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บทคดัย่อ 
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นวิโทรโซฟิก และไอดลียูพีเข้มก าลังสามนิวโทรโซฟิกของพีชคณิตยูพี เรายังกล่าวถึงความสมัพันธ์ระหว่าง
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วถิีทางของเซตนิวโทรโซฟกิแบบชว่งค่า และเซตนิวโทรโซฟิก มากกวา่นั้น เราศกึษาภาพและภาพผกผันของ
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ABSTRACT 

   Initially, we introduce the concepts of (special) neutrosophic UP-subalgebras, (special) 

neutrosophic near UP-filters, (special) neutrosophic UP-filters, (special) neutrosophic UP-ideals, and 

(special) neutrosophic strong UP-ideals of UP-algebras, and investigate several properties. Next, we 

introduce the concepts of interval-valued neutrosophic UP-subalgebras, interval-valued neutrosophic near 

UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-

valued neutrosophic strong UP-ideals of UP-algebras, and prove some results that are related to the 

previous concepts. From the two concepts above, we introduce the mixed concepts of neutrosophic cubic 

UP-subalgebras, neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-

ideals, and neutrosophic cubic strong UP-ideals of UP-algebras. We also discuss the relationships among 

neutrosophic cubic UP-subalgebras (resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-

filters, neutrosophic cubic UP-ideals, neutrosophic cubic strong UP-ideals) and their level subsets by 

means of interval-valued neutrosophic sets and neutrosophic sets. Moreover, we study the image and 

inverse image of neutrosophic cubic UP-subalgebras (resp., neutrosophic cubic near UP-filters, 

neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, neutrosophic cubic strong UP-ideals) under 

some UP-homomorphisms. 
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CHAPTER I

INTRODUCTION

Among many algebraic structures, algebras of logic form important

class of algebras. Examples of these are BCK-algebras [9], BCI-algebras [11],

B-algebras [29], KU-algebras [30], UP-algebras [6] and others. They are strongly

connected with logic. For example, BCI-algebras introduced by Iséki [11] in

1966 have connections with BCI-logic being the BCI-system in combinatory logic

which has application in the language of functional programming. BCK and BCI-

algebras are two classes of logical algebras. They were introduced by Imai and

Iséki [9, 11] in 1966 and have been extensively investigated by many researchers.

It is known that the class of BCK-algebras is a proper subclass of the class of

BCI-algebras.

The branch of the logical algebra, a UP-algebra was introduced by Iampan

[6], and it is known that the class of KU-algebras is a proper subclass of the class

of UP-algebras. Later Somjanta et al. [38] studied fuzzy UP-subalgebras, fuