ x · y. By (2.0.1) and (2.0.3), we have

0 = z · z ≤ z · (x · y). By (BCC-2) and (3.2.18), we have µP(y) = µP(0 · y) ≥

min{µP(z), µP(x)} and νP(y) = νP(0 · y) ≤ max{νP(z), νP(x)}.

Corollary 3.2.31 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

condition (3.2.17), then it satisfies the condition (3.2.6).

Proof. It is straightforward by Corollary 3.2.28 and Theorem 3.2.30.
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In general, the converse of Theorem 3.2.30 may be not true by the fol-

lowing example.

Example 3.2.32 From Example 3.2.8, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.7 0.3 0.2 0.2

νP 0.3 0.7 0.75 0.75

Then P satisfies the condition (3.2.6) but it does not satisfy the condition (3.2.18).

Indeed, 3 ≤ 1 · (0 · 2) but µP(3 · 2) = µP(2) = 0.2 ̸≥ 0.3 = min{0.3, 0.7} =

min{µP(1), µP(0)} and νP(3 · 2) = νP(2) = 0.75 ̸≤ 0.7 = max{0.7, 0.3} =

max{νP(1), νP(0)}.

The following example shows that Pythagorean fuzzy set in a BCC-

algebra which satisfies the condition (3.2.17) is not constant.

Example 3.2.33 From Example 3.1.22, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 1 0.8 0.5 0.5

νP 0 0.3 0.6 0.6

Then P satisfies the condition (3.2.17) but it is not constant.

Theorem 3.2.34 If P = (µP, νP) is a Pythagorean fuzzy BCC-filter of X satis-

fying the condition (2.0.14), then it is a Pythagorean fuzzy BCC-ideal of X.

Proof. Let P be a Pythagorean fuzzy BCC-filter of X. Then for all x, y, z ∈ X,

µP(x · z) ≥ min{µP(y · (x · z)), µP(y)}
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= min{µP(x · (y · z)), µP(y)} ((3.1.7) and (2.0.14))

and

νP(x · z) ≤ max{νP(y · (x · z)), νP(y)}

= max{νP(x · (y · z)), νP(y)}. ((3.1.8) and (2.0.14))

Hence, P is a Pythagorean fuzzy BCC-ideal of X.

Proposition 3.2.35 A Pythagorean fuzzy set P = (µP, νP) in X satisfies the

following conditions:

(∀a, x, y, z ∈ X)


a ≤ (z · y) · (z · x)

⇒ µP(x) ≥ min{µP(a), µP(y)},

a ≤ (z · y) · (z · x)

⇒ νP(x) ≤ max{νP(a), νP(y)}


, (3.2.19)

if and only if it is a Pythagorean fuzzy strong BCC-ideal of X.

Proof. Let x ∈ X. By (BCC-3), we have x ≤ 0 = x·0 = (0·x)·(0·0). By (3.2.19),

we have µP(0) ≥ min{µP(x), µP(x)} = µP(x) and νP(0) ≤ max{νP(x), νP(x)} =

νP(x). Next, let x, y, z ∈ X. By (2.0.1), we have (z ·y) · (z ·x) ≤ (z ·y) · (z ·x). By

(3.2.19), we have µP(x) ≥ min{µP((z ·y) · (z ·x)), µP(y)} and νP(x) ≤ max{νP((z ·

y) · (z · x)), νP(y)}. Hence, P is a Pythagorean fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem 3.1.2.

Theorem 3.2.36 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

following conditions:

(∀x, y, z ∈ X)

 z ≤ x · y ⇒ µP(z) ≥ min{µP(x), µP(y)},

z ≤ x · y ⇒ νP(z) ≤ max{νP(x), νP(y)}

 , (3.2.20)
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then it satisfies the condition (3.2.3).

Proof. Let x, y, z ∈ X be such that z ≤ x. By (2.0.4), we have x · y ≤ z · y. By

(3.2.20), we have µP(x·y) ≥ min{µP(z), µP(y)} and νP(x·y) ≤ max{νP(z), νP(y)}.

Proposition 3.2.37 A Pythagorean fuzzy set P = (µP, νP) in X satisfies the

condition (3.2.20) if and only if it is a Pythagorean fuzzy strong BCC-ideal of X.

Proof. Let x ∈ X. By (BCC-3), we have x ≤ 0 = 0 · 0. By (3.2.20), we have

µP(x) ≥ min{µP(0), µP(0)} = µP(0) and νP(x) ≤ max{νP(0), νP(0)} = νP(0).

By Theorem 3.2.36, we have P satisfies (3.2.3). Thus P a Pythagorean fuzzy

BCC-subalgebra of X by Proposition 3.2.4. It follows from Proposition 3.2.1

that µP(0) ≥ µP(x) and νP(0) ≤ νP(x), so µP(x) = µP(0) and νP(x) = νP(0) for

all x ∈ X, that is, P is constant. By Theorem 3.1.2, we have P is a Pythagorean

fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem 3.1.2.

Theorem 3.2.38 If P = (µP, νP) is a Pythagorean fuzzy set in X satisfying the

following conditions:

(∀x, y, z ∈ X)

 z ≤ x · y ⇒ µP(z) ≥ µP(y),

z ≤ x · y ⇒ νP(z) ≤ νP(y)

 , (3.2.21)

then it satisfies the condition (3.2.3).

Proof. Let x, y, z ∈ X be such that z ≤ x. By (2.0.4), we have x · y ≤ z · y. It

follows from (3.2.21) that µP(x · y) ≥ µP(y) ≥ min{µP(z), µP(y)} and νP(x · y) ≤

νP(y) ≤ max{νP(z), νP(y)}.

Proposition 3.2.39 A Pythagorean fuzzy set P = (µP, νP) in X satisfies the

condition (3.2.21) if and only if it is a Pythagorean fuzzy strong BCC-ideal of X.
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Proof. Let x ∈ X. By (BCC-3), we have x ≤ 0 = 0 · 0. By (3.2.21), we have

µP(x) ≥ µP(0) and νP(x) ≤ νP(0). By Theorem 3.2.36, we have P satisfies

(3.2.3). Thus P is a Pythagorean fuzzy BCC-subalgebra of X by Proposition

3.2.4. It follows from Proposition 3.2.1 that µP(0) ≥ µP(x) and νP(0) ≤ νP(x),

so µP(x) = µP(0) and νP(x) = νP(0) for all x ∈ X, that is, P is constant. By

Theorem 3.1.2, we have P is a Pythagorean fuzzy strong BCC-ideal of X.

The converse is obvious because P is constant by Theorem 3.1.2.

We get the diagram of sufficient conditions of Pythagorean fuzzy sets in

BCC-algebras, which is shown with Figure 2.
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Figure 2: Properties of Pythagorean fuzzy sets in BCC-algebras

3.3 Upper and lower approximations of Pythagorean fuzzy sets

Definition 3.3.1 Let ρ be an equivalence relation on a nonempty set X and

P = (µP, νP) a Pythagorean fuzzy set in X. The upper approximation is defined

by

ρ+(P) = {(x, µP(x), νP(x)) | x ∈ X},

where µP(x) = sup
a∈(x)ρ

{µP(a)} and νP(x) = inf
a∈(x)ρ

{νP(a)}. The lower approximation

is defined by

ρ−(P) = {(x, µ
P
(x), νP(x)) | x ∈ X},

where µ
P
(x) = inf

a∈(x)ρ
{µP(a)} and νP(x) = sup

a∈(x)ρ
{νP(a)}.

Theorem 3.3.2 Let ρ be an equivalence relation on a nonempty set X and P =

(µP, νP) a Pythagorean fuzzy set in X. Then the following statements hold:

(1) ρ+(P) is a Pythagorean fuzzy set in X, and

(2) ρ−(P) is a Pythagorean fuzzy set in X.

Proof. Let x ∈ X.
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(1) We consider

0 ≤ µP(x)
2 + νP(x)

2

= sup
a∈(x)ρ

{µP(a)}2 + inf
a∈(x)ρ

{νP(a)}2

= sup
a∈(x)ρ

{µP(a)
2}+ inf

a∈(x)ρ
{νP(a)2} (Proposition 2.0.10 (6))

≤ sup
a∈(x)ρ

{µP(a)
2}+ inf

a∈(x)ρ
{1− µP(a)

2}

= sup
a∈(x)ρ

{µP(a)
2}+ 1− sup

a∈(x)ρ
{µP(a)

2} (Proposition 2.0.10 (7))

= 1.

This implies that 0 ≤ µP(x)
2 + νP(x)

2 ≤ 1. Therefore, ρ+(P) is a Pythagorean

fuzzy set in X.

(2) The proof is similar to the proof of (1).

Then we call P that a rough Pythagorean fuzzy set in a set X. Thus we

can denote the upper approximation and the lower approximation by ρ+(P) =

(µP, νP) and ρ−(P) = (µ
P
, νP), respectively.

Proposition 3.3.3 Let P = (µP, νP) and Q = (µQ, νQ) be Pythagorean fuzzy sets

in X. If ρ is an equivalence relation on X, then the following statements hold:

(1) ρ−(P) ⊆ P ⊆ ρ+(P),

(2) P ⊆ Q ⇒ ρ+(P) ⊆ ρ+(Q), ρ−(P) ⊆ ρ−(Q),

(3) ρ+(P ∪Q) = ρ+(P) ∪ ρ+(Q),

(4) ρ+(P ∩Q) ⊆ ρ+(P) ∩ ρ+(Q),

(5) ρ−(P ∪Q) ⊇ ρ−(P) ∪ ρ−(Q), and
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(6) ρ−(P ∩Q) = ρ−(P) ∩ ρ−(Q).

Proof. Let ρ be an equivalence relation on X.

(1) Then for all x ∈ X,

µ
P
(x) = inf

a∈(x)ρ
{µP(a)}

≤ µP(x)

≤ sup
a∈(x)ρ

{µP(a)}

= µP(x)

and

νP(x) = sup
a∈(x)ρ

{νP(a)}

≥ νP(x)

≥ inf
a∈(x)ρ

{νP(a)}

= νP(x).

By Definition 2.0.17 (1), we have ρ−(P) ⊆ P ⊆ ρ+(P).

(2) If P ⊆ Q, then µP(x) ≤ µQ(x) and νP(x) ≥ νQ(x) for all x ∈ X. We

consider

µP(x) = sup
a∈(x)ρ

{µP(a)}

≤ sup
a∈(x)ρ

{µQ(a)} (Proposition 2.0.10 (6))

= µQ(x),
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νP(x) = inf
a∈(x)ρ

{µP(a)}

≥ inf
a∈(x)ρ

{µQ(a)} (Proposition 2.0.10 (8))

= νQ(x),

µ
P
(x) = inf

a∈(x)ρ
{µP(a)}

≤ inf
a∈(x)ρ

{µQ(a)} (Proposition 2.0.10 (8))

= µ
Q
(x),

and

νP(x) = sup
a∈(x)ρ

{µP(a)}

≥ sup
a∈(x)ρ

{µQ(a)} (Proposition 2.0.10 (6))

= νQ(x).

By Definition 2.0.17 (1), we have ρ+(P) ⊆ ρ+(Q) and ρ−(P) ⊆ ρ−(Q).

(3) By Definition 2.0.17 (3), we have P ∪ Q = (µP∪Q, νP∪Q). Then we

know that

ρ+(P ∪Q) = (µP∪Q, νP∪Q)

and

ρ+(P) ∪ ρ+(Q) = (µP ∪ µQ, νP ∩ νQ).

Thus for all x ∈ X,

µP∪Q(x) = sup
a∈(x)ρ

{µP∪Q(a)}
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= sup
a∈(x)ρ

{(µP ∪ µQ)(a)}

= sup
a∈(x)ρ

{max{µP(a), µQ(a)}}

= max{ sup
a∈(x)ρ

{µP(a)}, sup
a∈(x)ρ

{µQ(a)}} (Proposition 2.0.10 (2))

= max{µP(x), µQ(x)}

= (µP ∪ µQ)(x)

and

νP∪Q(x) = inf
a∈(x)ρ

{νP∪Q(a)}

= inf
a∈(x)ρ

{(νP ∩ νQ)(a)}

= inf
a∈(x)ρ

{min{νP(a), νQ(a)}}

= min{ inf
a∈(x)ρ

{νP(a)}, inf
a∈(x)ρ

{νQ(a)}} (Proposition 2.0.10 (1))

= min{νP(x), νQ(x)}

= (νP ∩ νQ)(x).

Hence, ρ+(P ∪Q) = ρ+(P) ∪ ρ+(Q).

(4) By Definition 2.0.17 (4), we have P ∩ Q = (µP∩Q, νP∩Q). Then we

know that

ρ+(P ∩Q) = (µP∩Q, νP∩Q)

and

ρ+(P) ∩ ρ+(Q) = (µP ∩ µQ, νP ∪ νQ).

Thus for all x ∈ X,

µP∩Q(x) = sup
a∈(x)ρ

{µP∩Q(a)}
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= sup
a∈(x)ρ

{(µP ∩ µQ)(a)}

= sup
a∈(x)ρ

{min{µP(a), µQ(a)}}

≤ min{ sup
a∈(x)ρ

{µP(a)}, sup
a∈(x)ρ

{µQ(a)}} (Proposition 2.0.10 (4))

= min{µP(x), µQ(x)}

= (µP ∩ µQ)(x)

and

νP∩Q(x) = inf
a∈(x)ρ

{νP∩Q(a)}

= inf
a∈(x)ρ

{(νP ∪ νQ)(a)}

= inf
a∈(x)ρ

{max{νP(a), νQ(a)}}

≥ max{ inf
a∈(x)ρ

{νP(a)}, inf
a∈(x)ρ

{νQ(a)}} (Proposition 2.0.10 (3))

= max{νP(x), νQ(x)}

= (νP ∪ νQ)(x).

Hence, ρ+(P ∩Q) ⊆ ρ+(P) ∩ ρ+(Q).

(5) By Definition 2.0.17 (3), we have P ∪ Q = (µP∪Q, νP∪Q). Then we

know that

ρ−(P ∪Q) = (µ
P∪Q, νP∪Q)

and

ρ−(P) ∪ ρ−(Q) = (µ
P
∪ µ

Q
, νP ∩ νQ).

Thus for all x ∈ X,

µ
P∪Q(x) = inf

a∈(x)ρ
{µP∪Q(a)}



 

 

 
76

= inf
a∈(x)ρ

{(µP ∪ µQ)(a)}

= inf
a∈(x)ρ

{max{µP(a), µQ(a)}}

≥ max{ inf
a∈(x)ρ

{µP(a)}, inf
a∈(x)ρ

{µQ(a)}} (Proposition 2.0.10 (3))

= max{µ
P
(x), µ

Q
(x)}

= (µ
P
∪ µ

Q
)(x)

and

νP∪Q(x) = sup
a∈(x)ρ

{νP∪Q(a)}

= sup
a∈(x)ρ

{(νP ∩ νQ)(a)}

= sup
a∈(x)ρ

{min{νP(a), νQ(a)}}

≤ min{ sup
a∈(x)ρ

{νP(a)}, sup
a∈(x)ρ

{νQ(a)}} (Proposition 2.0.10 (4))

= min{νP(x), νQ(x)}

= (νP ∩ νQ)(x).

Hence, ρ−(P ∪Q) ⊇ ρ−(P) ∪ ρ−(Q).

(6) By Definition 2.0.17 (4), we have P ∩ Q = (µP∩Q, νP∩Q). Then we

know that

ρ−(P ∩Q) = (µ
P∩Q, νP∩Q)

and

ρ−(P) ∩ ρ−(Q) = (µ
P
∩ µ

Q
, νP ∪ νQ).

Thus for all x ∈ X,

µ
P∩Q(x) = inf

a∈(x)ρ
{µP∩Q(a)}
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= inf
a∈(x)ρ

{(µP ∩ µQ)(a)}

= inf
a∈(x)ρ

{min{µP(a), µQ(a)}}

= min{ inf
a∈(x)ρ

{µP(a)}, inf
a∈(x)ρ

{µQ(a)}} (Proposition 2.0.10 (1))

= min{µ
P
(x), µ

Q
(x)}

= (µ
P
∩ µ

Q
)(x)

and

νP∩Q(x) = sup
a∈(x)ρ

{νP∩Q(a)}

= sup
a∈(x)ρ

{(νP ∪ νQ)(a)}

= sup
a∈(x)ρ

{max{νP(a), νQ(a)}}

= max{ sup
a∈(x)ρ

{νP(a)}, sup
a∈(x)ρ

{νQ(a)}} (Proposition 2.0.10 (2))

= max{νP(x), νQ(x)}

= (νP ∪ νQ)(x).

Hence, ρ−(P ∩Q) = ρ−(P) ∩ ρ−(Q).

Lemma 3.3.4 If ρ is an equivalence relation on a nonempty set X and P =

(µP, νP) a Pythagorean fuzzy set in X, then

(∀x, y ∈ X)(xρy ⇒ µP(x) = µP(y)), (3.3.1)

(∀x, y ∈ X)(xρy ⇒ νP(x) = νP(y)), (3.3.2)

(∀x, y ∈ X)(xρy ⇒ µ
P
(x) = µ

P
(y)), (3.3.3)

(∀x, y ∈ X)(xρy ⇒ νP(x) = νP(y)). (3.3.4)
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Proof. Let x, y ∈ X be such that xρy. Then

µP(x) = sup
a∈(x)ρ

{µP(a)} = sup
b∈(y)ρ

{µP(b)} = µP(y),

νP(x) = inf
a∈(x)ρ

{νP(a)} = inf
b∈(y)ρ

{νP(b)} = νP(y),

µ
P
(x) = inf

a∈(x)ρ
{µP(a)} = inf

b∈(y)ρ
{µP(b)} = µ

P
(y),

νP(x) = sup
a∈(x)ρ

{νP(a)} = sup
b∈(y)ρ

{νP(b)} = νP(y).

We complete the proof.

Theorem 3.3.5 Let ρ be an congruence relation on a BCC-algebra X = (X, ·, 0)

and P = (µP, νP) a Pythagorean fuzzy set in X. Then the following statements

hold:

(1) if P is a Pythagorean fuzzy BCC-subalgebra of X and ρ is complete, then

ρ−(P) is a Pythagorean fuzzy BCC-subalgebra of X,

(2) if P is a Pythagorean fuzzy near BCC-filter of X and ρ is complete, then

ρ−(P) is a Pythagorean fuzzy near BCC-filter of X,

(3) if P is a Pythagorean fuzzy BCC-filter of X and (0)ρ = {0}, then ρ−(P) is

a Pythagorean fuzzy BCC-filter of X,

(4) if P is a Pythagorean fuzzy implicative BCC-filter of X, (0)ρ = {0}, and ρ

is complete, then ρ−(P) is a Pythagorean fuzzy implicative BCC-filter of X,

(5) if P is a Pythagorean fuzzy comparative BCC-filter of X and (0)ρ = {0},

then ρ−(P) is a Pythagorean fuzzy comparative BCC-filter of X,

(6) if P is a Pythagorean fuzzy shift BCC-filter of X, (0)ρ = {0}, and ρ is

complete, then ρ−(P) is a Pythagorean fuzzy shift BCC-filter of X.

(7) if P is a Pythagorean fuzzy BCC-ideal of X, (0)ρ = {0}, and ρ is complete,

then ρ−(P) is a Pythagorean fuzzy BCC-ideal of X, and
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(8) if P is a Pythagorean fuzzy strong BCC-ideal of X, then ρ−(P) is a Pythago-

rean fuzzy strong BCC-ideal of X.

Proof. (1) Assume that P is a Pythagorean fuzzy BCC-subalgebra of X and ρ

complete. Then for all x, y ∈ X,

µ
P
(x · y) = inf

c∈(x·y)ρ
{µP(c)}

= inf
c∈(x)ρ(y)ρ

{µP(c)}

= inf
a·b∈(x)ρ(y)ρ

{µP(a · b)}

≥ inf
a∈(x)ρ,b∈(y)ρ

{min{µP(a), µP(b)}} ((3.1.1))

= min{ inf
a∈(x)ρ

{µP(a)}, inf
b∈(y)ρ

{µP(b)}} (Proposition 2.0.10 (1))

= min{µ
P
(x), µ

P
(y)}

and

νP(x · y) = sup
c∈(x·y)ρ

{νP(c)}

= sup
c∈(x)ρ(y)ρ

{νP(c)}

= sup
a·b∈(x)ρ(y)ρ

{νP(a · b)}

≤ sup
a∈(x)ρ,b∈(y)ρ

{max{νP(a), νP(b)}} ((3.1.2))

= max{ sup
a∈(x)ρ

{νP(a)}, sup
b∈(y)ρ

{νP(b)}} (Proposition 2.0.10 (2))

= max{νP(x), νP(y)}.

Hence, ρ−(P) is a Pythagorean fuzzy BCC-subalgebra of X.

(2) Assume that P is a Pythagorean fuzzy near BCC-filter of X and ρ
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complete. Then for all x, y ∈ X,

µ
P
(x · y) = inf

c∈(x·y)ρ
{µP(c)}

= inf
c∈(x)ρ(y)ρ

{µP(c)}

= inf
a·b∈(x)ρ(y)ρ

{µP(a · b)}

≥ inf
b∈(y)ρ

{µP(b)} ((3.1.3))

= µ
P
(y)

and

νP(x · y) = sup
c∈(x·y)ρ

{νP(c)}

= sup
c∈(x)ρ(y)ρ

{νP(c)}

= sup
a·b∈(x)ρ(y)ρ

{νP(a · b)}

≤ sup
b∈(y)ρ

{νP(b)} ((3.1.4))

= νP(y).

Hence, ρ−(P) is a Pythagorean fuzzy near BCC-filter of X.

(3) Assume that P is a Pythagorean fuzzy BCC-filter of X and (0)ρ =

{0}. Then for all x, y ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = µP(0) ≥ µP(b) ≥ inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = νP(0) ≤ νP(b) ≤ sup
b∈(x)ρ

{νP(b)} = νP(x),

µ
P
(y) = inf

b∈(y)ρ
{µP(b)}
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≥ inf
a·b∈(x)ρ(y)ρ,a∈(x)ρ

{min{µP(a · b), µP(a)}} ((3.1.7))

≥ inf
a·b∈(x·y)ρ,a∈(x)ρ

{min{µP(a · b), µP(a)}}

= min{ inf
a·b∈(x·y)ρ

{µP(a · b)}, inf
a∈(x)ρ

{µP(a)}} (Proposition 2.0.10 (1))

= min{µ
P
(x · y), µ

P
(x)},

and

νP(y) = sup
b∈(y)ρ

{νP(b)}

≤ sup
a·b∈(x)ρ(y)ρ,a∈(x)ρ

{max{νP(a · b), νP(a)}} ((3.1.8))

≤ sup
a·b∈(x·y)ρ,a∈(x)ρ

{max{νP(a · b), νP(a)}}

= max{ sup
a·b∈(x·y)ρ

{νP(a · b)}, sup
a∈(x)ρ

{νP(a)}} (Proposition 2.0.10 (2))

= max{νP(x · y), νP(x)}.

Hence, ρ−(P) is a Pythagorean fuzzy BCC-filter of X.

(4) Assume that P is a Pythagorean fuzzy implicative BCC-filter of X,

(0)ρ = {0}, and ρ is complete. Then for all x, y ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = µP(0) ≥ µP(x) ≥ inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = νP(0) ≤ νP(x) ≤ sup
b∈(x)ρ

{νP(b)} = νP(x),

µ
P
(x · z)

= inf
d∈(x·z)ρ

{µP(d)}

= inf
d∈(x)ρ(z)ρ

{µP(d)} (ρ is complete)
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= inf
a·c∈(x)ρ(z)ρ

{µP(a · c)}

≥ inf
a·(b·c)∈(x)ρ((y)ρ(z)ρ),a·b∈(x)ρ(y)ρ

{min{µP(a · (b · c)), µP(a · b)}} ((3.1.9))

= inf
a·(b·c)∈(x·(y·z))ρ,a·b∈(x·y)ρ

{min{µP(a · (b · c)), µP(a · b)}} (ρ is complete)

= min{ inf
a·(b·c)∈(x·(y·z))ρ

µP(a · (b · c)), inf
a·b∈(x·y)ρ

{µP(a · b)}} (Proposition 2.0.10 (1))

= min{µ
P
(x · (y · z)), µ

P
(x · y)},

and

νP(x · z)

= sup
d∈(x·z)ρ

{νP(d)}

= sup
d∈(x)ρ(z)ρ

{νP(d)} (ρ is complete)

= sup
a·c∈(x)ρ(z)ρ

{νP(a · c)}

≤ sup
a·(b·c)∈(x)ρ((y)ρ(z)ρ),a·b∈(x)ρ(y)ρ

{max{νP(a · (b · c)), νP(a · b)}} ((3.1.10))

= sup
a·(b·c)∈(x·(y·z))ρ,a·b∈(x·y)ρ

{max{νP(a · (b · c)), νP(a · b)}} (ρ is complete)

= max{ sup
a·(b·c)∈(x·(y·z))ρ

νP(a · (b · c)), sup
a·b∈(x·y)ρ

{νP(a · b)}} (Proposition 2.0.10 (2))

= max{νP(x · (y · z)), νP(x · y)}.

Hence, ρ−(P) is a Pythagorean fuzzy implicative BCC-filter of X.

(5) Assume that P is a Pythagorean fuzzy comparative BCC-filter of X

and (0)ρ = {0}. Then for all x, y ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = µP(0) ≥ µP(x) ≥ inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = νP(0) ≤ νP(x) ≤ sup
b∈(x)ρ

{νP(b)} = νP(x),
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µ
P
(y)

= inf
b∈(y)ρ

{µP(b)}

≥ inf
a·((b·c)·b)∈(x)ρ(((y)ρ(z)ρ)(y)ρ),a∈(x)ρ

{min{µP(a · ((b · c) · b)), µP(a)}} ((3.1.11))

≥ inf
a·((b·c)·b)∈(x·((y·z)·y))ρ,a∈(x)ρ

{min{µP(a · ((b · c) · b)), µP(a)}} (ρ is congruence)

= min{ inf
a·((b·c)·b)∈(x·((y·z)·y))ρ

{µP(a · ((b · c) · b))}

, inf
a∈(x)ρ

{µP(a)}} (Proposition 2.0.10 (1))

= min{µ
P
(x · ((y · z) · y)), µ

P
(x)},

and

νP(y)

= sup
b∈(y)ρ

{νP(b)}

≤ sup
a·((b·c)·b)∈(x)ρ(((y)ρ(z)ρ)(y)ρ),a∈(x)ρ

{max{νP(a · ((b · c) · b)), νP(a)}} ((3.1.12))

≤ sup
a·((b·c)·b)∈(x·((y·z)·y))ρ,a∈(x)ρ

{max{νP(a · ((b · c) · b)), νP(a)}} (ρ is congruence)

= max{ sup
a·((b·c)·b)∈(x·((y·z)·y))ρ

{νP(a · ((b · c) · b))}

, sup
a∈(x)ρ

{νP(a)}} (Proposition 2.0.10 (2))

= max{νP(x · ((y · z) · y)), νP(x)}.

Hence, ρ−(P) is a Pythagorean fuzzy comparative BCC-filter of X.

(6) Assume that P is a Pythagorean fuzzy shift BCC-filter of X, (0)ρ =
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{0}, and ρ is complete. Then for all x, y ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = µP(0) ≥ µP(x) ≥ inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = νP(0) ≤ νP(x) ≤ sup
b∈(x)ρ

{νP(b)} = νP(x),

µ
P
(((z · y) · y) · z)

= inf
d∈(((z·y)·y)·z)ρ

{µP(d)}

= inf
d∈(((z)ρ(y)ρ)(y)ρ)(z)ρ

{µP(d)} (ρ is complete)

= inf
((c·b)·b)·c∈(((z)ρ(y)ρ)(y)ρ)(z)ρ

{µP(((c · b) · b) · c)}

≥ inf
a·(b·c)∈(x)ρ((y)ρ(z)ρ),a∈(x)ρ

{min{µP(a · (b · c)), µP(a)}} ((3.1.13))

= inf
a·(b·c)∈(x·(y·z))ρ,a·b∈(x·y)ρ

{min{µP(a · (b · c)), µP(a · b)}} (ρ is complete)

= min{ inf
a·(b·c)∈(x·(y·z))ρ

µP(a · (b · c)), inf
a∈(x)ρ

{µP(a)}} (Proposition 2.0.10 (1))

= min{µ
P
(x · (y · z)), µ

P
(x)},

and

νP(((z · y) · y) · z)

= sup
d∈(((z·y)·y)·z)ρ

{νP(d)}

= sup
d∈(((z)ρ(y)ρ)(y)ρ)(z)ρ

{νP(d)} (ρ is complete)

= sup
((c·b)·b)·c∈(((z)ρ(y)ρ)(y)ρ)(z)ρ

{νP(((c · b) · b) · c)}

≤ sup
a·(b·c)∈(x)ρ((y)ρ(z)ρ),a∈(x)ρ

{max{νP(a · (b · c)), νP(a)}} ((3.1.14))

= sup
a·(b·c)∈(x·(y·z))ρ,a∈(x)ρ

{max{νP(a · (b · c)), νP(a)}} (ρ is complete)
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= max{ sup
a·(b·c)∈(x·(y·z))ρ

νP(a · (b · c)), sup
a∈(x)ρ

{νP(a)}} (Proposition 2.0.10 (2))

= max{νP(x · (y · z)), νP(x)}.

Hence, ρ−(P) is a Pythagorean fuzzy shift BCC-filter of X.

(7) Assume that P is a Pythagorean fuzzy BCC-ideal of X, ρ a complete,

and (0)ρ = {0}. Then for all x, y, z ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = µP(0) ≥ µP(b) ≥ inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = νP(0) ≤ νP(b) ≤ sup
b∈(x)ρ

{νP(b)} = νP(x),

µ
P
(x · z)

= inf
d∈(x·z)ρ

{µP(d)}

= inf
d∈(x)ρ(z)ρ

{µP(d)}

= inf
a·c∈(x)ρ(z)ρ

{µP(a · c)}

≥ inf
a·(b·c)∈(x)ρ((y)ρ(z)ρ),b∈(y)ρ

{min{µP(a · (b · c)), µP(b)}} ((3.1.15))

= inf
a·(b·c)∈(x·(y·z))ρ,b∈(y)ρ

{min{µP(a · (b · c)), µP(b)}}

= min{ inf
a·(b·c)∈(x·(y·z))ρ

{µP(a · (b · c))}, inf
b∈(y)ρ

{µP(b)}} (Proposition 2.0.10 (1))

= min{µ
P
(x · (y · z)), µ

P
(y)},

and

νP(x · z)

= sup
d∈(x·z)ρ

{νP(d)}
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= sup
d∈(x)ρ(z)ρ

{νP(d)}

= sup
a·c∈(x)ρ(z)ρ

{νP(a · c)}

≤ sup
a·(b·c)∈(x)ρ((y)ρ(z)ρ),b∈(y)ρ

{max{νP(a · (b · c)), νP(b)}} ((3.1.16))

= sup
a·(b·c)∈(x·(y·z))ρ,b∈(y)ρ

{max{νP(a · (b · c)), νP(b)}}

= max{ sup
a·(b·c)∈(x·(y·z))ρ

{νP(a · (b · c))}, sup
b∈(y)ρ

{νP(b)}} (Proposition 2.0.10 (2))

= max{νP(x · (y · z)), νP(y)}.

Hence, ρ−(P) is a Pythagorean fuzzy BCC-ideal of X.

(8) Assume that P is a Pythagorean fuzzy strong BCC-ideal of X. By

Theorem 3.1.2, we have P is constant. Then for all x, y, z ∈ X,

µ
P
(0) = inf

a∈(0)ρ
{µP(a)} = inf

b∈(x)ρ
{µP(b)} = µ

P
(x),

νP(0) = sup
a∈(0)ρ

{νP(a)} = sup
b∈(x)ρ

{νP(b)} = νP(x),

µ
P
(x)

= inf
a∈(x)ρ

{µP(a)}

≥ inf
(c·b)·(c·a)∈((z)ρ(y)ρ)((z)ρ(x)ρ),b∈(y)ρ

{min{µP((c · b) · (c · a)), µP(b)}} ((3.1.17))

≥ inf
(c·b)·(c·a)∈((z·y)·(z·x))ρ,b∈(y)ρ

{min{µP((c · b) · (c · a)), µP(b)}}

= min{ inf
(c·b)·(c·a)∈((z·y)·(z·x))ρ

{µP((c · b) · (c · a))}

, inf
b∈(y)ρ

{µP(b)}} (Proposition 2.0.10 (1))

= min{µ
P
((z · y) · (z · x)), µ

P
(y)},
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and

νP(x)

= sup
a∈(x)ρ

{νP(a)}

≤ sup
(c·b)·(c·a)∈((z)ρ(y)ρ)((z)ρ(x)ρ),b∈(y)ρ

{max{νP((c · b) · (c · a)), νP(b)}} ((3.1.18))

≤ sup
(c·b)·(c·a)∈((z·y)·(z·x))ρ,b∈(y)ρ

{max{νP((c · b) · (c · a)), νP(b)}}

= max{ sup
(c·b)·(c·a)∈((z·y)·(z·x))ρ

{νP((c · b) · (c · a))}

, sup
b∈(y)ρ

{νP(b)}} (Proposition 2.0.10 (2))

= max{νP((z · y) · (z · x)), νP(y)}.

Hence, ρ−(P) is a Pythagorean fuzzy strong BCC-ideal of X.

The following example shows that Theorem 3.3.5 (3) may be not true if

(0)ρ ̸= {0}.

Example 3.3.6 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 0

2 0 1 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function
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µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.7 0.4 0.6 0.6

νP 0.2 0.6 0.3 0.3

Then P = (µP, νP) is a Pythagorean fuzzy BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 3), (3, 0)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (1)ρ = (3)ρ = {0, 1, 3}, (2)ρ = {2}.

Since µ
P
(0) = min{µP(0), µP(1), µP(3)} = min{0.7, 0.4, 0.6} = 0.4 ̸≥ 0.6 =

µP(2) = µ
P
(2) and νP(0) = max{νP(0), νP(1), νP(3)} = max{0.2, 0.6, 0.3} =

0.6 ̸≤ 0.3 = νP(2) = νP(2), we have ρ
−(P) is not a Pythagorean fuzzy BCC-filter

of X.

The following example shows that Theorem 3.3.5 (4) may be not true if

(0)ρ ̸= {0} and ρ is not complete.

Example 3.3.7 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 0

2 0 1 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function
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µP and the non-membership function νP as follows:

X 0 1 2 3

µP 1 0.1 0.3 0.3

νP 0 0.5 0.2 0.2

Then P = (µP, νP) is a Pythagorean fuzzy implicative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 3), (3, 0)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (1)ρ = (3)ρ = {0, 1, 3}, (2)ρ = {2}.

But ρ is not complete because

{0} = {2}{2} = (2)ρ(2)ρ ̸= (2 · 2)ρ = (0)ρ = {0, 1, 3},

Since µ
P
(0) = min{µP(0), µP(1), µP(3)} = min{1, 0.1, 0.3} = 0.1 ̸≥ 0.3 = µP(2) =

µ
P
(2) and νP(0) = max{νP(0), νP(1), νP(3)} = max{0, 0.5, 0.2} = 0 ̸≤ 0.2 =

νP(2) = νP(2), we have ρ−(P) is not a Pythagorean fuzzy implicative BCC-filter

of X.

The following example shows that Theorem 3.3.5 (5) may be not true if

(0)ρ ̸= {0} and ρ is not complete.

Example 3.3.8 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.8 0.3 0.5 0.8

νP 0.2 0.9 0.7 0.2

Then P = (µP, νP) is a Pythagorean fuzzy comparative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 2), (2, 0)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (1)ρ = {1}, (3)ρ = {3}.

But ρ is not complete because

{0} = {1}{1} = (1)ρ(1)ρ ̸= (1 · 1)ρ = (0)ρ = {0, 2},

Since µ
P
(0) = min{µP(0), µP(2)} = min{0.8, 0.5} = 0.5 ̸≥ 0.8 = µP(3) = µ

P
(3)

and νP(0) = max{νP(0), νP(2)} = max{0.2, 0.7} = 0.7 ̸≤ 0.2 = νP(3) = νP(3),

we have ρ−(P) is not a Pythagorean fuzzy comparative BCC-filter of X.



 

 

 
91

The following example shows that Theorem 3.3.5 (6) may be not true if

(0)ρ ̸= {0} and ρ is not complete.

Example 3.3.9 By Example 3.3.8, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 1 0.2 0.1 0.5

νP 0 0.6 0.9 0.4

Then P = (µP, νP) is a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 2), (2, 0)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (1)ρ = {1}, (3)ρ = {3}.

But ρ is not complete because

{0} = {3}{3} = (3)ρ(3)ρ ̸= (3 · 3)ρ = (0)ρ = {0, 2},

Since µ
P
(0) = min{µP(0), µP(2)} = min{1, 0.1} = 0.1 ̸≥ 0.2 = µP(1) = µ

P
(1)

and νP(0) = max{νP(0), νP(2)} = max{0, 0.9} = 0.9 ̸≤ 0.4 = νP(3) = νP(3), we

have ρ−(P) is not a Pythagorean fuzzy shift BCC-filter of X.

The following example shows that Theorem 3.3.5 (7) may be not true if

(0)ρ ̸= {0} and ρ is not complete.

Example 3.3.10 From Example 3.1.22, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP
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as follows:

X 0 1 2 3

µP 1 0.2 0.1 0.5

νP 0 0.6 0.9 0.4

Then P = (µP, νP) is a Pythagorean fuzzy BCC-ideal of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 2), (2, 0)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (1)ρ = {1}, (3)ρ = {3}.

Since µ
P
(0) = min{µP(0), µP(2)} = min{1, 0.1} = 0.1 ̸≥ 0.2 = µP(1) = µ

P
(1)

and νP(0) = max{νP(0), νP(2)} = max{0, 0.9} = 0.9 ̸≤ 0.6 = νP(1) = νP(1), we

have ρ−(P) is not a Pythagorean fuzzy BCC-ideal of X.

Open Problem. Is the lower approximation ρ−(P) a Pythagorean fuzzy

BCC-ideal of X if P is a Pythagorean fuzzy BCC-ideal, (0)ρ ̸= {0}, and ρ is

complete?

Lemma 3.3.11 If ρ is an congruence relation on a BCC-algebra X = (X, ·, 0)

and P = (µP, νP) a Pythagorean fuzzy BCC-subalgebra of X, then the upper

approximation ρ+(P) satisfies the following conditions:

(∀x ∈ X)(µP(0) ≥ µP(x)), (3.3.5)

(∀x ∈ X)(νP(0) ≤ νP(x)). (3.3.6)

Proof. Let x ∈ X. Then

µP(0) = sup
a∈(0)ρ

{µP(a)}
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≥ µP(0)

≥ sup
b∈(x)ρ

{µP(b)} ((3.1.5))

= µP(x)

and

νP(0) = inf
a∈(0)ρ

{νP(a)}

≤ νP(0)

≤ inf
b∈(x)ρ

{νP(b)} ((3.1.6))

= νP(x).

Theorem 3.3.12 Let ρ be an congruence relation on a BCC-algebra X = (X, ·, 0)

and P = (µP, νP) a Pythagorean fuzzy set in X. Then the following statements

hold:

(1) If P is a Pythagorean fuzzy BCC-subalgebra of X, then ρ+(P) is a Pythago-

rean fuzzy BCC-subalgebra of X,

(2) If P is a Pythagorean fuzzy near BCC-filter of X, then ρ+(P) is a Pythago-

rean fuzzy near BCC-filter of X, and

(3) If P is a Pythagorean fuzzy strong BCC-ideal of X, then ρ+(P) is a Pythago-

rean fuzzy strong BCC-ideal of X.

Proof. (1) Assume that P is a Pythagorean fuzzy BCC-subalgebra of X. Then

for all x, y ∈ X,
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Case 1: x = y. Then

µP(x · y) = µP(0) ((2.0.1))

≥ µP(x) ((3.3.5))

≥ min{µP(x), µP(y)}

and

νP(x · y) = νP(0) ((2.0.1))

≤ νP(x) ((3.3.6))

≤ max{νP(x), νP(y)}.

Case 2: x ̸= y.

Case 2.1: x · y = x or y. It is sufficient to assume that x · y = x. Then

µP(x · y) = µP(x) ≥ min{µP(x), µP(y)}

and

νP(x · y) = νP(x) ≤ max{νP(x), νP(y)}.

Case 2.2: x · y ̸= x and x · y ̸= y. Assume that there exists z ∈ X be

such that x · y = z. If zρ0, then

µP(x · y) = µP(z) = µP(0) ≥ min{µP(x), µP(y)} ((3.3.1))

and

νP(x · y) = νP(z) = νP(0) ≤ max{νP(x), νP(y)}. ((3.3.2))
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If xρ0 or yρ0, it is sufficient to assume that xρ0. Since ρ is a congruence

relation on X, we have xyρ0y, that is, zρy. Therefore,

µP(x · y) = µP(z)

= µP(y) ((3.3.1))

= min{µP(0), µP(y)} ((3.3.5))

= min{µP(x), µP(y)} ((3.3.1))

and

νP(x · y) = νP(z)

= νP(y) ((3.3.2))

= min{νP(0), νP(y)} ((3.3.6))

= max{νP(x), νP(y)}. ((3.3.2))

Hence, ρ+(P) is a Pythagorean fuzzy BCC-subalgebra of X.

(2) Assume that P is a Pythagorean fuzzy near BCC-filter of X. Then

for all x, y ∈ X,

µP(x · y) = sup
c∈(x·y)ρ

{µP(c)}

≥ sup
c∈(x)ρ(y)ρ

{µP(c)}

= sup
a·b∈(x)ρ(y)ρ

{µP(a · b)}

≥ sup
b∈(y)ρ

{µP(b)} ((3.1.3))

= µP(y)
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and

νP(x · y) = inf
c∈(x·y)ρ

{νP(c)}

≤ inf
c∈(x)ρ(y)ρ

{νP(c)}

= inf
a·b∈(x)ρ(y)ρ

{νP(a · b)}

≤ inf
b∈(y)ρ

{νP(b)} ((3.1.4))

= νP(y).

Hence, ρ+(P) is a Pythagorean fuzzy near BCC-filter of X.

(3) Assume that P is a Pythagorean fuzzy strong BCC-ideal of X. By

Theorem 3.1.2, we have P is constant. Then for all x, y, z ∈ X,

µP(0) = sup
a∈(0)ρ

{µP(a)} = sup
b∈(x)ρ

{µP(b)} = µP(x),

νP(0) = inf
a∈(0)ρ

{νP(a)} = inf
b∈(x)ρ

{νP(b)} = νP(x),

µP(x)

= sup
a∈(x)ρ

{µP(a)}

≥ sup
(c·b)·(c·a)∈((z)ρ(y)ρ)((z)ρ(x)ρ),b∈(y)ρ

{min{µP((c · b) · (c · a)), µP(b)}} ((3.1.17))

= sup
(c·b)·(c·a)∈((z·y)·(z·x))ρ,b∈(y)ρ

{min{µP((c · b) · (c · a)), µP(b)}}

= min{ sup
(c·b)·(c·a)∈((z·y)·(z·x))ρ

{µP((c · b) · (c · a))}, sup
b∈(y)ρ

{µP(b)}} (P is constant)

= min{µP((z · y) · (z · x)), µP(y)},
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and

νP(x)

= inf
a∈(x)ρ

{νP(a)}

≤ inf
(c·b)·(c·a)∈((z)ρ(y)ρ)((z)ρ(x)ρ),b∈(y)ρ

{max{νP((c · b) · (c · a)), νP(b)}} ((3.1.18))

= inf
(c·b)·(c·a)∈((z·y)·(z·x))ρ,b∈(y)ρ

{max{νP((c · b) · (c · a)), νP(b)}}

= max{ inf
(c·b)·(c·a)∈((z·y)·(z·x))ρ

{νP((c · b) · (c · a))}, inf
b∈(y)ρ

{νP(b)}} (P is constant)

= max{νP((z · y) · (z · x)), νP(y)}.

Hence, ρ+(P) is a Pythagorean fuzzy strong BCC-ideal of X.

The following example shows that if P is a Pythagorean fuzzy BCC-filter

of X, then the upper approximation ρ+(P) is not a Pythagorean fuzzy BCC-filter

in general.

Example 3.3.13 From Example 3.2.8, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.6 0.5 0.3 0.3

νP 0.3 0.4 0.7 0.7

Then P = (µP, νP) is a Pythagorean fuzzy BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (3, 0), (0, 3)}.

Then ρ is a congruence relation on X. Thus

(0)ρ = (3)ρ = {0, 3}, (1)ρ = {1}, (2)ρ = {2}.
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Since µP(2) = µP(2) = 0.3 ̸≥ 0.5 = min{max{µP(0), µP(3)}, µP(1)}} = min{µP(3)

, µP(1)} = min{µP(1 ·2), µP(1)}. we have ρ+(P) is not a Pythagorean fuzzy BCC-

filter of X.

Open Problem. Is the upper approximation ρ+(P) a Pythagorean fuzzy

BCC-filter of X if P is a Pythagorean fuzzy BCC-filter of X?

By Theorem 3.3.5, we discussed about relation between Pythagorean

fuzzy sets and lower approximations. Next, we study relation between Pythago-

rean fuzzy sets and upper approximations. We found the relation of them cannot

prove in the same direction with Theorem 3.3.5. Hence, we assume that ρ be an

equivalence relation on X and P = (µP, νP) a Pythagorean fuzzy set in X, then

the following examples show that if P is a Pythagorean fuzzy implicative (resp.,

comparative, shift) BCC-filter of X, then the upper approximation ρ+(P) is not

a Pythagorean fuzzy implicative (resp., comparative, shift) BCC-filter in general.

Example 3.3.14 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 0 0 0

3 0 1 1 0

We define a Pythagorean fuzzy set P = (µP, νP) with the membership function

µP and the non-membership function νP as follows:

X 0 1 2 3

µP 0.6 0.5 0.3 0.3

νP 0.4 0.5 0.7 0.7
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Then P = (µP, νP) is a Pythagorean fuzzy implicative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (3, 0)}.

Then ρ is an equivalence relation on X. Thus

(0)ρ = (3)ρ = {0, 3}, (1)ρ = {1}, (2)ρ = {2}.

Since µP(0 · 2) = µP(2) = 0.3 ≱ 0.5 = min{0.6, 0.5} = min{max{0.6, 0.3}, 0.5} =

min{µP(3), µP(1)} = min{µP(0 · (1 · 2)), µP(0 · 1)}, we have ρ+(P) is not a

Pythagorean fuzzy implicative BCC-filter of X.

Example 3.3.15 From Example 3.3.14, we define a Pythagorean fuzzy set P =

(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.8 0.2 0.1 0.1

νP 0.2 0.6 0.9 0.9

Then P = (µP, νP) is a Pythagorean fuzzy comparative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (3, 0)}.

Then ρ is an equivalence relation on X. Thus

(0)ρ = (3)ρ = {0, 3}, (1)ρ = {1}, (2)ρ = {2}.

Since µP(2) = 0.1 ≱ 0.2 = min{0.8, 0.2} = min{max{0.8, 0.1}, 0.2} = min{µP(3)

, µP(1)} = min{µP(1 · ((2 · 3) · 2)), µP(1)}, we have ρ+(P) is not a Pythagorean

fuzzy comparative BCC-filter of X.

Example 3.3.16 From Example 3.3.14, we define a Pythagorean fuzzy set P =
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(µP, νP) with the membership function µP and the non-membership function νP

as follows:

X 0 1 2 3

µP 0.9 0.8 0.2 0.2

νP 0.3 0.4 08 0.8

Then P = (µP, νP) is a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (3, 0)}.

Then ρ is an equivalence relation on X. Thus

(0)ρ = (3)ρ = {0, 3}, (1)ρ = {1}, (2)ρ = {2}.

Since µP(((2 ·0) ·0) ·2) = µP(2) = 0.2 ≱ 0.8 = min{0.9, 0.8} = min{max{0.9, 0.2}

, 0.8} = min{µP(3), µP(1)} = min{µP(1 · (0 · 2)), µP(1)}, we have ρ+(P) is not a

Pythagorean fuzzy shift BCC-filter of X.

Open Problem. Is the upper approximation ρ+(P) a Pythagorean fuzzy

implicative (resp., comparative, shift) BCC-filter of X if P is a Pythagorean fuzzy

implicative (resp., comparative, shift) BCC-filter of X and ρ is congruence?

3.4 t-Level subsets of Pythagorean fuzzy sets

In this section, we shall discuss the relationships between Pythagorean

fuzzy BCC-subalgebras (Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy

BCC-filters, Pythagorean fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-

ideals) of BCC-algebras and their t-level subsets.

Definition 3.4.1 [47] Let F be a fuzzy set with the membership function µF in
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X. The sets

U(µF, t) = {x ∈ X | µF(x) ≥ t},

U+(µF, t) = {x ∈ X | µF(x) > t},

L(µF, t) = {x ∈ X | µF(x) ≤ t},

L−(µF, t) = {x ∈ X | µF(x) < t},

E(µF, t) = {x ∈ X | µF(x) = t}

are referred to as an upper t-level subset, an upper t-strong level subset, a lower

t-level subset, a lower t-strong level subset, and an equal t-level subset of F, re-

spectively, for any t ∈ [0, 1].

Theorem 3.4.2 P is a Pythagorean fuzzy BCC-subalgebra of X if and only if

U(µP, t) and L(νP, t) are, if the sets are nonempty, BCC-subalgebras of X for

every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-subalgebra of X. Let

t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y ∈ X. Then

x, y ∈ U(µP, t) ⇒ µP(x) ≥ t, µP(y) ≥ t

⇒ min{µP(x), µP(y)} ≥ t

⇒ µP(x · y) ≥ min{µP(x), µP(y)} ≥ t ((3.1.1))

⇒ x · y ∈ U(µP, t)

and

x, y ∈ L(νP, t) ⇒ νP(x) ≤ t, νP(y) ≤ t

⇒ max{µP(x), νP(y)} ≤ t

⇒ νP(x · y) ≤ max{νP(x), νP(y)} ≤ t ((3.1.2))
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⇒ x · y ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are BCC-subalgebras of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are BCC-

subalge-bras of X if the sets are nonempty. Let x, y ∈ X.

Choose t = min{µP(x), µP(y)} ∈ [0, 1]. Then µP(x) ≥ t and µP(y) ≥ t.

Thus x, y ∈ U(µP, t) ̸= ∅. As a hypothesis, we get U(µP, t) is a BCC-subalgebra

of X and so x · y ∈ U(µP, t). Thus µP(x · y) ≥ t = min{µP(x), µP(y)}.

Choose t = max{νP(x), νP(y)} ∈ [0, 1]. Then νP(x) ≤ t and νP(y) ≤ t.

Thus x, y ∈ L(νP, t) ̸= ∅. As a hypothesis, we get L(νP, t) is a BCC-subalgebra

of X and so x · y ∈ U(νP, t). Thus νP(x · y) ≤ t = max{νP(x), νP(y)}.

Hence, P is a Pythagorean fuzzy BCC-subalgebra of X.

Theorem 3.4.3 P is a Pythagorean fuzzy BCC-subalgebra of X if and only if

U+(µP, t) and L−(νP, t) are, if the sets are nonempty, BCC-subalgebras of X for

every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-subalgebra of X. Let

t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y ∈ X. Then

x, y ∈ U+(µP, t) ⇒ µP(x) > t, µP(y) > t

⇒ min{µP(x), µP(y)} > t

⇒ µP(x · y) ≥ min{µP(x), µP(y)} > t ((3.1.1))

⇒ x · y ∈ U+(µP, t)
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and

x, y ∈ L−(νP, t) ⇒ νP(x) < t, νP(y) < t

⇒ max{µP(x), νP(y)} < t

⇒ νP(x · y) ≤ max{νP(x), νP(y)} < t ((3.1.2))

⇒ x · y ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are BCC-subalgebras of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are BCC-

subalgebras of X if the sets are nonempty.

Suppose there exist x, y ∈ X such that µP(x · y) < min{µP(x), µP(y)}.

Choose t = µP(x · y) ∈ [0, 1]. Then µP(x) > t and µP(y) > t. Thus x, y ∈

U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is a BCC-subalgebra of X and

so x · y ∈ U+(µP, t). Thus µP(x · y) > t = µP(x · y), a contradiction. Hence,

µP(x · y) ≥ min{µP(x), µP(y)} for all x, y ∈ X.

Suppose there exist x, y ∈ X such that νP(x · y) > max{νP(x), νP(y)}.

Choose t = νP(x · y) ∈ [0, 1]. Then νP(x) < t and νP(y) < t. Thus x, y ∈

L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is a BCC-subalgebra of X and

so x · y ∈ L−(νP, t). Thus νP(x · y) < t = νP(x · y), a contradiction. Hence,

νP(x · y) ≤ max{νP(x), νP(y)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy BCC-subalgebra of X.

Theorem 3.4.4 P is a Pythagorean fuzzy near BCC-filter of X if and only if

U(µP, t) and L(νP, t) are, if the sets are nonempty, near BCC-filers for every

t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy near BCC-filter of X. Let
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t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y ∈ X. Then

y ∈ U(µP, t) ⇒ µP(y) ≥ t

⇒ µP(x · y) ≥ µP(y) ≥ t ((3.1.3))

⇒ x · y ∈ U(µP, t)

and

x, y ∈ L(νP, t) ⇒ νP(y) ≤ t

⇒ νP(x · y) ≤ νP(y) ≤ t ((3.1.4))

⇒ x · y ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are near BCC-filers of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are near BCC-

filers of X if the sets are nonempty. Let x, y ∈ X.

Choose t = µP(y) ∈ [0, 1]. Then µP(y) ≥ t. Thus y ∈ U(µP, t) ̸= ∅. As

a hypothesis, we get U(µP, t) is a near BCC-filter of X and so x · y ∈ U(µP, t).

Thus µP(x · y) ≥ t = µP(y).

Choose t = νP(y) ∈ [0, 1]. The νP(y) ≤ t. Thus y ∈ L(νP, t) ̸= ∅. As a

hypothesis, we get L(νP, t) is a near BCC-filter of X and so x ·y ∈ U(νP, t). Thus

νP(x · y) ≤ t = νP(y).

Hence, P is a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.4.5 P is a Pythagorean fuzzy near BCC-filter of X if and only if

U+(µP, t) and L−(νP, t) are, if the sets are nonempty, near BCC-filers of X for

every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy near BCC-filter of X. Let
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t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y ∈ X. Then

y ∈ U+(µP, t) ⇒ µP(y) > t

⇒ µP(x · y) ≥ µP(y) > t ((3.1.3))

⇒ x · y ∈ U+(µP, t)

and

y ∈ L−(νP, t) ⇒ νP(y) < t

⇒ νP(x · y) ≤ νP(y) < t ((3.1.4))

⇒ x · y ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are near BCC-filers of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are near

BCC-filers of X if the sets are nonempty.

Suppose there exist x, y ∈ X such that µP(x · y) < µP(y). Choose

t = µP(x · y) ∈ [0, 1]. Then µP(y) > t. Thus y ∈ U+(µP, t) ̸= ∅. As a hypothesis,

we get U+(µP, t) is a near BCC-filter of X and so x · y ∈ U+(µP, t). Thus

µP(x · y) > t = µP(x · y), a contradiction. Hence, µP(x · y) ≥ µP(y) for all

x, y ∈ X.

Suppose there exist x, y ∈ X such that νP(x · y) > νP(y). Choose t =

νP(x · y) ∈ [0, 1]. Then νP(y) < t. Thus y ∈ L−(νP, t) ̸= ∅. As a hypothesis, we

get L−(νP, t) is a near BCC-filter of X and so x · y ∈ L−(νP, t). Thus νP(x · y) <

t = νP(x · y), a contradiction. Hence, νP(x · y) ≤ νP(y) for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.4.6 P is a Pythagorean fuzzy BCC-filter of X if and only if U(µP, t)
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and L(νP, t) are, if the sets are nonempty, BCC-filers for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-filter ofX. Let t ∈ [0, 1]

be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t

⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

x · y, x ∈ U(µP, t) ⇒ µP(x · y) ≥ t, µP(x) ≥ t

⇒ min{µP(x · y), µP(x)} ≥ t

⇒ µP(y) ≥ min{µP(x · y), µP(x)} ≥ t ((3.1.7))

⇒ y ∈ U(µP, t),

x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),

and

x · y, x ∈ L(νP, t) ⇒ νP(x · y) ≤ t, νP(x) ≤ t

⇒ max{µP(x · y), νP(x)} ≤ t

⇒ νP(y) ≤ max{νP(x · y), νP(x)} ≤ t ((3.1.8))

⇒ y ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are BCC-filers of X.
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Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are BCC-filers

of X if the sets are nonempty. Let x, y ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅.

As a hypothesis, we get U(µP, t) is a BCC-filter of X and so 0 ∈ U(µP, t). Thus

µP(0) ≥ t = µP(x).

Choose t = min{µP(x · y), µP(x)} ∈ [0, 1]. Then µP(x · y) ≥ t and

µP(x) ≥ t. Thus x · y, x ∈ U(µP, t) ̸= ∅. As a hypothesis, we get U(µP, t) is a

BCC-filter of X and so y ∈ U(µP, t). Thus µP(y) ≥ t = min{µP(x · y), µP(x)}.

Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As

a hypothesis, we get L(νP, t) is a BCC-filter of X and so 0 ∈ U(νP, t). Thus

νP(0) ≤ t = νP(x).

Choose t = max{νP(x · y), νP(x)} ∈ [0, 1]. Then νP(x · y) ≤ t and

νP(x) ≤ t. Thus x · y, x ∈ L(µP, t) ̸= ∅. As a hypothesis, we get L(µP, t) is a

BCC-filter of X and so y ∈ L(µP, t). Thus νP(y) ≤ t = max{νP(x · y), νP(x)}.

Hence, P is a Pythagorean fuzzy BCC-filter of X.

Theorem 3.4.7 P is a Pythagorean fuzzy BCC-filter of X if and only if U+(µP, t)

and L−(νP, t) are, if the sets are nonempty, BCC-filers of X for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-filter ofX. Let t ∈ [0, 1]

be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),
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x · y, x ∈ U+(µP, t) ⇒ µP(x · y) > t, µP(x) > t

⇒ min{µP(x · y), µP(x)} > t

⇒ µP(y) ≥ min{µP(x · y), µP(x)} > t ((3.1.7))

⇒ y ∈ U+(µP, t),

x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),

and

x · y, x ∈ L−(νP, t) ⇒ νP(x · y) < t, νP(x) < t

⇒ max{νP(x · y), νP(x)} < t

⇒ νP(y) ≤ max{νP(x · y), νP(x)} < t ((3.1.8))

⇒ y ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are BCC-filers of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are BCC-

filers of X if the sets are nonempty.

Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get

U+(µP, t) is a BCC-filter of X and so 0 ∈ U+(µP, t). Thus µP(0) > t = µP(0), a

contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y ∈ X such that µP(y) < min{µP(x · y), µP(x)}.

Choose t = µP(y) ∈ [0, 1]. Then µP(x · y) > t and µP(x) > t. Thus x · y, x ∈

U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is a BCC-filter of X and
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so y ∈ U+(µP, t). Thus µP(y) > t = µP(y), a contradiction. Hence, µP(y) ≥

min{µP(x · y), µP(x)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get

L−(νP, t) is a BCC-filter of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0), a

contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y ∈ X such that νP(y) > max{νP(x · y), νP(x)}.

Choose t = νP(y) ∈ [0, 1]. Then νP(x · y) < t and νP(x) < t. Thus x · y, x ∈

L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is a BCC-filter of X and so y ∈

L−(νP, t). Thus νP(y) < t = νP(y), a contradiction. Hence, νP(y) ≤ max{νP(x ·

y), νP(x)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy BCC-filter of X.

Theorem 3.4.8 P is a Pythagorean fuzzy implicative BCC-filters of X if and only

if U(µP, t) and L(νP, t) are, if the sets are nonempty, implicative BCC-filters for

every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy implicative BCC-filters of X.

Let t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t

⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

x · (y · z), x · y ∈ U(µP, t)

⇒ µP(x · (y · z)) ≥ t, µP(x · y) ≥ t

⇒ min{µP(x · (y · z)), µP(x · y)} ≥ t
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⇒ µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)} ≥ t ((3.1.9))

⇒ x · z ∈ U(µP, t),

x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),

and

x · (y · z), x · y ∈ L(νP, t)

⇒ νP(x · (y · z)) ≤ t, νP(x · y) ≤ t

⇒ max{µP(x · (y · z)), νP(x · y)} ≤ t

⇒ νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)} ≤ t ((3.1.10))

⇒ x · z ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are implicative BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are implicative

BCC-filters of X if the sets are nonempty. Let x, y ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅. As a

hypothesis, we get U(µP, t) is an implicative BCC-filter of X and so 0 ∈ U(µP, t).

Thus µP(0) ≥ t = µP(x).

Choose t = min{µP(x · (y · z)), µP(x · y)} ∈ [0, 1]. Then µP(x · (y · z)) ≥ t

and µP(x · y) ≥ t. Thus x · (y · z), x · y ∈ U(µP, t) ̸= ∅. As a hypothesis, we

get U(µP, t) is an implicative BCC-filter of X and so x · z ∈ U(µP, t). Thus

µP(x · z) ≥ t = min{µP(x · (y · z)), µP(x · y)}.
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Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As a

hypothesis, we get L(νP, t) is an implicative BCC-filter of X and so 0 ∈ U(νP, t).

Thus νP(0) ≤ t = νP(x).

Choose t = max{νP(x · (y · z)), νP(x · y)} ∈ [0, 1]. Then νP(x · (y · z)) ≤ t

and νP(x · y) ≤ t. Thus x · (y · z), x · y ∈ L(µP, t) ̸= ∅. As a hypothesis, we

get L(µP, t) is an implicative BCC-filter of X and so x · z ∈ L(µP, t). Thus

νP(x · z) ≤ t = max{νP(x · (y · z)), νP(x · y)}.

Hence, P is a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.4.9 P is a Pythagorean fuzzy implicative BCC-filter of X if and only

if U+(µP, t) and L−(νP, t) are, if the sets are nonempty, implicative BCC-filters

of X for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy implicative BCC-filter of X.

Let t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),

x · (y · z), x · y ∈ U+(µP, t)

⇒ µP(x · (y · z)) > t, µP(x · y) > t

⇒ min{µP(x · (y · z)), µP(x · y)} > t

⇒ µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)} > t ((3.1.9))

⇒ x · z ∈ U+(µP, t),
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x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),

and

x · (y · z), x · y ∈ L−(νP, t)

⇒ νP(x · (y · z)) < t, νP(x · y) < t

⇒ max{νP(x · (y · z)), νP(x · y)} < t

⇒ νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)} < t ((3.1.10))

⇒ x · z ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are implicative BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are implica-

tive BCC-filters of X if the sets are nonempty.

Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis,

we get U+(µP, t) is an implicative BCC-filter of X and so 0 ∈ U+(µP, t). Thus

µP(0) > t = µP(0), a contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y ∈ X such that µP(x·z) < min{µP(x·(y·z)), µP(x·

y)}. Choose t = µP(x · z) ∈ [0, 1]. Then µP(x · (y · z)) > t and µP(x · y) > t.

Thus x · (y · z), x · y ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is an

implicative BCC-filter of X and so x·z ∈ U+(µP, t). Thus µP(x·z) > t = µP(x·z),

a contradiction. Hence, µP(x · z) ≥ min{µP(x · (y · z)), µP(x · y)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t)
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is an implicative BCC-filter of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0),

a contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y ∈ X such that νP(x·z) > max{νP(x·(y ·z)), νP(x·

y)}. Choose t = νP(x · z) ∈ [0, 1]. Then νP(x · (y · z)) < t and νP(x · y) < t.

Thus x · (y · z), x · y ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is an

implicative BCC-filter of X and so x ·z ∈ L−(νP, t). Thus νP(x ·z) < t = νP(x ·z),

a contradiction. Hence, νP(x · z) ≤ max{νP(x · (y · z)), νP(x · y)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.4.10 P is a Pythagorean fuzzy comparative BCC-filter of X if and

only if U(µP, t) and L(νP, t) are, if the sets are nonempty, comparative BCC-filters

for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy comparative BCC-filters of

X. Let t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t

⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

x · ((y · z) · y), x ∈ U(µP, t)

⇒ µP(x · ((y · z) · y)) ≥ t, µP(x) ≥ t

⇒ min{µP(x · ((y · z) · y)), µP(x)} ≥ t

⇒ µP(y) ≥ min{µP(x · ((y · z) · y)), µP(x)} ≥ t ((3.1.11))

⇒ y ∈ U(µP, t),
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x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),

and

x · ((y · z) · y), x ∈ L(νP, t)

⇒ νP(x · ((y · z) · y)) ≤ t, νP(x) ≤ t

⇒ max{µP(x · ((y · z) · y)), νP(x)} ≤ t

⇒ νP(y) ≤ max{νP(x · ((y · z) · y)), νP(x)} ≤ t ((3.1.12))

⇒ y ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are comparative BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are comparative

BCC-filters of X if the sets are nonempty. Let x, y ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅. As a

hypothesis, we get U(µP, t) is a comparative BCC-filter of X and so 0 ∈ U(µP, t).

Thus µP(0) ≥ t = µP(x).

Choose t = min{µP(x·((y·z)·y)), µP(x)} ∈ [0, 1]. Then µP(x·((y·z)·y)) ≥

t and µP(x) ≥ t. Thus x · ((y · z) · y), x ∈ U(µP, t) ̸= ∅. As a hypothesis,

we get U(µP, t) is a comparative BCC-filter of X and so y ∈ U(µP, t). Thus

µP(y) ≥ t = min{µP(x · ((y · z) · y)), µP(x)}.

Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As a

hypothesis, we get L(νP, t) is a comparative BCC-filter of X and so 0 ∈ U(νP, t).

Thus νP(0) ≤ t = νP(x).

Choose t = max{νP(x·((y·z)·y)), νP(x)} ∈ [0, 1]. Then νP(x·((y·z)·y)) ≤
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t and νP(x) ≤ t. Thus x · ((y · z) · y), x ∈ L(µP, t) ̸= ∅. As a hypothesis,

we get L(µP, t) is a comparative BCC-filter of X and so y ∈ L(µP, t). Thus

νP(y) ≤ t = max{νP(x · ((y · z) · y)), νP(x)}.

Hence, P is a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.4.11 P is a Pythagorean fuzzy comparative BCC-filter of X if and

only if U+(µP, t) and L−(νP, t) are, if the sets are nonempty, comparative BCC-

filters of X for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy comparative BCC-filter of

X. Let t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),

x · ((y · z) · y), x ∈ U+(µP, t)

⇒ µP(x · ((y · z) · y)) > t, µP(x) > t

⇒ min{µP(x · ((y · z) · y)), µP(x)} > t

⇒ µP(y) ≥ min{µP(x · ((y · z) · y)), µP(x)} > t ((3.1.11))

⇒ y ∈ U+(µP, t),

x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),
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and

x · ((y · z) · y), x ∈ L−(νP, t)

⇒ νP(x · ((y · z) · y)) < t, νP(x) < t

⇒ max{νP(x · ((y · z) · y)), νP(x)} < t

⇒ νP(y) ≤ max{νP(x · ((y · z) · y)), νP(x)} < t ((3.1.12))

⇒ y ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are comparative BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are compar-

ative BCC-filters of X if the sets are nonempty.

Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis,

we get U+(µP, t) is a comparative BCC-filter of X and so 0 ∈ U+(µP, t). Thus

µP(0) > t = µP(0), a contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y ∈ X such that µP(y) < min{µP(x · ((y · z) ·

y)), µP(x)}. Choose t = µP(y) ∈ [0, 1]. Then µP(x · ((y ·z) ·y)) > t and µP(x) > t.

Thus x · ((y · z) · y), x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is a

comparative BCC-filter of X and so y ∈ U+(µP, t). Thus µP(y) > t = µP(y), a

contradiction. Hence, µP(y) ≥ min{µP(x · ((y · z) · y)), µP(x)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t)

is a comparative BCC-filter of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0),

a contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y ∈ X such that νP(y) > max{νP(x · ((y · z) ·

y)), νP(x)}. Choose t = νP(y) ∈ [0, 1]. Then νP(x · ((y · z) · y)) < t and νP(x) < t.
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Thus x · ((y · z) · y), x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is a

comparative BCC-filter of X and so y ∈ L−(νP, t). Thus νP(y) < t = νP(y), a

contradiction. Hence, νP(y) ≤ max{νP(x · ((y · z) · y)), νP(x)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.4.12 P is a Pythagorean fuzzy shift BCC-filter of X if and only if

U(µP, t) and L(νP, t) are, if the sets are nonempty, shift BCC-filters for every

t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy shift BCC-filter of X. Let

t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t

⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

x · (y · z), x ∈ U(µP, t)

⇒ µP(x · (y · z)) ≥ t, µP(x) ≥ t

⇒ min{µP(x · (y · z)), µP(x)} ≥ t

⇒ µP(((z · y) · y) · z) ≥ min{µP(x · (y · z)), µP(x)} ≥ t ((3.1.13))

⇒ ((z · y) · y) · z ∈ U(µP, t),

x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),
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and

x · (y · z), x ∈ L(νP, t)

⇒ νP(x · (y · z)) ≤ t, νP(x) ≤ t

⇒ max{µP(x · (y · z)), νP(x)} ≤ t

⇒ νP(((z · y) · y) · z) ≤ max{νP(x · (y · z)), νP(x)} ≤ t ((3.1.14))

⇒ ((z · y) · y) · z ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are shift BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are shift BCC-

filters of X if the sets are nonempty. Let x, y, z ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅. As a

hypothesis, we get U(µP, t) is a shift BCC-filter of X and so 0 ∈ U(µP, t). Thus

µP(0) ≥ t = µP(x).

Choose t = min{µP(x · (y · z)), µP(x)} ∈ [0, 1]. Then µP(x · (y · z)) ≥ t

and µP(x) ≥ t. Thus x · (y · z), x ∈ U(µP, t) ̸= ∅. As a hypothesis, we get

U(µP, t) is a shift BCC-filter of X and so ((z · y) · y) · z ∈ U(µP, t). Thus

µP(((z · y) · y) · z) ≥ t = min{µP(x · (y · z)), µP(x)}.

Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As a

hypothesis, we get L(νP, t) is a shift BCC-filter of X and so 0 ∈ U(νP, t). Thus

νP(0) ≤ t = νP(x).

Choose t = max{νP(x · (y ·z)), νP(x)} ∈ [0, 1]. Then νP(x · (y ·z)) ≤ t and

νP(x) ≤ t. Thus x · (y · z), x ∈ L(µP, t) ̸= ∅. As a hypothesis, we get L(µP, t) is a

shift BCC-filter of X and so ((z · y) · y) · z ∈ L(µP, t). Thus νP(((z · y) · y) · z) ≥

t = max{νP(x · (y · z)), νP(x)}.
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Hence, P is a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.4.13 P is a Pythagorean fuzzy shift BCC-filter of X if and only if

U+(µP, t) and L−(νP, t) are, if the sets are nonempty, shift BCC-filters of X for

every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy shift BCC-filter of X. Let

t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),

x · (y · z), x ∈ U+(µP, t)

⇒ µP(x · (y · z)) > t, µP(x) > t

⇒ min{µP(x · (y · z)), µP(x)} > t

⇒ µP(((z · y) · y) · z) ≥ min{µP(x · (y · z)), µP(x)} > t ((3.1.13))

⇒ ((z · y) · y) · z ∈ U+(µP, t),

x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),

and

x · (y · z), x ∈ L−(νP, t)

⇒ νP(x · (y · z)) < t, νP(x) < t
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⇒ max{νP(x · (y · z)), νP(x)} < t

⇒ νP(((z · y) · y) · z) ≤ max{νP(x · (y · z)), νP(x)} < t ((3.1.14))

⇒ ((z · y) · y) · z ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are shift BCC-filters of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are shift

BCC-filters of X if the sets are nonempty.

Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get

U+(µP, t) is a shift BCC-filter ofX and so 0 ∈ U+(µP, t). Thus µP(0) > t = µP(0),

a contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y, z ∈ X such that µP(((z · y) · y) · z) < min{µP(x ·

(y · z)), µP(x)}. Choose t = µP(((z · y) · y) · z) ∈ [0, 1]. Then µP(x · (y · z)) > t

and µP(x) > t. Thus x · (y · z), x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get

U+(µP, t) is a shift BCC-filter of X and so ((z · y) · y) · z ∈ U+(µP, t). Thus

µP(((z ·y)·y)·z) > t = µP(((z ·y)·y)·z), a contradiction. Hence, µP(((z ·y)·y)·z) ≥

min{µP(x · (y · z)), µP(x)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t)

is a shift BCC-filter of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0), a

contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y, z ∈ X such that νP(((z · y) · y) · z) > max{νP(x ·

(y · z)), νP(x)}. Choose t = νP(((z · y) · y) · z) ∈ [0, 1]. Then νP(x · (y · z)) < t

and νP(x) < t. Thus x · (y · z), x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get

L−(νP, t) is a shift BCC-filter of X and so ((z · y) · y) · z ∈ L−(νP, t). Thus

νP(((z ·y)·y)·z) < t = νP(((z ·y)·y)·z), a contradiction. Hence, νP(((z ·y)·y)·z) ≤
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max{νP(x · (y · z)), νP(x)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.4.14 P is a Pythagorean fuzzy BCC-ideal of X if and only if U(µP, t)

and L(νP, t) are, if the sets are nonempty, BCC-ideals for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-ideal ofX. Let t ∈ [0, 1]

be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t

⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

x · (y · z), y ∈ U(µP, t) ⇒ µP(x · (y · z)) ≥ t, µP(y) ≥ t

⇒ min{µP(x · (y · z)), µP(y)} ≥ t

⇒ µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} ≥ t ((3.1.15))

⇒ x · z ∈ U(µP, t),

x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),

and

x · (y · z), y ∈ L(νP, t) ⇒ νP(x · (y · z)) ≤ t, νP(y) ≤ t

⇒ max{µP(x · (y · z)), νP(y)} ≤ t

⇒ νP(x · z) ≤ max{νP(x · (y · z)), νP(y)} ≤ t ((3.1.16))
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⇒ x · z ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are BCC-ideals of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are BCC-ideals

of X if the sets are nonempty. Let x, y, z ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅.

As a hypothesis, we get U(µP, t) is a BCC-ideal of X and so 0 ∈ U(µP, t). Thus

µP(0) ≥ t = µP(x).

Choose t = min{µP(x · (y · z)), µP(y)} ∈ [0, 1]. Then µP(x · (y · z)) ≥ t

and µP(y) ≥ t. Thus x · (y · z), y ∈ U(µP, t) ̸= ∅. As a hypothesis, we get

U(µP, t) is a BCC-ideal of X and so x · z ∈ U(µP, t). Thus µP(x · z) ≥ t =

min{µP(x · (y · z)), µP(y)}.

Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As

a hypothesis, we get L(νP, t) is a BCC-ideal of X and so 0 ∈ U(νP, t). Thus

νP(0) ≤ t = νP(x).

Choose t = max{νP(x · (y · z)), νP(y)} ∈ [0, 1]. Then νP(x · (y · z)) ≤ t

and νP(y) ≤ t. Thus x · (y · z), y ∈ L(µP, t) ̸= ∅. As a hypothesis, we get

L(µP, t) is a BCC-ideal of X and so x · z ∈ L(µP, t). Thus νP(x · z) ≤ t =

max{νP(x · (y · z)), νP(y)}.

Hence, P is a Pythagorean fuzzy BCC-ideal of X.

Theorem 3.4.15 P is a Pythagorean fuzzy BCC-ideal of X if and only if U+(µP,

t) and L−(νP, t) are, if the sets are nonempty, BCC-ideals of X for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy BCC-ideal ofX. Let t ∈ [0, 1]
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be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),

x · (y · z), y ∈ U+(µP, t) ⇒ µP(x · (y · z)) > t, µP(y) > t

⇒ min{µP(x · (y · z)), µP(y)} > t

⇒ µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} > t ((3.1.15))

⇒ x · z ∈ U+(µP, t),

x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),

and

x · (y · z), y ∈ L−(νP, t) ⇒ νP(x · (y · z)) < t, νP(y) < t

⇒ max{νP(x · (y · z)), νP(y)} < t

⇒ νP(x · z) ≤ max{νP(x · (y · z)), νP(y)} < t ((3.1.16))

⇒ x · z ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are BCC-ideals of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are BCC-

ideals of X if the sets are nonempty.
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Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get

U+(µP, t) is a BCC-ideal of X and so 0 ∈ U+(µP, t). Thus µP(0) > t = µP(0), a

contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y, z ∈ X such that µP(x · z) < min{µP(x · (y ·

z)), µP(y)}. Choose t = µP(x · z) ∈ [0, 1]. Then µP(x · (y · z)) > t and µP(y) > t.

Thus x · (y · z), y ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is a BCC-

ideal of X and so x ·z ∈ U+(µP, t). Thus µP(x ·z) > t = µP(x ·z), a contradiction.

Hence, µP(x · z) ≥ min{µP(x · (y · z)), µP(y)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get

L−(νP, t) is a BCC-ideal of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0), a

contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y, z ∈ X such that νP(x · z) > max{νP(x · (y ·

z)), νP(y)}. Choose t = νP(x) ∈ [0, 1]. Then νP(x · (y · z)) < t and νP(y) < t.

Thus x·(y ·z), y ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is a BCC-ideal

of X and so x · z ∈ L−(νP, t). Thus νP(x · z) < t = νP(x · z), a contradiction.

Hence, νP(x · z) ≤ max{νP(x · (y · z)), νP(y)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy BCC-ideal of X.

Theorem 3.4.16 P is a Pythagorean fuzzy strong BCC-ideal of X if and only if

U(µP, t) and L(νP, t) are, if the sets are nonempty, strong BCC-ideals for every

t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy strong BCC-ideal of X. Let

t ∈ [0, 1] be such that U(µP, t), L(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U(µP, t) ⇒ µP(x) ≥ t
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⇒ µP(0) ≥ µP(x) ≥ t ((3.1.5))

⇒ 0 ∈ U(µP, t),

(z · y) · (z · x), y ∈ U(µP, t)

⇒ µP((z · y) · (z · x)) ≥ t, µP(y) ≥ t

⇒ min{µP((z · y) · (z · x)), µP(y)} ≥ t

⇒ µP(x) ≥ min{µP((z · y) · (z · x)), µP(y)} ≥ t ((3.1.17))

⇒ x ∈ U(µP, t),

x ∈ L(νP, t) ⇒ νP(x) ≤ t

⇒ νP(0) ≤ νP(x) ≤ t ((3.1.6))

⇒ 0 ∈ L(νP, t),

and

(z · y) · (z · x), y ∈ L(νP, t)

⇒ νP((z · y) · (z · x)) ≤ t, νP(y) ≤ t

⇒ max{µP((z · y) · (z · x)), νP(y)} ≤ t

⇒ νP(x) ≤ max{νP((z · y) · (z · x)), νP(y)} ≤ t ((3.1.18))

⇒ x ∈ L(νP, t).

Hence, U(µP, t) and L(νP, t) are strong BCC-ideals of X.

Conversely, assume for all t ∈ [0, 1], U(µP, t) and L(νP, t) are strong BCC-

ideals of X if the sets are nonempty. Let x, y, z ∈ X.

Choose t = µP(x) ∈ [0, 1]. Then µP(x) ≥ t. Thus x ∈ U(µP, t) ̸= ∅. As a
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hypothesis, we get U(µP, t) is a strong BCC-ideal of X and so 0 ∈ U(µP, t). Thus

µP(0) ≥ t = µP(x).

Choose t = min{µP((z · y) · (z · x)), µP(y)} ∈ [0, 1]. Then µP((z · y) ·

(z · x)) ≥ t and µP(y) ≥ t. Thus (z · y) · (z · x), y ∈ U(µP, t) ̸= ∅. As a

hypothesis, we get U(µP, t) is a strong BCC-ideal of X and so x ∈ U(µP, t). Thus

µP(x) ≥ t = min{µP((z · y) · (z · x)), µP(y)}.

Choose t = νP(x) ∈ [0, 1]. The νP(x) ≤ t. Thus x ∈ L(νP, t) ̸= ∅. As a

hypothesis, we get L(νP, t) is a strong BCC-ideal of X and so 0 ∈ U(νP, t). Thus

νP(0) ≤ t = νP(x).

Choose t = max{νP((z · y) · (z · x)), νP(y)} ∈ [0, 1]. Then νP((z · y) ·

(z · x)) ≤ t and νP(y) ≤ t. Thus (z · y) · (z · x), y ∈ L(µP, t) ̸= ∅. As a

hypothesis, we get L(µP, t) is a strong BCC-ideal of X and so x ∈ L(µP, t). Thus

νP(x) ≥ t = max{νP((z · y) · (z · x)), νP(y)}.

Hence, P is a Pythagorean fuzzy strong BCC-ideal of X.

Theorem 3.4.17 P is a Pythagorean fuzzy strong BCC-ideal of X if and only

if U+(µP, t) and L−(νP, t) are, if the sets are nonempty, strong BCC-ideals of X

for every t ∈ [0, 1].

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy strong BCC-ideal of X. Let

t ∈ [0, 1] be such that U+(µP, t), L
−(νP, t) ̸= ∅. Let x, y, z ∈ X. Then

x ∈ U+(µP, t) ⇒ µP(x) > t

⇒ µP(0) ≥ µP(x) > t ((3.1.5))

⇒ 0 ∈ U+(µP, t),

(z · y) · (z · x), y ∈ U+(µP, t)
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⇒ µP((z · y) · (z · x)) > t, µP(y) > t

⇒ min{µP((z · y) · (z · x)), µP(y)} > t

⇒ µP(x) ≥ min{µP((z · y) · (z · x)), µP(y)} > t ((3.1.17))

⇒ x ∈ U+(µP, t),

x ∈ L−(νP, t) ⇒ νP(x) < t

⇒ νP(0) ≤ νP(x) < t ((3.1.6))

⇒ 0 ∈ L−(νP, t),

and

(z · y) · (z · x), y ∈ L−(νP, t)

⇒ νP((z · y) · (z · x)) < t, νP(y) < t

⇒ max{νP((z · y) · (z · x)), νP(y)} < t

⇒ νP(x) ≤ max{νP((z · y) · (z · x)), νP(y)} < t ((3.1.18))

⇒ x ∈ L−(νP, t).

Hence, U+(µP, t) and L−(νP, t) are strong BCC-ideals of X.

Conversely, assume for all t ∈ [0, 1], U+(µP, t) and L−(νP, t) are strong

BCC-ideals of X if the sets are nonempty.

Suppose there exists x ∈ X such that µP(0) < µP(x). Choose t =

µP(0) ∈ [0, 1]. Then µP(x) > t. Thus x ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get

U+(µP, t) is a strong BCC-ideal of X and so 0 ∈ U+(µP, t). Thus µP(0) > t =

µP(0), a contradiction. Hence, µP(0) ≥ µP(x) for all x ∈ X.

Suppose there exist x, y, z ∈ X such that µP(x) < min{µP((z · y) · (z ·



 

 

 
128

x)), µP(y)}. Choose t = µP(x) ∈ [0, 1]. Then µP((z ·y) · (z ·x)) > t and µP(y) > t.

Thus (z · y) · (z · x), y ∈ U+(µP, t) ̸= ∅. As a hypothesis, we get U+(µP, t) is

a strong BCC-ideal of X and so x ∈ U+(µP, t). Thus µP(x) > t = µP(x), a

contradiction. Hence, µP(x) ≥ min{µP((z · y) · (z · x)), µP(y)} for all x, y ∈ X.

Suppose there exists y ∈ X such that νP(0) > νP(x). Choose t = νP(0) ∈

[0, 1]. Then νP(x) < t. Thus x ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t)

is a strong BCC-ideal of X and so 0 ∈ L−(νP, t). Thus νP(0) < t = νP(0), a

contradiction. Hence, νP(0) ≤ νP(x) for all x, y ∈ X.

Suppose there exist x, y, z ∈ X such that νP(x) > max{νP((z · y) · (z ·

x)), νP(y)}. Choose t = νP(x) ∈ [0, 1]. Then νP((z · y) · (z · x)) < t and νP(y) < t.

Thus (z ·y) ·(z ·x), y ∈ L−(νP, t) ̸= ∅. As a hypothesis, we get L−(νP, t) is a strong

BCC-ideal of X and so x ∈ L−(νP, t). Thus νP(x) < t = νP(x), a contradiction.

Hence, νP(x) ≤ max{νP((z · y) · (z · x)), νP(y)} for all x, y ∈ X.

Therefore, P is a Pythagorean fuzzy strong BCC-ideal of X.

Theorem 3.4.18 P is a Pythagorean fuzzy strong BCC-ideal of X if and only if

E(µP, µP(0)) and E(νP, νP(0)) are strong BCC-ideals of X.

Proof. Assume P = (µP, νP) is a Pythagorean fuzzy strong BCC-ideal of X. Since

P is constant, we have

(∀x ∈ X)

 µP(x) = µP(0)

νP(x) = νP(0)

 .

Thus x ∈ E(µP, µP(0)) and x ∈ E(νP, νP(0)) and so E(µP, µP(0)) = X and

E(νP, νP(0)) = X. Hence, E(µP, µP(0)) and E(νP, νP(0)) are strong BCC-ideals

of X.

Conversely, assume for all E(µP, µP(0)) and E(νP, νP(0)) are strong BCC-
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ideals of X. Then E(µP, µP(0)) = X and E(νP, νP(0)) = X. We consider

(∀x ∈ X)

 µP(x) = µP(0)

νP(x) = νP(0)

 .

Thus P is constant, that is, P is a Pythagorean fuzzy strong BCC-ideal of X.

3.5 The operations on Pythagorean fuzzy sets

Theorem 3.5.1 The intersection of any nonempty family of Pythagorean fuzzy

BCC-subalgebras of X is also a Pythagorean fuzzy BCC-subalgebra.

Proof. Assume that Pi is a Pythagorean fuzzy BCC-subalgebra of X for all i ∈ I.

Let x, y ∈ X. Then

µ∧
i∈I Pi

(x · y) = inf{µPi(x · y)}i∈I

≥ inf{min{µPi(x), µPi(y)}}i∈I

= min{inf{µPi(x)}i∈I , inf{µPi(y)}i∈I}

= min{µ∧
i∈I Pi

(x), µ∧
i∈I Pi

(y)} and

ν∧
i∈I Pi

(x · y) = sup{νPi(x · y)}i∈I

≤ sup{max{νPi(x), νPi(y)}}i∈I

= max{sup{νPi(x)}i∈I , sup{νPi(y)}i∈I}

= max{ν∧
i∈I Pi

(x), ν∧
i∈I Pi

(y)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy BCC-subalgebra of X.

The following example show that the union of two Pythagorean fuzzy

BCC-subalgebras of BCC-algebra may be not a Pythagorean fuzzy BCC-subalge-

bra.



 

 

 
130

Example 3.5.2 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 0 1 0

We define two Pythagorean fuzzy sets P1 = (µP1 , νP1) and P2 = (µP2 , νP2) as

follows:

X 0 1 2 3

µP1 0.8 0.3 0.8 0.2

νP1 0.2 0.5 0.2 0.6

µP2 0.8 0.2 0.1 0.6

νP2 0.2 0.8 0.9 0.7

Then P1 and P2 are Pythagorean fuzzy BCC-subalgebras of X. Since µP1∨P2(3 ·

2) = µP1∨P2(1) = 0.3 ≱ 0.6 = min{0.6, 0.8} = min{µP1∨P2(3), µP1∨P2(2)}, we

have P1 ∨ P2 is not a Pythagorean fuzzy BCC-subalgebra of X.

Theorem 3.5.3 The intersection of any nonempty family of Pythagorean fuzzy

near BCC-filters of X is also a Pythagorean fuzzy near BCC-filter.

Proof. Assume that Pi is a Pythagorean fuzzy near BCC-filter of X for all i ∈ I.

Then

µ∧
i∈I Pi

(x · y) = inf{µPi(x · y)}i∈I

≥ inf{µPi(y)}i∈I

= µ∧
i∈I Pi

(y) and

ν∧
i∈I Pi

(x · y) = sup{νPi(x · y)}i∈I
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≤ sup{νPi(y)}i∈I

= ν∧
i∈I Pi

(y).

Hence,
∧

i∈I Pi is a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.5.4 The union of any nonempty family of Pythagorean fuzzy near

BCC-filters of X is also a Pythagorean fuzzy near BCC-filter.

Proof. Assume that Pi is a Pythagorean fuzzy near BCC-filter of X for all i ∈ I.

Then

µ∨
i∈I Pi

(x · y) = sup{µPi(x · y)}i∈I

≥ sup{µPi(y)}i∈I

= µ∨
i∈I Pi

(y) and

ν∨
i∈I Pi

(x · y) = inf{νPi(x · y)}i∈I

≤ inf{νPi(y)}i∈I

= ν∨
i∈I Pi

(y).

Hence,
∨

i∈I Pi is a Pythagorean fuzzy near BCC-filter of X.

Theorem 3.5.5 The intersection of any nonempty family of Pythagorean fuzzy

BCC-filters of X is also a Pythagorean fuzzy BCC-filter.

Proof. Asusume that Pi be a Pythagorean fuzzy BCC-filter of X for all i ∈ I.

Then

µ∧
i∈I Pi

(0) = inf{µPi(0)}i∈I

≥ inf{µPi(x)}i∈I

= µ∧
i∈I Pi

(x),
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µ∧
i∈I Pi

(y) = inf{µPi(y)}i∈I

≥ inf{min{µPi(x · y), µPi(x)}}i∈I

= min{inf{µPi(x · y)}i∈I , inf{µPi(x)}i∈I}

= min{µ∧
i∈I Pi

(x · y), µ∧
i∈I Pi

(x)},

ν∧
i∈I Pi

(0) = sup{νPi(0)}i∈I

≤ sup{νPi(x)}i∈I

= ν∧
i∈I Pi

(x), and

ν∧
i∈I Pi

(y) = sup{νPi(y)}i∈I

≤ sup{max{νPi(x · y), νPi(x)}}i∈I

= max{sup{νPi(x · y)}i∈I , inf{νPi(x)}i∈I}

= max{ν∧
i∈I Pi

(x · y), ν∧
i∈I Pi

(x)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy BCC-filter of X.

The following example show that the union of two Pythagorean fuzzy

BCC-filters of BCC-algebra may be not a Pythagorean fuzzy BCC-filter.

Example 3.5.6 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 1

3 0 0 0 0

We define two Pythagorean fuzzy sets P1 = (µP1 , νP1) and P2 = (µP2 , νP2) as
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follows:

X 0 1 2 3

µP1 0.7 0.7 0.4 0.4

νP1 0.2 0.2 0.5 0.5

µP2 0.8 0.2 0.5 0.2

νP2 0.2 0.6 0.3 0.6

Then P1 and P2 are Pythagorean fuzzy BCC-filters of X. Since µP1∨P2(3) =

0.4 ≱ 0.5 = min{0.5, 0.7} = min{µP1∨P2(2) =, µP1∨P2(1)} = min{µP1∨P2(1 ·

3), µP1∨P2(1)}, we have P1 ∨ P2 is not a Pythagorean fuzzy BCC-filter of X.

Theorem 3.5.7 The intersection of any nonempty family of Pythagorean fuzzy

implicative BCC-filters of a BCC-algebra X is also a Pythagorean fuzzy implica-

tive BCC-filter.

Proof. Assume that Pi is a Pythagorean fuzzy implicative BCC-filter of X for all

i ∈ I. Let x, y ∈ X. Then

µ∧
i∈I Pi

(0) = inf{µPi
(0)}i∈I

≥ inf{µPi
(x)}i∈I

= µ∧
i∈I Pi

(x),

µ∧
i∈I Pi

(x · z) = inf{µPi
(x · z)}i∈I

≥ inf{min{µPi
(x · (y · z)), µPi

(x · y)}}i∈I

= min{inf{µPi
(x · (y · z))}i∈I , inf{µPi

(x · y)}i∈I}

= min{µ∧
i∈I Pi

(x · (y · z)), µ∧
i∈I Pi

(x · y)},

ν∧
i∈I Pi

(0) = sup{νPi
(0)}i∈I

≤ sup{νPi
(x)}i∈I

= ν∧
i∈I Pi

(x), and

ν∧
i∈I Pi

(x · z) = sup{νPi
(x · z)}i∈I
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≤ sup{max{νPi
(x · (y · z)), νPi

(x · y)}}i∈I

= max{sup{νPi
(x · (y · z))}i∈I , sup{νPi

(x · y)}i∈I}

= max{ν∧
i∈I Pi

(x · (y · z)), ν∧
i∈I Pi

(x · y)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy implicative BCC-filter of X.

The following example shows that the union of two Pythagorean fuzzy

implicative BCC-filters of BCC-algebra may be not a Pythagorean fuzzy implica-

tive BCC-filter.

Example 3.5.8 Let X = {0, 1, 2, 3} be a BCC-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 1

3 0 0 0 0

We define two Pythagorean fuzzy sets P1 = (µP1 , νP1) and P2 = (µP2 , νP2) as

follows:

X 0 1 2 3

µP1 0.8 0.8 0.1 0.1

νP1 0.2 0.2 0.3 0.3

µP2 0.7 0.2 0.3 0.2

νP2 0.1 0.4 0.3 0.4

Then P1 and P2 are Pythagorean fuzzy implicative BCC-filters of X. Since

µP1∨P2(0 · 3) = µP1∨P2(3)

= 0.2
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≱ 0.3

= min{0.3, 0.8}

= min{µP1∨P2(2), µP1∨P2(1)}

= min{µP1∨P2(0 · (1 · 3)), µP1∨P2(0 · 1)},

we have P1 ∨ P2 is not a Pythagorean fuzzy implicative BCC-filter of X.

Theorem 3.5.9 The intersection of any nonempty family of Pythagorean fuzzy

comparative BCC-filters of a BCC-algebra X is also a Pythagorean fuzzy compar-

ative BCC-filter.

Proof. Assume that Pi is a Pythagorean fuzzy comparative BCC-filter of X for

all i ∈ I. Then

µ∧
i∈I Pi

(0) = inf{µPi
(0)}i∈I

≥ inf{µPi
(x)}i∈I

= µ∧
i∈I Pi

(x),

µ∧
i∈I Pi

(y) = inf{µPi
(y)}i∈I

≥ inf{min{µPi
(x · ((y · z) · y)), µPi

(x)}}i∈I

= min{inf{µPi
(x · ((y · z) · y))}i∈I , inf{µPi

(x)}i∈I}

= min{µ∧
i∈I Pi

(x · ((y · z) · y)), µ∧
i∈I Pi

(x)},

ν∧
i∈I Pi

(0) = sup{νPi
(0)}i∈I

≤ sup{νPi
(x)}i∈I

= ν∧
i∈I Pi

(x), and

ν∧
i∈I Pi

(y) = sup{νPi
(y)}i∈I

≤ sup{max{νPi
(x · ((y · z) · y)), νPi

(x)}}i∈I

= max{sup{νPi
(x · ((y · z) · y))}i∈I , sup{νPi

(x)}i∈I}
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= max{ν∧
i∈I Pi

(x · ((y · z) · y)), ν∧
i∈I Pi

(x)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy comparative BCC-filter of X.

The following example shows that the union of two Pythagorean fuzzy

comparative BCC-filters of BCC-algebra may be not a Pythagorean fuzzy com-

parative BCC-filter.

Example 3.5.10 By Example 3.5.8, we have P1 and P2 are Pythagorean fuzzy

comparative BCC-filters of X. Since

µP1∨P2(3) = 0.2

≱ 0.3

= min{0.3, 0.8}

= min{µP1∨P2(2), µP2∨P2(1)}

= min{µP1∨P2(1 · ((3 · 0) · 3)), µP1∨P2(1)},

we have P1 ∨ P2 is not a Pythagorean fuzzy comparative BCC-filter of X.

Theorem 3.5.11 The intersection of any nonempty family of Pythagorean fuzzy

shift BCC-filters of a BCC-algebra X is also a Pythagorean fuzzy shift BCC-filter.

Proof. Assume that Pi be a Pythagorean fuzzy shift BCC-filter of X for all i ∈ I.

Then

µ∧
i∈I Pi

(0) = inf{µPi
(0)}i∈I

≥ inf{µPi
(x)}i∈I

= µ∧
i∈I Pi

(x),

µ∧
i∈I Pi

(((z · y) · y) · z) = inf{µPi
(((z · y) · y) · z)}i∈I

≥ inf{min{µPi
(x · (y · z)), µPi

(x)}}i∈I
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= min{inf{µPi
(x · (y · z))}i∈I , inf{µPi

(x)}i∈I}

= min{µ∧
i∈I Pi

(x · (y · z)), µ∧
i∈I Pi

(x)},

ν∧
i∈I Pi

(0) = sup{νPi
(0)}i∈I

≤ sup{νPi
(x)}i∈I

= ν∧
i∈I Pi

(x), and

ν∧
i∈I Pi

(((z · y) · y) · z) = sup{νPi
(((z · y) · y) · z)}i∈I

≤ sup{max{νPi
(x · (y · z)), νPi

(x)}}i∈I

= max{sup{νPi
(x · (y · z))}i∈I , inf{νPi

(x)}i∈I}

= max{ν∧
i∈I Pi

(x · (y · z)), ν∧
i∈I Pi

(x)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy shift BCC-filter of X.

The following example shows that the union of two Pythagorean fuzzy

shift BCC-filters of BCC-algebra may be not a Pythagorean fuzzy shift BCC-

filter.

Example 3.5.12 By Example 3.5.8, we have P1 and P2 are Pythagorean fuzzy

shift BCC-filters of X. Since

µP1∨P2(((3 · 0) · 0) · 3) = µP1∨P2(3)

= 0.2

≱ 0.3

= min{0.8, 0.3}

= min{µP1∨P2(1), µP1∨P2(2)}

= min{µP1∨P2(2 · (0 · 3)), µP1∨P2(2)},

we have P1 ∨ P2 is not a Pythagorean fuzzy shift BCC-filter of X.

Theorem 3.5.13 The intersection of any nonempty family of Pythagorean fuzzy
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BCC-ideals of X is also a Pythagorean fuzzy BCC-ideal.

Proof. Asusume that Pi be a Pythagorean fuzzy BCC-ideal of X for all i ∈ I.

Then

µ∧
i∈I Pi

(0) = inf{µPi(0)}i∈I

≥ inf{µPi(x)}i∈I

= µ∧
i∈I Pi

(x),

µ∧
i∈I Pi

(x · z) = inf{µPi(x · z)}i∈I

≥ inf{min{µPi(x · (y · z)), µPi(y)}}i∈I

= min{inf{µPi(x · (y · z))}i∈I , inf{µPi(y)}i∈I}

= min{µ∧
i∈I Pi

(x · (y · z)), µ∧
i∈I Pi

(y)},

ν∧
i∈I Pi

(0) = sup{νPi(0)}i∈I

≤ sup{νPi(x)}i∈I

= ν∧
i∈I Pi

(x), and

ν∧
i∈I Pi

(x · z) = sup{νPi(x · z)}i∈I

≤ sup{max{νPi(x · (y · z)), νPi(y)}}i∈I

= max{sup{νPi(x · (y · z))}i∈I , inf{νPi(y)}i∈I}

= max{ν∧
i∈I Pi

(x · (y · z)), ν∧
i∈I Pi

(y)}.

Hence,
∧

i∈I Pi is a Pythagorean fuzzy BCC-ideal of X.

The following example show that the union of two Pythagorean fuzzy

BCC-ideals of BCC-algebra may be not a Pythagorean fuzzy BCC-ideal.

Example 3.5.14 In Example 3.5.6 We define two Pythagorean fuzzy sets P1 =
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(µP1 , νP1) and P2 = (µP2 , νP2) as follows:

X 0 1 2 3

µP1 1 0.4 0.7 0.4

νP1 0 0.5 0.3 0.5

µP2 0.9 0.7 0.1 0.1

νP2 0.2 0.4 0.9 0.9

Then P1 and P2 are Pythagorean fuzzy BCC-ideals of X. Since µP1∨P2(0 ·

3) = µP1∨P2(3) = 0.4 ≱ 0.7 = min{0.7, 0.7} = min{µP1∨P2(1), µP1∨P2(2)} =

min{µP1∨P2

(0 · (2 · 3)) =, µP1∨P2(2)}, we have P1 ∨ P2 is not a Pythagorean fuzzy BCC-ideal

of X.

Theorem 3.5.15 The intersection of any nonempty family of Pythagorean fuzzy

strong BCC-ideals of X is also a Pythagorean fuzzy strong BCC-ideal. Moreover,

the union of any nonempty family of Pythagorean fuzzy strong BCC-ideals of X

is also a Pythagorean fuzzy strong BCC-ideal.



 

 

 

CHAPTER IV

ROUGH PYTHAGOREAN FUZZY SETS

4.1 Rough Pythagorean fuzzy sets in BCC-algebras

We introduce necessary define for study rough Pythagorean fuzzy sets

in BCC-algebras.

Definition 4.1.1 Let ρ be an equivalence relation on X. Then a nonempty

subset S of X is called

(1) an upper rough implicative BCC-filter of X if ρ+(S) is an implicative BCC-

filter of X,

(2) an upper rough comparative BCC-filter of X if ρ+(S) is a comparative BCC-

filter of X,

(3) an upper rough shift BCC-filter of X if ρ+(S) is a shift BCC-filter of X,

(4) a lower rough implicative BCC-filter of X if ∅ ̸= ρ−(S) is an implicative

BCC-filter of X,

(5) a lower rough comparative BCC-filter of X if ∅ ̸= ρ−(S) is a comparative

BCC-filter of X,

(6) a lower rough shift BCC-filter of X if ∅ ̸= ρ−(S) is a of X,

(7) a rough implicative BCC-filter of X if it is both an upper rough implicative

BCC-filter and a lower rough implicative BCC-filter of X,

(8) a rough comparative BCC-filter of X if it is both an upper rough compara-

tive BCC-filter and a lower rough comparative BCC-filter of X, and

(9) a rough shift BCC-filter of X if it is both an upper rough shift BCC-filter

and a lower rough shift BCC-filter of X.
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Next, we apply the concept of rough Pythagorean fuzzy sets to BCC-

algebras and introduce the twenty-four types of rough Pythagorean fuzzy sets in

BCC-algebras.

Definition 4.1.2 Let ρ be an equivalence relation on X. Then a Pythagorean

fuzzy sets P = (µP, νP) in X is called

(1) an upper rough Pythagorean fuzzy BCC-subalgebra of X if ρ+(P) is a Pytha-

gorean fuzzy BCC-subalgebra of X,

(2) an upper rough Pythagorean fuzzy near BCC-filter of X if ρ+(P) is a Pytha-

gorean fuzzy near BCC-filter of X,

(3) an upper rough Pythagorean fuzzy BCC-filter ofX if ρ+(P) is a Pythagorean

fuzzy BCC-filter of X,

(4) an upper rough Pythagorean fuzzy implicative BCC-filter of X if ρ+(P) is a

Pythagorean fuzzy implicative BCC-filter of X,

(5) an upper rough Pythagorean fuzzy comparative BCC-filter of X if ρ+(P) is

a Pythagorean fuzzy comparative BCC-filter of X,

(6) an upper rough Pythagorean fuzzy shift BCC-filter of X if ρ+(P) is a Pytha-

gorean fuzzy shift BCC-filter of X,

(7) an upper rough Pythagorean fuzzy BCC-ideal of X if ρ+(P) is a Pythagorean

fuzzy BCC-ideal of X,

(8) an upper rough Pythagorean fuzzy strong BCC-ideal of X if ρ+(P) is a

Pythagorean fuzzy strong BCC-ideal of X,

(9) a lower rough Pythagorean fuzzy BCC-subalgebra ofX if ρ−(P) is a Pythago-

rean fuzzy BCC-subalgebra of X,
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(10) a lower rough Pythagorean fuzzy near BCC-filter ofX if ρ−(P) is a Pythago-

rean fuzzy near BCC-filter of X,

(11) a lower rough Pythagorean fuzzy BCC-filter of X if ρ−(P) is a Pythagorean

fuzzy BCC-filter of X,

(12) a lower rough Pythagorean fuzzy implicative BCC-filter of X if ρ−(P) is a

Pythagorean fuzzy implicative BCC-filter of X,

(13) a lower rough Pythagorean fuzzy comparative BCC-filter of X if ρ−(P) is a

Pythagorean fuzzy comparative BCC-filter of X,

(14) a lower rough Pythagorean fuzzy shift BCC-filter of X if ρ−(P) is a Pythago-

rean fuzzy shift BCC-filter of X,

(15) a lower rough Pythagorean fuzzy BCC-ideal of X if ρ−(P) is a Pythagorean

fuzzy BCC-ideal of X,

(16) a lower rough Pythagorean fuzzy strong BCC-ideal of X if ρ−(P) is a Pytha-

gorean fuzzy strong BCC-ideal of X,

(17) a rough Pythagorean fuzzy BCC-subalgebra of X if it is both an upper rough

Pythagorean fuzzy BCC-subalgebra and a lower rough Pythagorean fuzzy

BCC-subalgebra of X,

(18) a rough Pythagorean fuzzy near BCC-filter of X if it is both an upper rough

Pythagorean fuzzy near BCC-filter and a lower rough Pythagorean fuzzy

near BCC-filter of X,

(19) a rough Pythagorean fuzzy BCC-filter of X if it is both an upper rough

Pythagorean fuzzy BCC-filter and a lower rough Pythagorean fuzzy BCC-

filter of X,
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(20) a rough Pythagorean fuzzy implicative BCC-filter of X if it is both an

upper rough Pythagorean fuzzy implicative BCC-filter and a lower rough

Pythagorean fuzzy implicative BCC-filter of X,

(21) a rough Pythagorean fuzzy comparative BCC-filter of X if it is both an

upper rough Pythagorean fuzzy comparative BCC-filter and a lower rough

Pythagorean fuzzy comparative BCC-filter of X, and

(22) a rough Pythagorean fuzzy shift BCC-filter of X if it is both an upper rough

Pythagorean fuzzy shift BCC-filter and a lower rough Pythagorean fuzzy

shift BCC-filter of X.

(23) a rough Pythagorean fuzzy BCC-ideal of X if it is both an upper rough

Pythagorean fuzzy BCC-ideal and a lower rough Pythagorean fuzzy BCC-

ideal of X, and

(24) a rough Pythagorean fuzzy strong BCC-ideal of X if it is both an upper

rough Pythagorean fuzzy strong BCC-ideal and a lower rough Pythagorean

fuzzy strong BCC-ideal of X.

Definition 4.1.3 Let ρ be an equivalence relation on X and P = (µP, νP) a

Pythagorean fuzzy sets in X. Then a rough Pythagorean fuzzy set P in X is

called constant rough Pythagorean fuzzy set in X if their membership functions

µP, µP
and non-membership functions νP, νP are constant.

It is simple to verify the generalizations of rough Pythagorean fuzzy sets

in BCC-algebras. As a result, we obtain the diagram of the generalization of

rough Pythagorean fuzzy sets in BCC-algebras, which is shown in Figures 3, 4,

and 5.
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�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✍✎✎✏✑✂✒✟✓✄✡✒✠✟

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ☛✡✟✠ ✍✎✎✏☞✔✓✞✡✠

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✍✎✎✏☞✔✓✞✡✠

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✍✎✎✏✔✕✡✟✓

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✑✞✠✁☛✄ ✍✎✎✏✔✕✡✟✓

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✔✖✗✓✔✘✟✞✔✙✡ ✍✎✎✏☞✔✓✞✡✠

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✑☎✔☞✞ ✍✎✎✏☞✔✓✞✡✠

�✁✂✄☎ ✆✝✞☎✟✄✁✠✡✟☛

☞✂✌✌✝ ✘✁✖✗✟✠✟✞✔✙✡ ✍✎✎✏☞✔✓✞✡✠

Figure 3: Rough Pythagorean fuzzy sets in BCC-algebras

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✎✏✏✑✒✆✓☛✔✝✂✓✄☛

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ☞✂☛✄ ✎✏✏✑✌✕✔✡✂✄

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✎✏✏✑✌✕✔✡✂✄

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✎✏✏✑✕✖✂☛✔

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✒✡✄☎☞✝ ✎✏✏✑✕✖✂☛✔

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✕✗✁✔✕✘☛✡✕✙✂ ✎✏✏✑✌✕✔✡✂✄

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✒✞✕✌✡ ✎✏✏✑✌✕✔✡✂✄

�✁✁✂✄ ✄☎✆✝✞ ✟✠✡✞☛✝☎✄✂☛☞

✌✆✍✍✠ ✘☎✗✁☛✄☛✡✕✙✂ ✎✏✏✑✌✕✔✡✂✄

Figure 4: Upper rough Pythagorean fuzzy sets in BCC-algebras
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�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✎✏✏✑✒✆✓☛✔✝✄✓☎☛

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ☞✄☛☎ ✎✏✏✑✌✕✔✡✄☎

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✎✏✏✑✌✕✔✡✄☎

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✎✏✏✑✕✖✄☛✔

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✒✡☎✁☞✝ ✎✏✏✑✕✖✄☛✔

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✕✗✘✔✕✙☛✡✕✚✄ ✎✏✏✑✌✕✔✡✄☎

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✒✞✕✌✡ ✎✏✏✑✌✕✔✡✄☎

�✁✂✄☎ ☎✁✆✝✞ ✟✠✡✞☛✝✁☎✄☛☞

✌✆✍✍✠ ✙✁✗✘☛☎☛✡✕✚✄ ✎✏✏✑✌✕✔✡✄☎

Figure 5: Lower rough Pythagorean fuzzy sets in BCC-algebras

Theorem 4.1.4 Let ρ be an equivalence relation (congruence relation) on X and

P = (µP, νP) a Pythagorean fuzzy sets in X. If P is a Pythagorean fuzzy strong

BCC-ideal of X, then P is a rough Pythagorean fuzzy strong BCC-ideal of X.

Proof. Let P be a Pythagorean fuzzy strong BCC-ideal of X. Then it is constant.

For all x, y ∈ X, µP(x) = µP(y) and νP(x) = νP(y). Let a, b ∈ X. Then

µP(a) = sup
x∈(a)ρ

{µP(x)} = sup
y∈(b)ρ

{µP(y)} = µP(b),

νP(a) = inf
x∈(a)ρ

{νP(x)} = inf
y∈(b)ρ

{νP(y)} = νP(b),

µ
P
(a) = inf

x∈(a)ρ
{µP(x)} = inf

y∈(b)ρ
{µP(y)} = µ

P
(b), and

νP(a) = sup
x∈(a)ρ

{νP(x)} = sup
y∈(b)ρ

{νP(y)} = νP(b).

So ρ+(P) and ρ−(P) are constant. This means that ρ+(P) and ρ−(P) are Pythago-

rean fuzzy strong BCC-ideals of X. Therefore, P is a rough Pythagorean fuzzy

strong BCC-ideal of X.

The following examples show the relationships between Pythagorean
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fuzzy sets in X and rough Pythagorean fuzzy sets in X with ρ is an equivalence

relation on X.

Example 4.1.5 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3} is

defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.7 0.3 0.6 0.6

νP 0.1 0.8 0.4 0.4

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,

Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of

X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 3), (3, 0), (1, 3), (3, 1)}.

Then ρ is an equivalence relation onX. But ρ+(P) and ρ−(P) are not Pythagorean

fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near

BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.6 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3} is
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defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 0 0

2 0 1 0 0

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 1 0.4 0.4 0.4

νP 0 0.3 0.3 0.3

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (2, 3), (3, 2)}.

Then ρ is an equivalence relation on X. But ρ+(P) is not a Pythagorean fuzzy

implicative BCC-filter of X.

Example 4.1.7 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3} is

defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 0 0 0
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We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.6 0.6 0.6 0.3

νP 0 0 0 0.1

Then P is a Pythagorean fuzzy comparative BCC-filter (resp., Pythagorean fuzzy

shift BCC-filter) of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Then ρ is an equivalence relation on X. But ρ−(P) is not a Pythagorean fuzzy

comparative BCC-filter (resp., Pythagorean fuzzy shift BCC-filter) of X.

From Examples 4.1.5, 4.1.6, and 4.1.7, we get the results that if P

is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-

filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter,

Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter,

and Pythagorean fuzzy BCC-ideal), then it may not be a rough Pythagorean

fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough

Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-filter,

rough Pythagorean fuzzy comparative BCC-filter, rough Pythagorean fuzzy shift

BCC-filter, and rough Pythagorean fuzzy BCC-ideal).

Example 4.1.8 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3} is
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defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 1 2

2 0 0 0 1

3 0 0 0 0

We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.8 0.5 0.4 0.5

νP 0.2 0.4 0.7 0.4

Then P is not a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy

near BCC-filter, Pythagorean fuzzy BCC-filter, and Pythagorean fuzzy BCC-

ideal) of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

Then ρ is an equivalence relation on X. But ρ+(P) and ρ−(P) are Pythagorean

fuzzy BCC-subalgebras (resp., Pythagorean fuzzy near BCC-filters, Pythagorean

fuzzy BCC-filters, and Pythagorean fuzzy BCC-ideals) of X.

Example 4.1.9 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3} is
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defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.9 0.1 0.2 0.1

νP 0.1 0.5 0.4 0.5

Then P is not a Pythagorean fuzzy implicative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

Then ρ is an equivalence relation on X. But ρ+(P) and ρ−(P) are Pythagorean

fuzzy implicative BCC-filters of X.

Example 4.1.10 By Example 4.1.9, we define a Pythagorean fuzzy set P =

(µP, νP) in X as follows:

X 0 1 2 3

µP 0.6 0.5 0.4 0.4

νP 0.5 0.7 0.8 0.8

Then P is not a Pythagorean fuzzy comparative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 0), (0, 1), (2, 3), (3, 2)}.
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Then ρ is an equivalence relation on X. But ρ+(P) and ρ−(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.11 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 0 0 2

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.6 0.5 0.2 0.5

νP 0 0.1 0.7 0.1

Then P is not a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

Then ρ is an equivalence relation on X. But ρ+(P) and ρ−(P) are Pythagorean

fuzzy shift BCC-filters of X.

Example 4.1.12 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}
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is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 0 0

2 0 1 0 0

3 0 1 2 0

We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.5 0.4 0.3 0.2

νP 0.1 0.2 0.3 0.4

Then P is not a Pythagorean fuzzy strong BCC-ideal of X. Let ρ = {(0, 0), (1, 1),

(2, 2), (3, 3), (0, 1), (1, 0), (0, 2), (2, 0), (0, 3), (3, 0), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3),

(3, 1)}. Then ρ is an equivalence relation on X. But ρ+(P) and ρ−(P) are

Pythagorean fuzzy strong BCC-ideals of X.

From Examples 4.1.8, 4.1.9, 4.1.10, 4.1.11, and 4.1.12, we get the results

that if P is a rough Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean

fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean

fuzzy implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter,

rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,

and rough Pythagorean fuzzy strong BCC-ideal), then it may not be a Pythago-

rean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythago-

rean fuzzy BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy

comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy

BCC-ideal, and Pythagorean fuzzy strong BCC-ideal).

Example 4.1.13 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}
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is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 0

3 0 1 2 0

We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 1 0.2 0.1 0.2

νP 0 0.6 0.9 0.6

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,

Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of

X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}.

Then ρ is an equivalence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near

BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.14 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 2 0
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We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.9 0.3 0.2 0.1

νP 0.1 0.3 0.4 0.5

Then P is a Pythagorean fuzzy implicative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Then ρ is an equivalence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy implicative BCC-filters of X.

Example 4.1.15 By Example 4.1.14, we define a Pythagorean fuzzy set P =

(µP, νP) in X as follows:

X 0 1 2 3

µP 0.6 0.6 0.3 0.1

νP 0.5 0.5 0.6 0.7

Then P is a Pythagorean fuzzy comparative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}.

Then ρ is an equivalence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.16 By Example 4.1.11, we define a Pythagorean fuzzy set P =

(µP, νP) in X as follows:

X 0 1 2 3

µP 1 0.5 0.4 0.4

νP 0 0.1 0.5 0.5
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Then P is a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 0), (0, 1)}.

Then ρ is an equivalence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy shift BCC-filters of X.

From Examples 4.1.13, 4.1.14, 4.1.15, and 4.1.16, and Theorem 4.1.4, we

get the results that P can be a rough Pythagorean fuzzy BCC-subalgebra (resp.,

rough Pythagorean fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter,

rough Pythagorean fuzzy implicative BCC-filter, rough Pythagorean fuzzy com-

parative BCC-filter, rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean

fuzzy BCC-ideal, and rough Pythagorean fuzzy strong BCC-ideal) and a Pythago-

rean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythago-

rean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean

fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean

fuzzy BCC-ideal, and Pythagorean fuzzy strong BCC-ideal) in the same time.

The following examples show the relationships between Pythagorean

fuzzy sets in X and rough Pythagorean fuzzy sets in X with ρ is a congruence

relation on X.

Example 4.1.17 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0
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We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.8 0.3 0.5 0.5

νP 0.2 0.8 0.3 0.3

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,

Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of

X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}.

Then ρ is a congruence relation on X. But ρ−(P) is not a Pythagorean fuzzy

BCC-ideal (resp., Pythagorean fuzzy BCC-filter, Pythagorean fuzzy near BCC-

filter, and Pythagorean fuzzy BCC-subalgebra) of X.

Example 4.1.18 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.7 0.2 0.6 0.6

νP 0.3 0.6 0.5 0.5

Then P is a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean fuzzy
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comparative BCC-filter, and Pythagorean fuzzy shift BCC-filter) of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}.

Then ρ is a congruence relation on X. But ρ−(P) is not a Pythagorean fuzzy shift

BCC-filter (resp., Pythagorean fuzzy comparative BCC-filter, and Pythagorean

fuzzy shift BCC-filter) of X.

From Examples 4.1.17 and 4.1.18, we get the results that if P is a

Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter,

Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pytha-

gorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, and

Pythagorean fuzzy BCC-ideal), then it may not be a rough Pythagorean fuzzy

BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough Pythago-

rean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-filter, rough

Pythagorean fuzzy comparative BCC-filter, rough Pythagorean fuzzy shift BCC-

filter, and rough Pythagorean fuzzy BCC-ideal).

Example 4.1.19 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 1 2 0
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We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.5 0.4 0.3 0.2

νP 0.1 0.2 0.3 0.4

Then P is not a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy

near BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy strong

BCC-ideal) of X. Let ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 2), (2, 0),

(0, 3), (3, 0), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}. Then ρ is a congruence rela-

tion on X. But ρ+(P) and ρ−(P) are Pythagorean fuzzy BCC-subalgebras (resp.,

Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy BCC-filters, Pythagorean

fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-ideals) of X.

Example 4.1.20 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.9 0.5 0.5 0.1

νP 0.3 0.5 0.5 0.6

Then P is not a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean
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fuzzy comparative BCC-filter) of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)}.

Then ρ is a congruence relation on X. But ρ−(P) and ρ−(P) are Pythagorean

fuzzy implicative BCC-filters (resp., Pythagorean fuzzy comparative BCC-filters)

of X.

Example 4.1.21 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.8 0.4 0.2 0.2

νP 0.2 0.3 0.6 0.6

Then P is not a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)}.

Then ρ is a congruence relation on X. But ρ+(P) and ρ−(P) are Pythagorean

fuzzy shift BCC-filters of X.

From Examples 4.1.19, 4.1.20, and 4.1.21, we get the results that if P

is a rough Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy
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near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy

implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter, rough

Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal, and

rough Pythagorean fuzzy strong BCC-ideal), then it may not be a Pythagorean

fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythagorean

fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy

comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy

BCC-ideal, and Pythagorean fuzzy strong BCC-ideal).

Example 4.1.22 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 1 0 0

3 0 1 2 0

We define a Pythagorean fuzzy sets P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.9 0.2 0.3 0.3

νP 0.2 0.6 0.5 0.5

Then P is a Pythagorean fuzzy BCC-ideal (resp., Pythagorean fuzzy BCC-filter,

Pythagorean fuzzy near BCC-filter, and Pythagorean fuzzy BCC-subalgebra) of

X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (3, 0)}.

Then ρ is a congruence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy BCC-ideals (resp., Pythagorean fuzzy BCC-filters, Pythagorean fuzzy near
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BCC-filters, and Pythagorean fuzzy BCC-subalgebras) of X.

Example 4.1.23 By Example 4.1.21, we have P is a Pythagorean fuzzy im-

plicative BCC-filter of X and ρ+(P), ρ−(P) are Pythagorean fuzzy implicative

BCC-filters of X.

Example 4.1.24 Consider a BCC-algebra X = (X, ·, 0), where X = {0, 1, 2, 3}

is defined in the Cayley table below.

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 1 2 0

We define a Pythagorean fuzzy set P = (µP, νP) in X as follows:

X 0 1 2 3

µP 0.6 0.6 0.6 0.4

νP 0.5 0.5 0.5 0.8

Then P is a Pythagorean fuzzy comparative BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1)}.

Then ρ is a congruence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy comparative BCC-filters of X.

Example 4.1.25 By Example 4.1.24, we define a Pythagorean fuzzy set P =
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(µP, νP) in X as follows:

X 0 1 2 3

µP 0.8 0.4 0.4 0.2

νP 0.3 0.5 0.5 0.7

Then P is a Pythagorean fuzzy shift BCC-filter of X. Let

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1)}.

Then ρ is a congruence relation on X. Thus ρ+(P) and ρ−(P) are Pythagorean

fuzzy shift BCC-filters of X.

From Examples 4.1.22, 4.1.23, 4.1.24, and 4.1.25, we get the results that

P can be a rough Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean

fuzzy near BCC-filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean

fuzzy implicative BCC-filter, rough Pythagorean fuzzy comparative BCC-filter,

rough Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,

and rough Pythagorean fuzzy strong BCC-ideal) and a Pythagorean fuzzy BCC-

subalgebra (resp., Pythagorean fuzzy near BCC-filter, Pythagorean fuzzy BCC-

filter, Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy comparative

BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean fuzzy BCC-ideal,

and Pythagorean fuzzy strong BCC-ideal) in the same time.

4.2 t-Level subsets of rough Pythagorean fuzzy sets

In this section, we shall discuss the relationships between rough Pythago-

rean fuzzy BCC-subalgebras (rough Pythagorean fuzzy near BCC-filters, rough

Pythagorean fuzzy BCC-filters, rough Pythagorean fuzzy BCC-ideals, and rough

Pythagorean fuzzy strong BCC-ideals) of BCC-algebras and their t-level subsets.
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The following lemma shows the relationships between t-level subsets of

approximations and approximations of t-level subsets.

Lemma 4.2.1 Let ρ be a congruence relation on X and t ∈ [0, 1]. Then the

following statements hold:

(1) U(µP, t) = ρ−(U(µP, t)),

(2) U+(µP, t) = ρ−(U+(µP, t)),

(3) L(νP, t) = ρ+(L(νP, t)),

(4) L−(νP, t) = ρ+(L−(νP, t)),

(5) U(µ
P
, t) = ρ+(U(µP, t)),

(6) U+(µ
P
, t) = ρ+(U+(µP, t)),

(7) L(νP, t) = ρ−(L(νP, t)), and

(8) L−(νP, t) = ρ−(L−(νP, t)).

Proof. (1) Let x ∈ X. Then

x ∈ U(µP, t) ⇔ µP(x) ≥ t (Definition 3.4.1)

⇔ sup
a∈(x)ρ

{µP(a)} ≥ t (Definition 3.3.1)

⇔ ∃a ∈ (x)ρ, µP(a) ≥ t

⇔ ∃a ∈ (x)ρ ∩ U(µP, t) ̸= ∅ (Definition 3.4.1)

⇔ x ∈ ρ−(U(µP, t)). (Definition 2.0.14)

(2) Let x ∈ X. Then

x ∈ U+(µP, t) ⇔ µP(x) > t (Definition 3.4.1)
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⇔ sup
a∈(x)ρ

{µP(a)} > t (Definition 3.3.1)

⇔ ∃a ∈ (x)ρ, µP(a) > t

⇔ ∃a ∈ (x)ρ ∩ U+(µP, t) ̸= ∅ (Definition 3.4.1)

⇔ x ∈ ρ−(U+(µP, t)). (Definition 2.0.14)

(3) Let x ∈ X. Then

x ∈ L(νP, t) ⇔ νP(x) ≤ t (Definition 3.4.1)

⇔ inf
a∈(x)ρ

{νP(a)} ≤ t (Definition 3.3.1)

⇔ ∀a ∈ (x)ρ, νP(a) ≤ t

⇔ ∀a ∈ (x)ρ, a ∈ L(νP, t) (Definition 3.4.1)

⇔ (x)ρ ⊆ L(νP, t)

⇔ x ∈ ρ+(L(νP, t)). (Definition 2.0.14)

(4) Let x ∈ X. Then

x ∈ L−(νP, t) ⇔ νP(x) < t (Definition 3.4.1)

⇔ inf
a∈(x)ρ

{νP(a)} < t (Definition 3.3.1)

⇔ ∀a ∈ (x)ρ, νP(a) < t

⇔ ∀a ∈ (x)ρ, a ∈ L−(νP, t) (Definition 3.4.1)

⇔ (x)ρ ⊆ L−(νP, t)

⇔ x ∈ ρ+(L−(νP, t)). (Definition 2.0.14)
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(5) Let x ∈ X. Then

x ∈ U(µ
P
, t) ⇔ µ

P
(x) ≥ t (Definition 3.4.1)

⇔ inf
a∈(x)ρ

{µP(a)} ≥ t (Definition 3.3.1)

⇔ ∀a ∈ (x)ρ, µP(a) ≥ t

⇔ ∀a ∈ (x)ρ, a ∈ U(µP, t) (Definition 3.4.1)

⇔ (x)ρ ⊆ U(µP, t)

⇔ x ∈ ρ+(U(µP, t)). (Definition 2.0.14)

(6) Let x ∈ X. Then

x ∈ U+(µ
P
, t) ⇔ µ

P
(x) > t (Definition 3.4.1)

⇔ inf
a∈(x)ρ

{µP(a)} > t (Definition 3.3.1)

⇔ ∀a ∈ (x)ρ, µP(a) > t

⇔ ∀a ∈ (x)ρ, a ∈ U+(µP, t) (Definition 3.4.1)

⇔ (x)ρ ⊆ U+(µP, t)

⇔ x ∈ ρ+(U+(µP, t)). (Definition 2.0.14)

(7) Let x ∈ X. Then

x ∈ L(νP, t) ⇔ νP(x) ≤ t (Definition 3.4.1)

⇔ sup
a∈(x)ρ

{νP(a)} ≤ t (Definition 3.3.1)

⇔ ∃a ∈ (x)ρ, νP(a) ≤ t

⇔ ∃a ∈ (x)ρ ∩ L(νP, t) ̸= ∅ (Definition 3.4.1)

⇔ x ∈ ρ−(L(νP, t)). (Definition 2.0.14)
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(8) Let x ∈ X. Then

x ∈ L−(νP, t) ⇔ νP(x) < t (Definition 3.4.1)

⇔ sup
a∈(x)ρ

{νP(a)} < t (Definition 3.3.1)

⇔ ∃a ∈ (x)ρ, νP(a) < t

⇔ ∃a ∈ (x)ρ ∩ L−(νP, t) ̸= ∅ (Definition 3.4.1)

⇔ x ∈ ρ−(L−(νP, t)). (Definition 2.0.14)

The following theorems show the relationships between rough Pythago-

rean fuzzy sets and their t-level subsets.

Theorem 4.2.2 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-subalgebra of X if and only if U(µP, t) and L(νP, t) are, if

the sets are nonempty, an upper rough BCC-subalgebra and a lower rough BCC-

subalgebra of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.2 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.3 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-subalgebra of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough BCC-subalgebra and a lower rough

BCC-subalgebra of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.3 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.4 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy near BCC-filter of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough near BCC-filter and a lower rough near

BCC-filter of X for every t ∈ [0, 1], respectively.
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Proof. It is straightforward by Theorem 3.4.4 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.5 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy near BCC-filter of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough near BCC-filter and a lower rough

near BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.4 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.6 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-filter of X if and only if U(µP, t) and L(νP, t) are, if the

sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter of X

for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.6 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.7 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-filter of X if and only if U+(µP, t) and L−(νP, t) are, if

the sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter

of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.7 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.8 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy implicative BCC-filter of X if and only if U(µP, t) and L(νP, t)

are, if the sets are nonempty, an upper rough implicative BCC-filter and a lower

rough implicative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.8 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.9 Let ρ be a congruence relation on X. Then P is an upper

rough Pythagorean fuzzy implicative BCC-filter of X if and only if U+(µP, t) and



 

 

 
168

L−(νP, t) are, if the sets are nonempty, an upper rough implicative BCC-filter and

a lower rough implicative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.9 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.10 Let ρ be a congruence relation on X. Then P is an upper

rough Pythagorean fuzzy comparative BCC-filter of X if and only if U(µP, t) and

L(νP, t) are, if the sets are nonempty, an upper rough comparative BCC-filter and

a lower rough comparative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.10 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.11 Let ρ be a congruence relation on X. Then P is an upper

rough Pythagorean fuzzy comparative BCC-filter of X if and only if U+(µP, t) and

L−(νP, t) are, if the sets are nonempty, an upper rough comparative BCC-filter

and a lower rough comparative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.11 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.12 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy shift BCC-filter of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift

BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.12 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.13 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy shift BCC-filter of X if and only if U+(µP, t) and L−(νP, t) are,

if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift

BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.13 and Lemmas 4.2.1 (2) and (4).
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Theorem 4.2.14 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-ideal of X if and only if U(µP, t) and L(νP, t) are, if the

sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal of X

for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.14 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.15 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy BCC-ideal of X if and only if U+(µP, t) and L−(νP, t) are, if

the sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal

of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.15 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.16 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy strong BCC-ideal of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.16 and Lemmas 4.2.1 (1) and (3).

Theorem 4.2.17 Let ρ be a congruence relation on X. Then P is an upper rough

Pythagorean fuzzy strong BCC-ideal of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.17 and Lemmas 4.2.1 (2) and (4).

Theorem 4.2.18 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-subalgebra of X if and only if U(µP, t) and L(νP, t) are, if

the sets are nonempty, an upper rough BCC-subalgebra and a lower rough BCC-

subalgebra of X for every t ∈ [0, 1], respectively.
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Proof. It is straightforward by Theorem 3.4.2 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.19 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-subalgebra of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough BCC-subalgebra and a lower rough

BCC-subalgebra of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.3 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.20 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy near BCC-filter of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough near BCC-filter and a lower rough near

BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.4 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.21 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy near BCC-filter of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough near BCC-filter and a lower rough

near BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.5 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.22 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-filter of X if and only if U(µP, t) and L(νP, t) are, if the

sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter of X

for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.6 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.23 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-filter of X if and only if U+(µP, t) and L−(νP, t) are, if



 

 

 
171

the sets are nonempty, an upper rough BCC-filter and a lower rough BCC-filter

of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.7 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.24 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy implicative BCC-filter of X if and only if U(µP, t) and L(νP, t)

are, if the sets are nonempty, an upper rough implicative BCC-filter and a lower

rough implicative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.8 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.25 Let ρ be a congruence relation on X. Then P is a lower

rough Pythagorean fuzzy implicative BCC-filter of X if and only if U+(µP, t) and

L−(νP, t) are, if the sets are nonempty, an upper rough implicative BCC-filter and

a lower rough implicative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.9 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.26 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy comparative BCC-filter of X if and only if U(µP, t) and L(νP, t)

are, if the sets are nonempty, an upper rough comparative BCC-filter and a lower

rough comparative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.10 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.27 Let ρ be a congruence relation on X. Then P is a lower

rough Pythagorean fuzzy comparative BCC-filter of X if and only if U+(µP, t) and

L−(νP, t) are, if the sets are nonempty, an upper rough comparative BCC-filter

and a lower rough comparative BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.11 and Lemmas 4.2.1 (6) and (8).
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Theorem 4.2.28 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy shift BCC-filter of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough shift BCC-filter and a lower rough shift

BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.12 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.29 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy shift BCC-filter of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough shift BCC-filter and a lower rough

shift BCC-filter of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.13 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.30 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-ideal of X if and only if U(µP, t) and L(νP, t) are, if the

sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal of X

for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.14 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.31 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy BCC-ideal of X if and only if U+(µP, t) and L−(νP, t) are, if

the sets are nonempty, an upper rough BCC-ideal and a lower rough BCC-ideal

of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.15 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.32 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy strong BCC-ideal of X if and only if U(µP, t) and L(νP, t) are,

if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t ∈ [0, 1], respectively.
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Proof. It is straightforward by Theorem 3.4.16 and Lemmas 4.2.1 (5) and (7).

Theorem 4.2.33 Let ρ be a congruence relation on X. Then P is a lower rough

Pythagorean fuzzy strong BCC-ideal of X if and only if U+(µP, t) and L−(νP, t)

are, if the sets are nonempty, an upper rough strong BCC-ideal and a lower rough

strong BCC-ideal of X for every t ∈ [0, 1], respectively.

Proof. It is straightforward by Theorem 3.4.17 and Lemmas 4.2.1 (6) and (8).

Theorem 4.2.34 Let ρ be a congruence relation on X. Then P is a rough

Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-

filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy BCC-ideal,

and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if U(µP, t) and

L(νP, t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough near

BCC-filters, rough BCC-filters, rough BCC-ideals, and rough strong BCC-ideals)

of X for every t ∈ [0, 1].

Proof. It is straightforward by Theorems 4.2.2 (resp., Theorems 4.2.4, 4.2.6,

4.2.14, 4.2.16) and 4.2.18 (resp., Theorems 4.2.20, 4.2.22, 4.2.30, 4.2.32).

Theorem 4.2.35 Let ρ be a congruence relation on X. Then P is a rough

Pythagorean fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-

filter, rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy BCC-ideal,

and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if U+(µP, t) and

L−(νP, t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough near

BCC-filters, rough BCC-filters, rough BCC-ideals, and rough strong BCC-ideals)

of X for every t ∈ [0, 1].

Proof. It is straightforward by Theorems 4.2.3 (resp., Theorems 4.2.5, 4.2.7,

4.2.15, 4.2.17) and 4.2.19 (resp., Theorems 4.2.21, 4.2.23, 4.2.31, 4.2.33).
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Theorem 4.2.36 Let ρ be a congruence relation on X. Then P is a rough

Pythagorean fuzzy implicative BCC-filter (resp., rough Pythagorean fuzzy com-

parative BCC-filter, and rough Pythagorean fuzzy shift BCC-filter) of X if and

only if U(µP, t) and L(νP, t) are, if the sets are nonempty, rough implicative BCC-

filters (resp., rough comparative BCC-filters, and rough shift BCC-filters) of X

for every t ∈ [0, 1].

Proof. It is straightforward by Theorems 4.2.8 (resp., Theorems 4.2.10, 4.2.12)

and 4.2.24 (resp., Theorems 4.2.26, 4.2.28).

Theorem 4.2.37 Let ρ be a congruence relation on X. Then P is a rough

Pythagorean fuzzy implicative BCC-filter (resp., rough Pythagorean fuzzy com-

parative BCC-filter, and rough Pythagorean fuzzy shift BCC-filter) of X if and

only if U+(µP, t) and L−(νP, t) are, if the sets are nonempty, rough implicative

BCC-filters (resp., rough comparative BCC-filters, and rough shift BCC-filters)

of X for every t ∈ [0, 1].

Proof. It is straightforward by Theorems 4.2.9 (resp., Theorems 4.2.11, 4.2.13)

and 4.2.25 (resp., Theorems 4.2.27, 4.2.29).



 

 

 

CHAPTER V

PYTHAGOREAN FUZZY SOFT SETS

5.1 Pythagorean fuzzy soft sets over BCC-algebras

Definition 5.1.1 A Pythagorean fuzzy soft set (P̃, A) over X is called a Pythago-

rean fuzzy soft BCC-subalgebra based on the element a ∈ A (we shortly call an

a-Pythagorean fuzzy soft BCC-subalgebra) of X if a Pythagorean fuzzy set P̃[a] in

X is a Pythagorean fuzzy BCC-subalgebra. If (P̃, A) is an a-Pythagorean fuzzy

soft BCC-subalgebra of X for all a ∈ A, we say that (P̃, A) is a Pythagorean fuzzy

soft BCC-subalgebra of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.2 If (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X and

∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft BCC-subalgebra of X.

The following example shows that there exists a nonempty subset B of A

such that (P̃|B, B) is a Pythagorean fuzzy soft BCC-subalgebra of X, but (P̃, A)

is not a Pythagorean fuzzy soft BCC-subalgebra of X.

Example 5.1.3 By Example 2.0.20, we have P̃[beauty] is a Pythagorean fuzzy

BCC-subalgebra of X. But P̃[identity] and P̃[skill] are not Pythagorean fuzzy

BCC-subalgebras of X. Indeed, νP̃[identity](1 · 1) = νP̃[identity](0) = 0.5 ≰ 0.3 =

min{0.3, 0.3} = min{νP̃[identity](1), νP̃[identity](1)} and

µP̃[skill](2·2) = µP̃[skill](0) = 0.3 ≱ 0.5 = min{0.5, 0.5} = min{µP̃[skill](2), µP̃[skill](2)}.

Hence, (P̃, A) is not a Pythagorean fuzzy soft BCC-subalgebra over X. We take

B = {beauty}.
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Thus (P̃|B, B) is a Pythagorean fuzzy soft BCC-subalgebra of X.

Definition 5.1.4 A Pythagorean fuzzy soft set (P̃, A) over X is called a Pythago-

rean fuzzy soft near BCC-filter based on a ∈ A (we shortly call an a-Pythagorean

fuzzy soft near BCC-filter) of X if a Pythagorean fuzzy set P̃[a] in X is a

Pythagorean fuzzy near BCC-filter. If (P̃, A) is an a-Pythagorean fuzzy soft

near BCC-filter of X for all a ∈ A, we say that (P̃, A) is a Pythagorean fuzzy soft

near BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.5 If (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X and

∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft near BCC-filter of X.

From Figure 1, we have the following theorem.

Theorem 5.1.6 Every a-Pythagorean fuzzy soft near BCC-filter of X is an a-

Pythagorean fuzzy soft BCC-subalgebra. Moreover, every Pythagorean fuzzy soft

near BCC-filter of X is a Pythagorean fuzzy soft BCC-subalgebra.

The following example shows that the converse of Theorem 5.1.6 is not

true.

Example 5.1.7 Let X be a set of four drinks, that is,

X = {Chocolate, Thai tea, Latte, Espresso}.
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Define binary operation · on X as the following Cayley table:

· Chocolate Thai tea Latte Espresso

Chocolate Chocolate Thai tea Latte Espresso

Thai tea Chocolate Chocolate Thai tea Espresso

Latte Chocolate Chocolate Chocolate Espresso

Espresso Chocolate Thai tea Thai tea Chocolate

Then X = (X, ·,Chocolate) is a BCC-algebra. Let (P̃, A) be a Pythagorean fuzzy

soft set over X where

A := {child, teen, adult}

with P̃[child], P̃[teen], and P̃[adult] are Pythagorean fuzzy sets in X defined as

follows:

P̃ Chocolate Thai tea Latte Espresso

child (1, 0) (0.3, 0.4) (0.9, 0.2) (0.2, 0.5)

teen (0.9, 0.1) (0.8, 0.2) (0.6, 0.4) (0.7, 0.4)

adult (0.7, 0.4) (0.6, 0.4) (0.1, 0.6) (0.6, 0.8)

Then (P̃, A) is a child-Pythagorean fuzzy soft BCC-subalgebra of X. But (P̃, A)

is not a child-Pythagorean fuzzy soft near BCC-filter of X since

µP̃[child](Thai tea · Latte) = µP̃[child](Thai tea)

= 0.3

≱ 0.9

= µP̃[child](Latte)

and

νP̃[child](Thai tea · Latte) = νP̃[child](Thai tea)
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= 0.4

≰ 0.2

= νP̃[child](Latte).

Hence, P̃[child] is not a Pythagorean fuzzy near BCC-filter of X, that is, (P̃, A)

is not a child-Pythagorean fuzzy soft near BCC-filter of X.

Definition 5.1.8 A Pythagorean fuzzy soft set (P̃, A) over X is called a Pythago-

rean fuzzy soft BCC-filter based on a ∈ A (we shortly call an a-Pythagorean fuzzy

soft BCC-filter) of X if a Pythagorean fuzzy set P̃[a] in X is a Pythagorean fuzzy

BCC-filter. If (P̃, A) is an a-Pythagorean fuzzy soft BCC-filter of X for all a ∈ A,

we say that (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.9 If (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X and ∅ ̸=

B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft BCC-filter of X.

From Figure 1, we have the following theorem.

Theorem 5.1.10 Every a-Pythagorean fuzzy soft BCC-filter of X is an a-Pytha-

gorean fuzzy soft near BCC-filter. Moreover, every Pythagorean fuzzy soft BCC-

filter of X is a Pythagorean fuzzy soft near BCC-filter.

The following example shows that the converse of Theorem 5.1.10 is not

true.

Example 5.1.11 Let X be a set of four Apple’s product, that is,

X = {iPhone, iPad, Mac, Watch}.
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Define binary operation · on X as the following Cayley table:

· iPhone iPad Mac Watch

iPhone iPhone iPad Mac Watch

iPad iPhone iPhone Mac Watch

Mac iPhone iPhone iPhone Watch

Watch iPhone iPhone iPhone iPhone

Then X = (X, ·, iPhone) is a BCC-algebra. Let (P̃, A) be a Pythagorean fuzzy

soft set over X where

A := {student, athlete, programmer}

with P̃[student], P̃[athlete], and P̃[programmer] are Pythagorean fuzzy sets in X

defined as follows:

P̃ iPhone iPad Mac Watch

student (0.9, 0.1) (0.7, 0.4) (0.8, 0.2) (0.2, 0.6)

athlete (0.7, 0.4) (0.6, 0.5) (0.7, 0.4) (0.2, 0.6)

programmer (0.8, 0.2) (0.5, 0.7) (0.6, 0.5) (0.8, 0.2)

Then (P̃, A) is a programmer-Pythagorean fuzzy soft near BCC-filter of X. But

(P̃, A) is not a programmer-Pythagorean fuzzy soft BCC-filter of X since

µP̃[programmer](iPad) = 0.5

≱ 0.6

= min{0.8, 0.6}

= min{µP̃[programmer](iPhone), µP̃[programmer](Mac)}

= min{µP̃[programmer](Mac · iPad), µP̃[programmer](Mac)}
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and

νP̃[programmer](iPad) = 0.7

≰ 0.5

= max{0.2, 0.5}

= max{νP̃[programmer](iPhone), νP̃[programmer](Mac)}

= max{νP̃[programmer](Mac · iPad), νP̃[programmer](Mac)}.

Hence, P̃[programmer] is not a Pythagorean fuzzy BCC-filter of X, that is, (P̃, A)

is not a programmer-Pythagorean fuzzy soft BCC-filter of X.

Definition 5.1.12 A Pythagorean fuzzy soft set (P̃, A) overX is called a Pythago-

rean fuzzy soft implicative BCC-filter based on the element a ∈ A (we shortly

call an a-Pythagorean fuzzy soft implicative BCC-filter of X if a Pythagorean

fuzzy set P̃[a] in X is a Pythagorean fuzzy implicative BCC-filter. If (P̃, A) is an

a-Pythagorean fuzzy soft implicative BCC-filter of X for all a ∈ A, we say that

(P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.13 If (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of

X and ∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft implicative BCC-

filter of X.

From Figure 1, we have the following theorem.

Theorem 5.1.14 Every a-Pythagorean fuzzy soft implicative BCC-filter of X is

an a-Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft

implicative BCC-filter of X is a Pythagorean fuzzy soft BCC-filter.

The following example shows that the converse of Theorem 5.1.14 is not

true.
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Example 5.1.15 Let X be a set of 5 countries, that is,

X = {Australia, Korea, Japan, Malaysia, Singapore}.

Define a binary operation · on X as the following Cayley table:

· Australia Malaysia Japan Korea Singapore

Australia Australia Malaysia Japan Korea Singapore

Malaysia Australia Australia Japan Korea Singapore

Japan Australia Australia Australia Korea Singapore

Korea Australia Australia Malaysia Australia Singapore

Singapore Australia Australia Australia Australia Australia

Then X = (X, ·,Australia) is a BCC-algebra. Let

A = {Employee, Chef, Musician}

be a set of 3 occupations of Thai people that live in X and (P̃, A) a Pythagorean

fuzzy soft set over X. Then P̃[Employee], P̃[Chef], and P̃[Musician] are Pythago-

rean fuzzy sets in X defined as follows:

P̃ Australia Malaysia Japan Korea Singapore

Employee (1, 0) (0.5, 0.3) (0.2, 0.7) (0.1, 0.8) (0, 0.9)

Chef (0.9, 0.4) (0.6, 0.6) (0.3, 0.7) (0.1, 0.8) (0.1, 0.9)

Musician (0.8, 0.2) (0.4, 0.3) (0.3, 0.4) (0.2, 0.8) (0.1, 0.9)

Then (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X. But (P̃, A) is not a

Pythagorean fuzzy soft implicative BCC-filter of X because (P̃, A) is not an

Employee-Pythagorean fuzzy soft implicative BCC-filter, a Chef-Pythagorean

fuzzy soft implicative BCC-filter, and a Musician-Pythagorean fuzzy soft im-
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plicative BCC-filter of X such as

µP̃[Chef](Korea · Japan)

= µP̃[Chef](Malaysia)

= 0.6

≱ 0.9

= min{0.9, 0.9}

= min{µP̃[Chef](Australia), µP̃[Chef](Australia)}

= min{µP̃[Chef](Korea · (Korea · Japan)), µP̃[Chef](Korea ·Korea)}.

Hence, P̃[Chef] is not a Pythagorean fuzzy implicative BCC-filter of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Definition 5.1.16 A Pythagorean fuzzy soft set (P̃, A) overX is called a Pythago-

rean fuzzy soft comparative BCC-filter based on a ∈ A (we shortly call an a-

Pythagorean fuzzy soft comparative BCC-filter of X if a Pythagorean fuzzy set

P̃[a] in X is a Pythagorean fuzzy comparative BCC-filter. If (P̃, A) is an a-

Pythagorean fuzzy soft comparative BCC-filter of X for all a ∈ A, we say that

(P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.17 If (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter

of X and ∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft comparative

BCC-filter of X.

From Figure 1, we have the following theorem.

Theorem 5.1.18 Every a-Pythagorean fuzzy soft comparative BCC-filter of X is

an a-Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft

comparative BCC-filter of X is a Pythagorean fuzzy soft BCC-filter.
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The following example shows that the converse of Theorem 5.1.18 is not

true.

Example 5.1.19 By Example 5.1.15, we have (P̃, A) is a Pythagorean fuzzy

soft BCC-filter of X. But (P̃, A) is not a Pythagorean fuzzy soft comparative

BCC-filter of X because (P̃, A) is not an Employee-Pythagorean fuzzy soft com-

parative BCC-filter, a Chef-Pythagorean fuzzy soft comparative BCC-filter, and

a Musician-Pythagorean fuzzy soft comparative BCC-filter of X such as

νP̃[Employee](Japan)

= 0.7

≰ 0.3

= max{0, 0.3}

= max{νP̃[Employee](Australia), νP̃[Employee](Malaysia)}

= max{νP̃[Employee](Malaysia · ((Japan ·Korea) · Japan)), νP̃[Employee](Malaysia)}.

Hence, P̃[Employee] is not a Pythagorean fuzzy comparative BCC-filter of X,

that is, (P̃, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Definition 5.1.20 A Pythagorean fuzzy soft set (P̃, A) overX is called a Pythago-

rean fuzzy soft shift BCC-filter based on a ∈ A (we shortly call an a-Pythagorean

fuzzy soft shift BCC-filter of X if a Pythagorean fuzzy set P̃[a] in X is a Pythago-

rean fuzzy shift BCC-filter. If (P̃, A) is an a-Pythagorean fuzzy soft shift BCC-

filter of X for all a ∈ A, we say that (P̃, A) is a Pythagorean fuzzy soft shift

BCC-filter of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.21 If (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X and

∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft shift BCC-filter of X.
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From Figure 1, we have the following theorem.

Theorem 5.1.22 Every a-Pythagorean fuzzy soft shift BCC-filter of X is an a-

Pythagorean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft shift

BCC-filter of X is a Pythagorean fuzzy soft BCC-filter.

The following example shows that the converse of Theorem 5.1.18 is not

true.

Example 5.1.23 By Example 5.1.15, we have (P̃, A) is a Pythagorean fuzzy soft

BCC-filter of X. But (P̃, A) is not a Pythagorean fuzzy soft shift BCC-filter of

X because (P̃, A) is not an Employee-Pythagorean fuzzy soft shift BCC-filter, a

Chef-Pythagorean fuzzy soft shift BCC-filter, and a Musician-Pythagorean fuzzy

soft shift BCC-filter of X such as

µP̃[Musician](((Japan ·Korea) ·Korea) · Japan)

= µP̃[Musician](Japan)

= 0.3

≱ 0.4

= min{0.4, 0.8}

= min{µP̃[Musician](Malaysia), µP̃[Musician](Australia)}

= min{µP̃[Musician](Australia · (Korea · Japan)), µP̃[Musician](Australia)}.

Hence, P̃[Musician] is not a Pythagorean fuzzy shift BCC-filter of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.

Definition 5.1.24 A Pythagorean fuzzy soft set (P̃, A) overX is called a Pythago-

rean fuzzy soft BCC-ideal based on a ∈ A (we shortly call an a-Pythagorean fuzzy

soft BCC-ideal) of X if a Pythagorean fuzzy set P̃[a] in X is a Pythagorean fuzzy

BCC-ideal. If (P̃, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a ∈ A,

we say that (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X.
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The proof of the following theorem can be verified easily.

Theorem 5.1.25 If (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X and ∅ ̸=

B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft BCC-ideal of X.

From Figure 1, we have the following theorems.

Theorem 5.1.26 Every a-Pythagorean fuzzy soft BCC-ideal of X is an a-Pythago-

rean fuzzy soft BCC-filter. Moreover, every Pythagorean fuzzy soft BCC-ideal of

X is a Pythagorean fuzzy soft BCC-filter.

Theorem 5.1.27 Every a-Pythagorean fuzzy soft implicative BCC-filter of X is

an a-Pythagorean fuzzy soft BCC-ideal. Moreover, every Pythagorean fuzzy soft

implicative BCC-filter of X is a Pythagorean fuzzy soft BCC-ideal.

The following example shows that the converse of Theorems 5.1.26 and

5.1.27 are not true.

Example 5.1.28 Let X be a set of four types of film, that is,

X = {Fantasy, Horror, Comedy, Action}.

Define binary operation · on X as the following Cayley table:

· Comedy Fantasy Horror Action

Comedy Comedy Fantasy Horror Action

Fantasy Comedy Comedy Horror Horror

Horror Comedy Fantasy Comedy Horror

Action Comedy Fantasy Comedy Comedy

Then X = (X, ·,Comedy) is a BCC-algebra. Let (P̃, A) be a Pythagorean fuzzy
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soft set over X where

A := {variety, violence, entertainment}

with P̃[variety], P̃[violence], and P̃[entertainment] are Pythagorean fuzzy sets in

X defined as follows:

P̃ Comedy Fantasy Horror Action

variety (0.7, 0.3) (0.3, 0.5) (0.2, 0.9) (0.2, 0.9)

violence (0.5, 0.5) (0.2, 0.7) (0.7, 0.7) (0.4, 0.8)

entertainment (0.8, 0.2) (0.5, 0.7) (0.6, 0.5) (0.6, 0.5)

Then (P̃, A) is a variety-Pythagorean fuzzy soft BCC-filter of X. But (P̃, A) is

not a variety-Pythagorean fuzzy soft BCC-ideal of X since

µP̃[variety](Horror · Action) = µP̃[variety](Horror)

= 0.2

≱ 0.3

= min{0.7, 0.3}

= min{µP̃[variety](Comedy), µP̃[variety](Fantasy)}

= min{µP̃[variety](Horror · (Fantasy · Action)),

µP̃[variety](Fantasy)}

and

νP̃[variety](Horror · Action) = νP̃[variety](Horror)

= 0.9

≰ 0.5
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= max{0.3, 0.5}

= max{νP̃[variety](Comedy), νP̃[variety](Fantasy)}

= max{νP̃[variety](Horror · (Fantasy · Action)),

νP̃[variety](Fantasy)}.

Hence, P̃[variety] is not a Pythagorean fuzzy BCC-ideal of X, that is, (P̃, A) is

not a variety-Pythagorean fuzzy soft BCC-ideal of X.

Example 5.1.29 By Example 5.1.15, we have (P̃, A) is a Pythagorean fuzzy soft

BCC-ideal of X. But (P̃, A) is not a Pythagorean fuzzy soft implicative BCC-

filter of X because (P̃, A) is not an Employee-Pythagorean fuzzy soft implicative

BCC-filter, a Chef-Pythagorean fuzzy soft implicative BCC-filter, and a Musician-

Pythagorean fuzzy soft implicative BCC-filter of X such as

νP̃[Musician](Korea · Japan)

= νP̃[Musician](Malaysia)

= 0.3

≰ 0.2

= max{0.2, 0.2}

= max{νP̃[Musician](Australia), νP̃[Musician](Australia)}

= max{νP̃[Musician](Korea · (Korea · Japan)), νP̃[Musician](Korea ·Korea)}.

Hence, P̃[Musician] is not a Pythagorean fuzzy implicative BCC-filter of X, that

is, (P̃, A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Definition 5.1.30 A Pythagorean fuzzy soft set (P̃, A) overX is called a Pythago-

rean fuzzy soft strong BCC-ideal based on a ∈ A (we shortly call an a-Pythagorean

fuzzy soft strong BCC-ideal) of X if a Pythagorean fuzzy set P̃[a] in X is a

Pythagorean fuzzy strong BCC-ideal. If P̃[a] is an a-Pythagorean fuzzy soft
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strong BCC-ideal of X for all a ∈ A, we say that P̃[a] is a Pythagorean fuzzy soft

strong BCC-ideal of X.

The proof of the following theorem can be verified easily.

Theorem 5.1.31 If (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X

and ∅ ̸= B ⊆ A, then (P̃|B, B) is a Pythagorean fuzzy soft strong BCC-ideal of

X.

From Figure 1, we have the following theorems.

Theorem 5.1.32 a-Pythagorean fuzzy soft strong BCC-ideal and a-constant Py-

thagorean fuzzy soft set coincide in X. Moreover, Pythagorean fuzzy soft strong

BCC-ideal and constant Pythagorean fuzzy soft set coincide in X.

Theorem 5.1.33 Every a-Pythagorean fuzzy soft strong BCC-ideal of X is an a-

Pythagorean fuzzy soft BCC-ideal. Moreover, every Pythagorean fuzzy soft strong

BCC-ideal of X is a Pythagorean fuzzy soft BCC-ideal.

Theorem 5.1.34 Every a-Pythagorean fuzzy soft strong BCC-ideal of X is an

a-Pythagorean fuzzy soft implicative BCC-filter (resp., a-Pythagorean fuzzy soft

comparative BCC-filter, a-Pythagorean fuzzy soft shift BCC-filter). Moreover, ev-

ery Pythagorean fuzzy soft strong BCC-ideal of X is a Pythagorean fuzzy soft im-

plicative BCC-filter (resp., Pythagorean fuzzy soft comparative BCC-filter, Pytha-

gorean fuzzy soft shift BCC-filter).

The following example shows that the converse of Theorems 5.1.33 and

5.1.34 are not true.

Example 5.1.35 Let X be a set of four games of E-sports, that is,

X = {DOTA, Pokemon, Call of Duty, FIFA}.
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Define binary operation · on X as the following Cayley table:

· DOTA FIFA Call of Duty Pokemon

DOTA DOTA FIFA Call of Duty Pokemon

Pokemon DOTA DOTA FIFA Pokemon

Call of Duty DOTA DOTA DOTA Pokemon

FIFA DOTA FIFA Call of Duty DOTA

Then X = (X, ·,DOTA) is a BCC-algebra. Let (P̃, A) be a Pythagorean fuzzy

soft set over X where

A := {pressure, planning, relaxation}

with P̃[pressure], P̃[planning], and P̃[relaxation] are Pythagorean fuzzy sets in X

defined as follows:

P̃ DOTA FIFA Call of Duty Pokemon

pressure (1, 0) (0.7, 0.3) (0.7, 0.3) (0.2, 0.8)

planning (0.8, 0.4) (0.6, 0.6) (0.6, 0.6) (0.3, 0.9)

relaxation (0.2, 0.4) (0.3, 0.4) (0.3, 0.6) (0.6, 0.4)

Then (P̃, A) is a planning-Pythagorean fuzzy soft BCC-ideal of X. But (P̃, A) is

not a planning-Pythagorean fuzzy soft strong BCC-ideal of X since

µP̃[planning](Call of Duty)

= 0.6

≱ 0.8

= min{0.8, 0.8}

= min{µP̃[planning](DOTA), µP̃[planning](DOTA)}
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= min{µP̃[planning]((Call of Duty ·DOTA) · (Call of Duty·

Call of Duty)), µP̃[planning](DOTA)}

and

νP̃[planning](Call of Duty)

= 0.6

≰ 0.4

= max{0.4, 0.4}

= max{νP̃[planning](DOTA), νP̃[planning](DOTA)}

= max{νP̃[planning]((Call of Duty ·DOTA) · (Call of Duty·

Call of Duty)), νP̃[planning](DOTA)}.

Hence, P̃[planning] is not a Pythagorean fuzzy strong BCC-ideal of X, that is,

(P̃, A) is not a planning-Pythagorean fuzzy soft strong BCC-ideal of X.

Example 5.1.36 Let X be a set of 5 internet stocks, that is,

X = {x1, x2, x3, x4, x5}.

Define a binary operation · on X as the following Cayley table:

· x1 x2 x3 x4 x5

x1 x1 x2 x3 x4 x5

x2 x1 x1 x2 x3 x5

x3 x1 x1 x1 x3 x5

x4 x1 x1 x1 x1 x5

x5 x1 x1 x1 x3 x1
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Then X = (X, ·, x1) is a BCC-algebra. Let

A = {Market trend, Annual performance, Circulation market value}

= {MT, AP, CMV}

be a set of 3 evaluations in X and (P̃, A) a Pythagorean fuzzy soft set over X.

Then P̃[MT], P̃[AP], and P̃[CMV] are Pythagorean fuzzy sets in X defined as

follows:

P̃ x1 x2 x3 x4 x5

MT (0.8, 0.2) (0.8, 0.2) (0.8, 0.2) (0.8, 0.2) (0.4, 0.7)

AP (0.5, 0.3) (0.5, 0.3) (0.5, 0.3) (0.5, 0.3) (0.5, 0.3)

CMV (0.7, 0.3) (0.7, 0.3) (0.7, 0.3) (0.7, 0.3) (0.2, 0.9)

Then (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter (Pythagorean

fuzzy soft comparative BCC-filter,Pythagorean fuzzy soft shift BCC-filter) of X.

But (P̃, A) is not a Pythagorean fuzzy soft strong BCC-ideal of X because (P̃, A)

is not a MT-constant Pythagorean fuzzy soft set (CMV-constant Pythagorean

fuzzy soft set) of X. Hence, P̃[MT] and P̃[CMV] are not a Pythagorean fuzzy

strong BCC-ideal of X, that is, (P̃, A) is not a Pythagorean fuzzy soft strong

BCC-ideal of X.

Next, we shall find examples for study generalization of Pythagorean

fuzzy soft sets over BCC-algebras.

Example 5.1.37 By Example 5.1.15, we have (P̃, A) is a Pythagorean fuzzy

soft BCC-ideal of X. But (P̃, A) is not a Pythagorean fuzzy soft comparative

BCC-filter of X because (P̃, A) is not an Employee-Pythagorean fuzzy soft com-

parative BCC-filter, a Chef-Pythagorean fuzzy soft comparative BCC-filter, and



 

 

 
192

a Musician-Pythagorean fuzzy soft comparative BCC-filter of X such as

µP̃[Chef](Korea)

= 0.1

≱ 0.3

= min{0.9, 0.3}

= min{µP̃[Chef](Australia), µP̃[Chef](Japan)}

= min{µP̃[Chef](Japan · ((Korea · Singapore) ·Korea)), µP̃[Chef](Japan)}.

Hence, P̃[Chef] is not a Pythagorean fuzzy comparative BCC-filter of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.38 By Example 5.1.15, we have (P̃, A) is a Pythagorean fuzzy soft

BCC-ideal of X. But (P̃, A) is not a Pythagorean fuzzy soft shift BCC-filter of

X because (P̃, A) is not an Employee-Pythagorean fuzzy soft shift BCC-filter, a

Chef-Pythagorean fuzzy soft shift BCC-filter, and a Musician-Pythagorean fuzzy

soft shift BCC-filter of X such as

νP̃[Employee](((Korea · Singapore) · Singapore) ·Korea)

= νP̃[Employee](Korea)

= 0.8

≰ 0.7

= max{0, 0.7}

= max{νP̃[Employee](Malaysia), νP̃[Employee](Japan)}

= max{νP̃[Employee](Japan · (Singapore ·Korea)), νP̃[Employee](Japan)}.

Hence, P̃[Employee] is not a Pythagorean fuzzy shift BCC-filter of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.
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Example 5.1.39 Let X be a set of 4 cars, that is, X = {c1, c2, c3, c4}. Define a

binary operation · on X as the following Cayley table:

· c1 c2 c3 c4

c1 c1 c2 c3 c4

c2 c1 c1 c3 c3

c3 c1 c1 c1 c3

c4 c1 c1 c1 c1

ThenX = (X, ·, c1 is a BCC-algebra. LetA = {Price, Modernity, Engine torque}

be a set of purchasing decisions in X and (P̃, A) a Pythagorean fuzzy soft set over

X. Then P̃[Price], P̃[Modernity], and P̃[Engine torque] are Pythagorean fuzzy

sets in X defined as follows:

P̃ c1 c2 c3 c4

Price (0.7, 0.5) (0.7, 0.5) (0.3, 0.6) (0.3, 0.6)

Modernity (0.9, 0.4) (0.9, 0.4) (0.1, 0.8) (0.1, 0.8)

Engine torque (0.8, 0.3) (0.8, 0.3) (0.2, 0.4) (0.2, 0.4))

Then (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X. But (P̃, A) is

not a Pythagorean fuzzy soft implicative BCC-filter of X because (P̃, A) is not

a Price-Pythagorean fuzzy soft implicative BCC-filter, a Modernity-Pythagorean

fuzzy soft implicative BCC-filter, and an Engine torque-Pythagorean fuzzy soft

implicative BCC-filter of X such as

µP̃[Price](c3 · c4) = µP̃[Price](c3)

= 0.3

≱ 0.7

= min{0.7, 0.7}
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= min{µP̃[Price](c1), µP̃[Price](c1)}

= min{µP̃[Price](c3 · (c3 · c4)), µP̃[Price](c3 · c3)}.

Hence, P̃[Price] is not a Pythagorean fuzzy implicative BCC-filter of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Example 5.1.40 By Example 5.1.39, we have (P̃, A) is a Pythagorean fuzzy soft

shift BCC-filter of X. But (P̃, A) is not a Pythagorean fuzzy soft comparative

BCC-filter of X because (P̃, A) is not a Price-Pythagorean fuzzy soft comparative

BCC-filter, a Modernity-Pythagorean fuzzy soft comparative BCC-filter, and an

Engine torque-Pythagorean fuzzy soft comparative BCC-filter of X such as

νP̃[Modernity](c3) = 0.8

≰ 0.4

= max{0.4, 0.4}

= max{νP̃[Modernity](c1), νP̃[Modernity](c1)}

= max{νP̃[Modernity](c1 · ((c3 · c4) · c3)), νP̃[Modernity](c1)}.

Hence, P̃[Modernity] is not a Pythagorean fuzzy comparative BCC-filter of X,

that is, (P̃, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.41 By Example 5.1.39, we have (P̃, A) is a Pythagorean fuzzy soft

shift BCC-filter of X. But (P̃, A) is not a Pythagorean fuzzy soft BCC-ideal of

X because (P̃, A) is not a Price-Pythagorean fuzzy soft BCC-ideal, a Modernity-

Pythagorean fuzzy soft BCC-ideal, and an Engine torque-Pythagorean fuzzy soft

BCC-ideal of X such as

µP̃[Engine torque](c3 · c4) = µP̃[Engine torque](c3)

= 0.2
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≱ 0.8

= min{0.8, 0.8}

= min{µP̃[Engine torque](c1), µP̃[Engine torque](c2)}

= min{µP̃[Engine torque](c3 · (c2 · c4)), µP̃[Engine torque](c2)}.

Hence, P̃[Engine torque] is not a Pythagorean fuzzy BCC-ideal of X, that is,

(P̃, A) is not a Pythagorean fuzzy soft BCC-ideal of X.

Example 5.1.42 Let X be a set of 5 cities in Thailand, that is,

X = {Bangkok, Chiang Mai, Chiang Rai, Phuket, Khon Kaen}.

Define a binary operation · on X as the following Cayley table:

· Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen

Bangkok Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen

Chiang Mai Bangkok Bangkok Bangkok Bangkok Khon Kaen

Chiang Rai Bangkok Chiang Mai Bangkok Bangkok Khon Kaen

Phuket Bangkok Chiang Mai Chiang Rai Bangkok Khon Kaen

Khon Kaen Bangkok Chiang Mai Chiang Rai Phuket Bangkok

Then X = (X, ·,Bangkok) is a BCC-algebra. Let A = {Crowed, Cost of living}

be a set of 2 factors in X and (P̃, A) a Pythagorean fuzzy soft set over X. Then

P̃[Crowed] and a P̃[Cost of living] are Pythagorean fuzzy sets in X defined as

follows:

P̃ Bangkok Chiang Mai Chiang Rai Phuket Khon Kaen

Crowed (0.7, 0.1) (0.2, 0.3) (0.2, 0.3) (0.2, 0.3) (0, 0.9)

Cost of living (0.6, 0.5) (0.3, 0.7) (0.3, 0.7) (0.4, 0.6) (0.1, 0.8)
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Then (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X. But (P̃, A)

is not a Pythagorean fuzzy soft comparative BCC-filter of X because (P̃, A) is

not a Crowed-Pythagorean fuzzy soft comparative BCC-filter and Cost of living-

Pythagorean fuzzy soft comparative BCC-filter of X such as

µP̃[Crowed](Phuket) = 0.2

≱ 0.7

= min{0.7, 0.7}

= min{µP̃[Crowed](Bangkok), µP̃[Crowed](Bangkok)}

= min{µP̃[Crowed](Bangkok · ((Phuket · Chiang Rai) · Phuket))

, µP̃[Crowed](Bangkok)}.

Hence, P̃[Crowed] is not a Pythagorean fuzzy comparative BCC-filter of X, that

is, (P̃, A) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Example 5.1.43 By Example 5.1.42, we have (P̃, A) is a Pythagorean fuzzy

soft implicative BCC-filter of X. But (P̃, A) is not a Pythagorean fuzzy soft

shift BCC-filter of X because (P̃, A) is not a Crowed-Pythagorean fuzzy soft shift

BCC-filter and a Cost of living-Pythagorean fuzzy soft shift BCC-filter of X such

as

νP̃[Cost of living](((Phuket · Chiang Mai) · Chiang Mai) · Phuket)

= νP̃[Cost of living](Phuket)

= 0.6

≰ 0.5

= max{0.5, 0.5}

= max{νP̃[Cost of living](Bangkok), νP̃[Cost of living](Bangkok)}

= max{νP̃[Cost of living](Bangkok · (Chiang Mai · Phuket)),
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νP̃[Cost of living](Bangkok)}.

Hence, P̃[Cost of living] is not a Pythagorean fuzzy shift BCC-filter of X, that

is, (P̃, A) is not a Pythagorean fuzzy soft shift BCC-filter of X.

We got the diagram of generalization of Pythagorean fuzzy soft sets over

BCC-algebras, which is shown with Figure 6.

�✁✂✄☎✆✝✞✟☎✠ ✡☛☞☞✁ ✌✝✡✂
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Figure 6: Pythagorean fuzzy soft sets over BCC-algebras

5.2 The operations on Pythagorean fuzzy soft sets

Theorem 5.2.1 The extended intersection of two Pythagorean fuzzy soft BCC-

subalgebras of X is also a Pythagorean fuzzy soft BCC-subalgebra. Moreover,

the intersection of two Pythagorean fuzzy soft BCC-subalgebras of X is also a

Pythagorean fuzzy soft BCC-subalgebra.



 

 

 
198

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

subalgebras of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-

subalgebra of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-

subalgebra of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.1, we have P̃[a] = P̃1[a] ∧ P̃2[a] is

a Pythagorean fuzzy BCC-subalgebra of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-subalgebra of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X.

Theorem 5.2.2 The union of two Pythagorean fuzzy soft BCC-subalgebras of

X is also a Pythagorean fuzzy soft BCC-subalgebra if sets of statistics of two

Pythagorean fuzzy soft BCC-subalgebras are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

subalgebras of X such that A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A)

where A = A1 ∪ A2. Since A1 ∩ A2 = ∅, we have a ∈ A1 \ A2 or a ∈ A2 \ A1.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-

subalgebra of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-

subalgebra of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-subalgebra of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X.
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The following example shows that Theorem 5.2.2 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-subalgebras are not disjoint.

Example 5.2.3 Let X be a set of four Thai foods, that is,

X = {Pad Thai, Som Tam, Laab, Tom Yum Goong}.

Define binary operation · on X as the following Cayley table:

· Pad Thai Som Tam Laab Tom Yum Goong

Pad Thai Pad Thai Som Tam Laab Tom Yum Goong

Som Tam Pad Thai Pad Thai Som Tam Tom Yum Goong

Laab Pad Thai Pad Thai Pad Thai Tom Yum Goong

Tom Yum Goong Pad Thai Pad Thai Som Tam Pad Thai

Then X = (X, ·,Pad Thai) is a BCC-algebra. Let (P̃1, A1) and (P̃2, A2) are

Pythagorean fuzzy soft sets over X where

A1 := {popularity, aroma}

and

A2 := {popularity, deliciousness}

with P̃1[popularity], P̃1[aroma], P̃2[popularity], and P̃2[deliciousness] are Pythago-

rean fuzzy sets in X defined as follows:

P̃1 Pad Thai Som Tam Laab Tom Yum Goong

popularity (0.9, 0) (0.5, 0.4) (0.9, 0) (0.3, 0.5)

aroma (0.5, 0.4) (0.4, 0.8) (0.4, 0.8) (0.4, 0.8)
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P̃2 Pad Thai Som Tam Laab Tom Yum Goong

popularity (0.9, 0.1) (0.3, 0.7) (0.2, 0.8) (0.7, 0.2)

deliciousness (0.5, 0.5) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9)

Then (P̃1, A1) and (P̃2, A2) are Pythagorean fuzzy soft BCC-subalgebras of X.

Since popularity ∈ A1 ∩ A2, we have

µP̃1[popularity]∨P̃2[popularity]
(Tom Yum Goong · Laab)

= µP̃1[popularity]∨P̃2[popularity]
(Som Tam)

= 0.5

≱ 0.7

= min{0.7, 0.9}

= min{µP̃1[popularity]∨P̃2[popularity]
(Tom Yum Goong),

µP̃1[popularity]∨P̃2[popularity]
(Laab)}.

Thus P̃1[popularity]∨ P̃2[popularity] is not a Pythagorean fuzzy BCC-subalgebra

of X, that is, (P̃1, A1)∪̃(P̃2, A2) is not a popularity-Pythagorean fuzzy soft BCC-

subalgebra of X. Hence, (P̃1, A1)∪̃(P̃2, A2) is not a Pythagorean fuzzy soft BCC-

subalgebra of X. Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a Pythagorean fuzzy soft

BCC-subalgebra of X.

Theorem 5.2.4 The extended intersection of two Pythagorean fuzzy soft near

BCC-filters of X is also a Pythagorean fuzzy soft near BCC-filter. Moreover,

the intersection of two Pythagorean fuzzy soft near BCC-filters of X is also a

Pythagorean fuzzy soft near BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft near

BCC-filters of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.
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Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy near

BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy near

BCC-filter of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.3, we have P̃[a] = P̃1[a] ∧ P̃2[a] is

a Pythagorean fuzzy near BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft near BCC-filter of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X.

Theorem 5.2.5 The union of two Pythagorean fuzzy soft near BCC-filters of X

is also a Pythagorean fuzzy soft near BCC-filter. Moreover, the restricted union

of two Pythagorean fuzzy soft near BCC-filters of X is also a Pythagorean fuzzy

soft near BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft near

BCC-filters of X. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy near

BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy near

BCC-filter of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.4, we have P̃[a] = P̃1[a] ∨ P̃2[a] is

a Pythagorean fuzzy near BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft near BCC-filter of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X.

Theorem 5.2.6 The extended intersection of two Pythagorean fuzzy soft BCC-
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filters of X is also a Pythagorean fuzzy soft BCC-filter. Moreover, the intersection

of two Pythagorean fuzzy soft BCC-filters of X is also a Pythagorean fuzzy soft

BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

filters of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let

a ∈ A.

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-filter

of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-filter

of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.5, we have P̃[a] = P̃1[a] ∧ P̃2[a] is

a Pythagorean fuzzy BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X.

Theorem 5.2.7 The union of two Pythagorean fuzzy soft BCC-filters of X is

also a Pythagorean fuzzy soft BCC-filter if sets of statistics of two Pythagorean

fuzzy soft BCC-filters are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

filters of X such that A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where

A = A1 ∪ A2. Since A1 ∩ A2 = ∅, we have a ∈ A1 \ A2 or a ∈ A2 \ A1. Next, let

a ∈ A.

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-filter

of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-filter
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of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X.

The following example shows that Theorem 5.2.7 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-filters are not disjoint.

Example 5.2.8 Let X be a set of four seasons, that is,

X = {Spring, Rains, Summer, Winter}.

Define binary operation · on X as the following Cayley table:

· Winter Rains Spring Summer

Winter Winter Rains Spring Summer

Rains Winter Winter Spring Spring

Spring Winter Rains Winter Rains

Summer Winter Winter Winter Winter

ThenX = (X, ·,Winter) is a BCC-algebra. Let (P̃1, A1) and (P̃2, A2) are Pythago-

rean fuzzy soft sets over X where

A1, := {coldness, moisture}

and

A2 := {moisture, excitement, warmth}

with P̃1[coldness], P̃1[moisture], P̃2[moisture], P̃2[excitement], and P̃2[warmth] are
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Pythagorean fuzzy sets in X defined as follows:

P̃1 Winter Rains Spring Summer

coldness (0.9, 0.4) (0.2, 0.7) (0.2, 0.7) (0.2, 0.7)

moisture (0.8, 0.2) (0.8, 0.2) (0.3, 0.4) (0.3, 0.4)

P̃2 Winter Rains Spring Summer

moisture (0.9, 0.1) (0.1, 0.7) (0.5, 0.4) (0.1, 0.7)

excitement (0.6, 0.5) (0.3, 0.8) (0.6, 0.5) (0.3, 0.8)

warmth (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)

Then (P̃1, A1) and (P̃2, A2) are Pythagorean fuzzy soft BCC-filters of X. Since

moisture ∈ A1 ∩ A2, we have

µP̃1[moisture]∨P̃2[moisture](Summer) = 0.3

≱ 0.5

= min{0.5, 0.8}

= min{µP̃1[moisture]∨P̃2[moisture](Spring),

µP̃1[moisture]∨P̃2[moisture](Rains)}

= min{µP̃1[moisture]∨P̃2[moisture](Rains · Summer),

µP̃1[moisture]∨P̃2[moisture](Rains)}.

Thus P̃1[moisture] ∨ P̃2[moisture] is not a Pythagorean fuzzy BCC-filter of X,

that is, (P̃1, A1)∪̃(P̃2, A2) is not a moisture-Pythagorean fuzzy soft BCC-filter of

X. Hence, (P̃1, A1)∪̃(P̃2, A2) is not a Pythagorean fuzzy soft BCC-filter of X.

Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a Pythagorean fuzzy soft BCC-filter of X.

Theorem 5.2.9 The extended intersection of two Pythagorean fuzzy soft im-

plicative BCC-filters of X is also a Pythagorean fuzzy soft implicative BCC-filter.
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Moreover, the intersection of two Pythagorean fuzzy soft implicative BCC-filters

of X is also a Pythagorean fuzzy soft implicative BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft implica-

tive BCC-filters of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1∪A2.

Next, let a ∈ A.

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy implicative

BCC-filter of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy implicative

BCC-filter of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.7, we have P̃[a] = P̃1[a] ∧ P̃2[a] is

a Pythagorean fuzzy implicative BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft implicative BCC-filter of X

for all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of

X.

Theorem 5.2.10 The union of two Pythagorean fuzzy soft implicative BCC-

filters of X is also a Pythagorean fuzzy soft implicative BCC-filter if sets of

statistics of two Pythagorean fuzzy soft implicative BCC-filters are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft im-

plicative BCC-filters of X such that A1∩A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by

(P̃, A) where A = A1∪A2. Since A1∩A2 = ∅, we have a ∈ A1 \A2 or a ∈ A2 \A1.

Next, let a ∈ A.

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy implicative

BCC-filter of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy implicative
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BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft implicative BCC-filter of X

for all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of

X.

The following example shows that Theorem 5.2.10 is not valid if sets of

statistics of two Pythagorean fuzzy soft implicative BCC-filters are not disjoint.

Example 5.2.11 Let X be a set of 4 musicians, that is, X = {m1,m2,m3,m4}.

Define a binary operation · on X as the following Cayley table:

· m1 m2 m3 m4

m1 m1 m2 m3 m4

m2 m1 m1 m3 m3

m3 m1 m2 m1 m2

m4 m1 m1 m1 m1

Then X = (X, ·,m1) is a BCC-algebra. Let

A1 = {Creative thinking, Professionalism} and

A2 = {Identity, Professionalism}

be sets of properties in X and (P̃1, A1) and (P̃2, A2) are Pythagorean fuzzy soft

sets over X. Then P̃1[Creative thinking], P̃1[Professionalism], P̃2[Identity], and

P̃2[Professionalism] are Pythagorean fuzzy sets in X defined as follows:

P̃1 m1 m2 m3 m4

Creative thinking (0.5, 0.6) (0.1, 0.8) (0.4, 0.7) (0.1, 0.8)

Professionalism (0.9, 0.2) (0.4, 0.5) (0.6, 0.4) (0.4, 0.5)
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P̃2 m1 m2 m3 m4

Identity (1, 0) (0.2, 0.9) (0.7, 0.2) (0.2, 0.9)

Professionalism (0.6, 0) (0.6, 0) (0.5, 0.4) (0.5, 0.4)

Then (P̃1, A1) and (P̃2, A2) are Pythagorean fuzzy soft implicative BCC-filters of

X. Since Professionalism ∈ A1 ∩ A2, we have

µP̃1[Professionalism]∨P̃2[Professionalism](m1 ·m4)

= µP̃1[Professionalism]∨P̃2[Professionalism](m4)

= 0.5

≱ 0.6

= min{0.6, 0.6}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m3),

µP̃1[Professionalism]∨P̃2[Professionalism](m2)}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m1 · (m2 ·m4)),

µP̃1[Professionalism]∨P̃2[Professionalism](m1 ·m2)}.

Thus P̃1[Professionalism] ∨ P̃2[Professionalism] is not a Pythagorean fuzzy im-

plicative BCC-filter of X, that is, (P̃1, A1)∪̃(P̃2, A2) is not a Professionalism-

Pythagorean fuzzy soft implicative BCC-filter of X. Hence, (P̃1, A1)∪̃(P̃2, A2) is

not a Pythagorean fuzzy soft implicative BCC-filter of X. Moreover, (P̃1, A1)⋓̃

(P̃2, A2) is not a Pythagorean fuzzy soft implicative BCC-filter of X.

Theorem 5.2.12 The extended intersection of two Pythagorean fuzzy soft com-

parative BCC-filters of X is also a Pythagorean fuzzy soft comparative BCC-filter.

Moreover, the intersection of two Pythagorean fuzzy soft comparative BCC-filters

of X is also a Pythagorean fuzzy soft comparative BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft compar-
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ative BCC-filters of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1∪A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy compar-

ative BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy compar-

ative BCC-filter of X.

Case 3: a ∈ A1 ∩ A2. By Theorem 3.5.9, we have P̃[a] = P̃1[a] ∧ P̃2[a] is

a Pythagorean fuzzy comparative BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft comparative BCC-filter of X

for all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter

of X.

Theorem 5.2.13 The union of two Pythagorean fuzzy soft comparative BCC-

filters of X is also a Pythagorean fuzzy soft comparative BCC-filter if sets of

statistics of two Pythagorean fuzzy soft comparative BCC-filters are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft com-

parative BCC-filters of X such that A1 ∩A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by

(P̃, A) where A = A1∪A2. Since A1∩A2 = ∅, we have a ∈ A1 \A2 or a ∈ A2 \A1.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy compar-

ative BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy compar-

ative BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft comparative BCC-filter of X

for all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter
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of X.

The following example shows that Theorem 5.2.13 is not valid if sets of

statistics of two Pythagorean fuzzy soft comparative BCC-filters are not disjoint.

Example 5.2.14 By Example 5.2.11, we have (P̃1, A1) and (P̃2, A2) are Pythago-

rean fuzzy soft comparative BCC-filters of X. Since Professionalism ∈ A1 ∩ A2,

we have

µP̃1[Professionalism]∨P̃2[Professionalism](m4)

= 0.5

≱ 0.6

= min{0.6, 0.6}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m2),

µP̃1[Professionalism]∨P̃2[Professionalism](m3)}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m3 · ((m4 ·m2) ·m4)),

µP̃1[Professionalism]∨P̃2[Professionalism](m3)}.

Thus P̃1[Professionalism] ∨ P̃2[Professionalism] is not a Pythagorean fuzzy com-

parative BCC-filter of X, that is, (P̃1, A1)∪̃(P̃2, A2) is not a Professionalism-

Pythagorean fuzzy soft comparative BCC-filter of X. Hence, (P̃1, A1)∪̃(P̃2, A2)

is not a Pythagorean fuzzy soft comparative BCC-filter ofX. Moreover, (P̃1, A1)⋓̃

(P̃2, A2) is not a Pythagorean fuzzy soft comparative BCC-filter of X.

Theorem 5.2.15 The extended intersection of two Pythagorean fuzzy soft shift

BCC-filters of X is also a Pythagorean fuzzy soft shift BCC-filter. Moreover,

the intersection of two Pythagorean fuzzy soft shift BCC-filters of X is also a

Pythagorean fuzzy soft shift BCC-filter.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft shift
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BCC-filters of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy shift

BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy shift

BCC-filter of X.

Case 3: a ∈ A1 ∩A2. By Theorem 3.5.11, we have P̃[a] = P̃1[a]∧ P̃2[a] is

a Pythagorean fuzzy shift BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft shift BCC-filter of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X.

Theorem 5.2.16 The union of two Pythagorean fuzzy soft shift BCC-filters of

X is also a Pythagorean fuzzy soft shift BCC-filter if sets of statistics of two

Pythagorean fuzzy soft shift BCC-filters are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft shift

BCC-filters of X such that A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A)

where A = A1 ∪ A2. Since A1 ∩ A2 = ∅, we have a ∈ A1 \ A2 or a ∈ A2 \ A1.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy shift

BCC-filter of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy shift

BCC-filter of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft shift BCC-filter of X for all

a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X.

The following example shows that Theorem 5.2.16 is not valid if sets of
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statistics of two Pythagorean fuzzy soft shift BCC-filters are not disjoint.

Example 5.2.17 By Example 5.2.11, we have (P̃1, A1) and (P̃2, A2) are Pythago-

rean fuzzy soft shift BCC-filters of X. Since Professionalism ∈ A1 ∩A2, we have

µP̃1[Professionalism]∨P̃2[Professionalism](((m4 ·m1) ·m1) ·m4)

= µP̃1[Professionalism]∨P̃2[Professionalism](m4)

= 0.5

≱ 0.6

= min{0.6, 0.6}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m2),

µP̃1[Professionalism]∨P̃2[Professionalism](m3)}

= min{µP̃1[Professionalism]∨P̃2[Professionalism](m3 · (m1 ·m4)),

µP̃1[Professionalism]∨P̃2[Professionalism](m3)}.

Thus P̃1[Professionalism] ∨ P̃2[Professionalism] is not a Pythagorean fuzzy shift

BCC-filter of X, that is, (P̃1, A1)∪̃(P̃2, A2) is not a Professionalism-Pythagorean

fuzzy soft shift BCC-filter of X. Hence, (P̃1, A1)∪̃(P̃2, A2) is not a Pythagorean

fuzzy soft shift BCC-filter ofX. Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a Pythagorean

fuzzy soft shift BCC-filter of X.

Theorem 5.2.18 The extended intersection of two Pythagorean fuzzy soft BCC-

ideals of X is also a Pythagorean fuzzy soft BCC-ideal. Moreover, the intersection

of two Pythagorean fuzzy soft BCC-ideals of X is also a Pythagorean fuzzy soft

BCC-ideal.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

ideals of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let

a ∈ A.



 

 

 
212

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-ideal

of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-ideal

of X.

Case 3: a ∈ A1 ∩A2. By Theorem 3.5.13, we have P̃[a] = P̃1[a]∧ P̃2[a] is

a Pythagorean fuzzy BCC-ideal of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X.

Theorem 5.2.19 The union of two Pythagorean fuzzy soft BCC-ideals of X is

also a Pythagorean fuzzy soft BCC-ideal if sets of statistics of two Pythagorean

fuzzy soft BCC-ideals are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft BCC-

ideals of X such that A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where

A = A1 ∪ A2. Since A1 ∩ A2 = ∅, we have a ∈ A1 \ A2 or a ∈ A2 \ A1. Next, let

a ∈ A.

Case 1: a ∈ A1\A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy BCC-ideal

of X.

Case 2: a ∈ A2\A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy BCC-ideal

of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft BCC-ideal of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X.

The following example shows that Theorem 5.2.19 is not valid if sets of

statistics of two Pythagorean fuzzy soft BCC-ideals are not disjoint.
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Example 5.2.20 In Example 5.2.8, we have (P̃1, A1) and (P̃2, A2) are Pythagorean

fuzzy soft BCC-ideals of X. Since moisture ∈ A1 ∩ A2, we have

µP̃1[moisture]∨P̃2[moisture](Winter · Summer)

= µP̃1[moisture]∨P̃2[moisture](Summer)

= 0.3

≱ 0.5

= min{0.8, 0.5}

= min{µP̃1[moisture]∨P̃2[moisture](Rains),

µP̃1[moisture]∨P̃2[moisture](Spring)}

= min{µP̃1[moisture]∨P̃2[moisture](Winter · (Spring · Summer)),

µP̃1[moisture]∨P̃2[moisture](Spring)}.

Thus P̃1[moisture] ∨ P̃2[moisture] is not a Pythagorean fuzzy BCC-ideal of X,

that is, (P̃1, A1)∪̃(P̃2, A2) is not a moisture-Pythagorean fuzzy soft BCC-ideal of

X. Hence, (P̃1, A1)∪̃(P̃2, A2) is not a Pythagorean fuzzy soft BCC-ideal of X.

Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a Pythagorean fuzzy soft BCC-ideal of X.

Theorem 5.2.21 The extended intersection of two Pythagorean fuzzy soft strong

BCC-ideals of X is also a Pythagorean fuzzy soft strong BCC-ideal. Moreover,

the intersection of two Pythagorean fuzzy soft strong BCC-ideals of X is also a

Pythagorean fuzzy soft strong BCC-ideal.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft strong

BCC-ideals of X. We denote (P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy strong

BCC-ideal of X.
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Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy strong

BCC-ideal of X.

Case 3: a ∈ A1 ∩A2. By Theorem 3.5.15, we have P̃[a] = P̃1[a]∧ P̃2[a] is

a Pythagorean fuzzy strong BCC-ideal of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft strong BCC-ideal of X for

all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X.

Theorem 5.2.22 The union of two Pythagorean fuzzy soft strong BCC-ideals

of X is also a Pythagorean fuzzy soft strong BCC-ideal. Moreover, the restricted

union of two Pythagorean fuzzy soft strong BCC-ideals of X is also a Pythagorean

fuzzy soft strong BCC-ideal.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two Pythagorean fuzzy soft strong

BCC-ideals of X. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2.

Next, let a ∈ A.

Case 1: a ∈ A1 \ A2. Then P̃[a] = P̃1[a] is a Pythagorean fuzzy strong

BCC-ideal of X.

Case 2: a ∈ A2 \ A1. Then P̃[a] = P̃2[a] is a Pythagorean fuzzy strong

BCC-ideal of X.

Case 3: a ∈ A1 ∩A2. By Theorem 3.5.15, we have P̃[a] = P̃1[a]∨ P̃2[a] is

a Pythagorean fuzzy strong BCC-ideal of X.

Thus (P̃, A) is an a-Pythagorean fuzzy soft strong BCC-ideal of X for

all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X.
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5.3 t-Level subsets of Pythagorean fuzzy soft sets

Theorem 5.3.1 (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X if and

only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, BCC-subalgebras

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-subalgebra of X for all a ∈ A.

Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.2, we have

U(µP̃[a], t) and L(νP̃[a], t) are BCC-subalgebras of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

BCC-subalgebras of X if the sets are nonempty. By Theorem 3.4.2, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-subalgebra of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X.

Theorem 5.3.2 (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X if and

only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, BCC-subalgebras

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-subalgebra of X for all a ∈ A.

Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem 3.4.3, we have

U+(µP̃[a], t) and L−(νP̃[a], t) are BCC-subalgebras of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are BCC-subalgebras of X if the sets are nonempty. By Theorem 3.4.3, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-subalgebra of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra of X.

Theorem 5.3.3 (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X if and

only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, near BCC-filters
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for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy near BCC-filter of X for all a ∈ A.

Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.4, we have

U(µP̃[a], t) and L(νP̃[a], t) are near BCC-filters of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

near BCC-filters of X if the sets are nonempty. By Theorem 3.4.4, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy near BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X.

Theorem 5.3.4 (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X if and

only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, near BCC-filters

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy near BCC-filter of X for all a ∈ A. Let

t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem 3.4.5, we have

U+(µP̃[a], t) and L−(νP̃[a], t) are near BCC-filters of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are near BCC-filters of X if the sets are nonempty. By Theorem 3.4.5, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy near BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft near BCC-filter of X.

Theorem 5.3.5 (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X if and only

if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, BCC-filters for every

a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X, that is, P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-filter of X for all a ∈ A. Let t ∈ [0, 1] be
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such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.6, we have U(µP̃[a], t) and

L(νP̃[a], t) are BCC-filters of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

BCC-filters of X if the sets are nonempty. By Theorem 3.4.6, we have P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-filter of X for all a ∈ A. Hence, (P̃, A)

is a Pythagorean fuzzy soft BCC-filter of X.

Theorem 5.3.6 (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X if and only

if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, BCC-filters for every

a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-filter of X, that is, P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-filter of X for all a ∈ A. Let t ∈ [0, 1]

be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem 3.4.7, we have U+(µP̃[a], t)

and L−(νP̃[a], t) are BCC-filters of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are BCC-filters of X if the sets are nonempty. By Theorem 3.4.7, we have P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-filter of X for all a ∈ A. Hence, (P̃, A)

is a Pythagorean fuzzy soft BCC-filter of X.

Theorem 5.3.7 (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X

if and only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, implicative

BCC-filters for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X,

that is, P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy implicative BCC-filter of X

for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem

3.4.8, we have U(µP̃[a], t) and L(νP̃[a], t) are implicative BCC-filters of X for all

a ∈ A, t ∈ [0, 1].
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Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

implicative BCC-filters of X if the sets are nonempty. By Theorem 3.4.8, we

have P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy implicative BCC-filter of X for

all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of

X.

Theorem 5.3.8 (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X if

and only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, implicative

BCC-filters for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of X,

that is, P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy implicative BCC-filter of X for

all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem

3.4.9, we have U+(µP̃[a], t) and L−(νP̃[a], t) are implicative BCC-filters of X for all

a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are implicative BCC-filters of X if the sets are nonempty. By Theorem 3.4.9, we

have P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy implicative BCC-filter of X for

all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft implicative BCC-filter of

X.

Theorem 5.3.9 (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of X

if and only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, comparative

BCC-filters for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of X,

that is, P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy comparative BCC-filter of X

for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem

3.4.10, we have U(µP̃[a], t) and L(νP̃[a], t) are comparative BCC-filters of X for all

a ∈ A, t ∈ [0, 1].
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Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

comparative BCC-filters of X if the sets are nonempty. By Theorem 3.4.10, we

have P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy comparative BCC-filter of X for

all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of

X.

Theorem 5.3.10 (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of

X if and only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, com-

parative BCC-filters for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter of X,

that is, P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy comparative BCC-filter of X

for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem

3.4.11, we have U+(µP̃[a], t) and L−(νP̃[a], t) are comparative BCC-filters of X for

all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are comparative BCC-filters of X if the sets are nonempty. By Theorem 3.4.11,

we have P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy comparative BCC-filter of X

for all a ∈ A. Hence, (P̃, A) is a Pythagorean fuzzy soft comparative BCC-filter

of X.

Theorem 5.3.11 (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X if and

only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, shift BCC-filters

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy shift BCC-filter of X for all a ∈ A.

Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.12, we have

U(µP̃[a], t) and L(νP̃[a], t) are shift BCC-filters of X for all a ∈ A, t ∈ [0, 1].
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Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

shift BCC-filters of X if the sets are nonempty. By Theorem 3.4.12, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy shift BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X.

Theorem 5.3.12 (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X if and

only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, shift BCC-filters

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy shift BCC-filter of X for all a ∈ A. Let

t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem 3.4.13, we have

U+(µP̃[a], t) and L−(νP̃[a], t) are shift BCC-filters of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are shift BCC-filters of X if the sets are nonempty. By Theorem 3.4.13, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy shift BCC-filter of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft shift BCC-filter of X.

Theorem 5.3.13 (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X if and only

if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, BCC-ideals for every

a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X, that is, P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-ideal of X for all a ∈ A. Let t ∈ [0, 1]

be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.14, we have U(µP̃[a], t)

and L(νP̃[a], t) are BCC-ideals of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t)

are BCC-ideals of X if the sets are nonempty. By Theorem 3.4.14, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-ideal of X for all a ∈ A. Hence,
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(P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X.

Theorem 5.3.14 (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X if and only

if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, BCC-ideals for every

a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X, that is, P̃[a] =

(µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-ideal of X for all a ∈ A. Let t ∈ [0, 1] be

such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem 3.4.15, we have U+(µP̃[a], t)

and L−(νP̃[a], t) are BCC-ideals of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are BCC-ideals of X if the sets are nonempty. By Theorem 3.4.15, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy BCC-ideal of X for all a ∈ A. Hence,

(P̃, A) is a Pythagorean fuzzy soft BCC-ideal of X.

Theorem 5.3.15 (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X if and

only if U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, strong BCC-ideals

for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a ∈ A.

Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By Theorem 3.4.16, we have

U(µP̃[a], t) and L(νP̃[a], t) are strong BCC-ideals of X for all a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

strong BCC-ideals of X if the sets are nonempty. By Theorem 3.4.16, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X.

Theorem 5.3.16 (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X if

and only if U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, strong BCC-
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ideals for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that

is, P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all

a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅. By Theorem

3.4.17, we have U+(µP̃[a], t) and L−(νP̃[a], t) are strong BCC-ideals of X for all

a ∈ A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are strong BCC-ideals of X if the sets are nonempty. By Theorem 3.4.17, we have

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a ∈ A.

Hence, (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X.

Theorem 5.3.17 (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X if

and only if E(µP̃[a], µP̃[a](0)) and E(νP̃[a], νP̃[a](0)) are strong BCC-ideals of X.

Proof. Assume (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X, that is,

P̃[a] = (µP̃[a], νP̃[a]) is a Pythagorean fuzzy strong BCC-ideal of X for all a ∈ A.

By Theorem 3.4.18, we have E(µP̃[a], µP̃[a](0)) and E(νP̃[a], νP̃[a](0)) are strong

BCC-ideals of X.

Conversely, assume for all a ∈ A,E(µP̃[a], µP̃[a](0)) and E(νP̃[a], νP̃[a](0))

are strong BCC-ideals of X. By Theorem 3.4.18, we have P̃[a] = (µP̃[a], νP̃[a]) is

a Pythagorean fuzzy strong BCC-ideal of X for all a ∈ A. Hence, (P̃, A) is a

Pythagorean fuzzy soft strong BCC-ideal of X.



 

 

 

CHAPTER VI

CONCLUSIONS

The following results are all the main theorems of this dissertation.

1. Let F be a fuzzy set in X. Then the following statements hold:

(1) (fF, fF̃) is a Pythagorean fuzzy set in X and

(2) F is a fuzzy BCC-subalgebra (resp., fuzzy near BCC-filter, fuzzy BCC-

filter, fuzzy implicative BCC-filter, fuzzy comparative BCC-filter, fuzzy

shift BCC-filter, fuzzy BCC-ideal, and fuzzy strong BCC-ideal) of X

if and only if (fF, fF̃) is a Pythagorean fuzzy BCC-subalgebra (resp.,

Pythagorean fuzzy near BCC-filter, Pythagorean fuzzy BCC-filter,

Pythagorean fuzzy implicative BCC-filter, Pythagorean fuzzy com-

parative BCC-filter, Pythagorean fuzzy shift BCC-filter, Pythagorean

fuzzy BCC-ideal, and Pythagorean fuzzy strong BCC-ideal) of X.

2. Let ρ be an equivalence relation on a nonempty set X and P = (µP, νP)

a Pythagorean fuzzy set in X. Then ρ+(P) and ρ−(P) are a Pythagorean

fuzzy set in X.

3. Let ρ be an congruence relation on a BCC-algebra X = (X, ·, 0) and P =

(µP, νP) a Pythagorean fuzzy set in X. Then the following statements hold:

(1) if P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy

near BCC-filter) of X and ρ is complete, then ρ−(P) is a Pythagorean

fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-filter) of

X,

(2) if P is a Pythagorean fuzzy BCC-filter of X and (0)ρ = {0}, then

ρ−(P) is a Pythagorean fuzzy BCC-filter of X,
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(3) if P is a Pythagorean fuzzy implicative BCC-filter (resp., Pythagorean

fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-filter, and

Pythagorean fuzzy BCC-ideal) of X, (0)ρ = {0}, and ρ is complete,

then ρ−(P) is a Pythagorean fuzzy implicative BCC-filter (resp., Pytha-

gorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift BCC-

filter, and Pythagorean fuzzy BCC-ideal) of X, and

(4) if P is a Pythagorean fuzzy strong BCC-ideal of X, then ρ−(P) is a

Pythagorean fuzzy strong BCC-ideal of X.

4. Let ρ be an congruence relation on a BCC-algebra X = (X, ·, 0) and P =

(µP, νP) a Pythagorean fuzzy set in X. If P is a Pythagorean fuzzy BCC-

subalgebra (resp., Pythagorean fuzzy near BCC-filter and Pythagorean

fuzzy strong BCC-ideal) of X, then ρ+(P) is a Pythagorean fuzzy BCC-

subalgebra (resp., Pythagorean fuzzy near BCC-filter and Pythagorean

fuzzy strong BCC-ideal) of X.

5. P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near

BCC-filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative

BCC-filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy

shift BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy

strong BCC-ideal) ofX if and only if U(µP, t) and L(νP, t) are, if the sets are

nonempty, BCC-subalgebras (resp., near BCC-filters, BCC-filters, implica-

tive BCC-filters, comparative BCC-filters, shift BCC-filters, BCC-ideals,

and strong BCC-ideals) of X for every t ∈ [0, 1].

6. P is a Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near

BCC-filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative

BCC-filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy

shift BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy

strong BCC-ideal) of X if and only if U+(µP, t) and L−(νP, t) are, if the
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sets are nonempty, BCC-subalgebras (resp., near BCC-filters, BCC-filters,

implicative BCC-filters, comparative BCC-filters, shift BCC-filters, BCC-

ideals, and strong BCC-ideals) of X for every t ∈ [0, 1].

7. P is a Pythagorean fuzzy strong BCC-ideal of X if and only if E(µP, µP(0))

and E(νP, νP(0)) are strong BCC-ideals of X.

8. The intersection of any nonempty family of Pythagorean fuzzy BCC-subal-

gebras (resp., Pythagorean fuzzy near BCC-filters, Pythagorean fuzzy BCC-

filters, Pythagorean fuzzy implicative BCC-filters, Pythagorean fuzzy com-

parative BCC-filters, Pythagorean fuzzy shift BCC-filters, Pythagorean

fuzzy BCC-ideals, and Pythagorean fuzzy strong BCC-ideals) of X is also a

Pythagorean fuzzy BCC-subalgebra (resp., Pythagorean fuzzy near BCC-

filter, Pythagorean fuzzy BCC-filter, Pythagorean fuzzy implicative BCC-

filter, Pythagorean fuzzy comparative BCC-filter, Pythagorean fuzzy shift

BCC-filter, Pythagorean fuzzy BCC-ideal, and Pythagorean fuzzy strong

BCC-ideal).

9. The union of any nonempty family of Pythagorean fuzzy near BCC-filters

(resp., Pythagorean fuzzy strong BCC-ideals) of X is also a Pythagorean

fuzzy near BCC-filter (resp., Pythagorean fuzzy strong BCC-ideal).

10. Let ρ be an equivalence relation (congruence relation) on X and P =

(µP, νP) a Pythagorean fuzzy sets in X. If P is a Pythagorean fuzzy strong

BCC-ideal of X, then P is a rough Pythagorean fuzzy strong BCC-ideal of

X.

11. Let ρ be a congruence relation on X. Then P is a rough Pythagorean

fuzzy BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter,

rough Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implica-

tive BCC-filter, rough Pythagorean fuzzy comparative BCC-filter, rough
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Pythagorean fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal,

and rough Pythagorean fuzzy strong BCC-ideal) of X if and only if U(µP, t)

and L(νP, t) are, if the sets are nonempty, rough BCC-subalgebras (resp.,

rough near BCC-filters, rough BCC-filters, rough implicative BCC-filters,

rough comparative BCC-filters, rough shift BCC-filters, rough BCC-ideals,

and rough strong BCC-ideals) of X for every t ∈ [0, 1].

12. Let ρ be a congruence relation on X. Then P is a rough Pythagorean fuzzy

BCC-subalgebra (resp., rough Pythagorean fuzzy near BCC-filter, rough

Pythagorean fuzzy BCC-filter, rough Pythagorean fuzzy implicative BCC-

filter, rough Pythagorean fuzzy comparative BCC-filter, rough Pythagorean

fuzzy shift BCC-filter, rough Pythagorean fuzzy BCC-ideal, and rough

Pythagorean fuzzy strong BCC-ideal) of X if and only if U+(µP, t) and

L−(νP, t) are, if the sets are nonempty, rough BCC-subalgebras (resp., rough

near BCC-filters, rough BCC-filters, rough implicative BCC-filters, rough

comparative BCC-filters, rough shift BCC-filters, rough BCC-ideals, and

rough strong BCC-ideals) of X for every t ∈ [0, 1].

13. The extended intersection of two Pythagorean fuzzy soft BCC-subalgebras

(resp., Pythagorean fuzzy soft near BCC-filters, Pythagorean fuzzy soft

BCC-filters, Pythagorean fuzzy soft implicative BCC-filters, Pythagorean

fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft shift BCC-

filters, Pythagorean fuzzy soft BCC-ideals, and Pythagorean fuzzy soft

strong BCC-ideals) of X is also a Pythagorean fuzzy soft BCC-subalgebra

(resp., Pythagorean fuzzy soft near BCC-filter, Pythagorean fuzzy soft

BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean

fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,

Pythagorean fuzzy soft BCC-ideal, and Pythagorean fuzzy soft strong BCC-

ideal). Moreover, the intersection of two Pythagorean fuzzy soft BCC-
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subalgebras (resp., Pythagorean fuzzy soft near BCC-filters, Pythagorean

fuzzy soft BCC-filters, Pythagorean fuzzy soft implicative BCC-filters, Py-

thagorean fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft shift

BCC-filters, Pythagorean fuzzy soft BCC-ideals, and Pythagorean fuzzy

soft strong BCC-ideals) of X is also a Pythagorean fuzzy soft BCC-subalge-

bra (resp., Pythagorean fuzzy soft near BCC-filter, Pythagorean fuzzy soft

BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean

fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,

Pythagorean fuzzy soft BCC-ideal, and Pythagorean fuzzy soft strong BCC-

ideal).

14. The union of two Pythagorean fuzzy soft BCC-subalgebras (resp., Pythago-

rean fuzzy soft BCC-filters, Pythagorean fuzzy soft implicative BCC-filters,

Pythagorean fuzzy soft comparative BCC-filters, Pythagorean fuzzy soft

shift BCC-filters, and Pythagorean fuzzy soft BCC-ideals) of X is also

a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean fuzzy soft

BCC-filter, Pythagorean fuzzy soft implicative BCC-filter, Pythagorean

fuzzy soft comparative BCC-filter, Pythagorean fuzzy soft shift BCC-filter,

and Pythagorean fuzzy soft BCC-ideal) if sets of statistics of two Pythago-

rean fuzzy soft BCC-subalgebras (resp., Pythagorean fuzzy soft BCC-filters,

Pythagorean fuzzy soft implicative BCC-filters, Pythagorean fuzzy soft

comparative BCC-filters, Pythagorean fuzzy soft shift BCC-filters, and Py-

thagorean fuzzy soft BCC-ideals) are disjoint.

15. The union of two Pythagorean fuzzy soft near BCC-filters (resp., Pythago-

rean fuzzy soft strong BCC-ideals) ofX is also a Pythagorean fuzzy soft near

BCC-filter (resp., Pythagorean fuzzy soft strong BCC-ideal). Moreover,

the restricted union of two Pythagorean fuzzy soft near BCC-filters (resp.,

Pythagorean fuzzy soft strong BCC-ideals) of X is also a Pythagorean fuzzy
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soft near BCC-filter (resp., Pythagorean fuzzy soft strong BCC-ideal).

16. (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean

fuzzy soft near BCC-filter, Pythagorean fuzzy soft BCC-filter, Pythagorean

fuzzy soft implicative BCC-filter, Pythagorean fuzzy soft comparative BCC-

filter, Pythagorean fuzzy soft shift BCC-filter, Pythagorean fuzzy soft BCC-

ideal, and Pythagorean fuzzy soft strong BCC-ideal) of X if and only if

U(µP̃[a], t) and L(νP̃[a], t) are, if the sets are nonempty, BCC-subalgebras

(resp., near BCC-filters, BCC-filters, implicative BCC-filters, comparative

BCC-filters, shift BCC-filters, BCC-ideals, and strong BCC-ideals) for every

a ∈ A, t ∈ [0, 1].

17. (P̃, A) is a Pythagorean fuzzy soft BCC-subalgebra (resp., Pythagorean

fuzzy soft near BCC-filter, Pythagorean fuzzy soft BCC-filter, Pythagorean

fuzzy soft implicative BCC-filter, Pythagorean fuzzy soft comparative BCC-

filter, Pythagorean fuzzy soft shift BCC-filter, Pythagorean fuzzy soft BCC-

ideal, and Pythagorean fuzzy soft strong BCC-ideal) of X if and only if

U+(µP̃[a], t) and L−(νP̃[a], t) are, if the sets are nonempty, BCC-subalgebras

(resp., near BCC-filters, BCC-filters, implicative BCC-filters, comparative

BCC-filters, shift BCC-filters, BCC-ideals, and strong BCC-ideals) for every

a ∈ A, t ∈ [0, 1].

18. (P̃, A) is a Pythagorean fuzzy soft strong BCC-ideal of X if and only if

E(µP̃[a], µP̃[a](0)) and E(νP̃[a], νP̃[a](0)) are strong BCC-ideals of X.
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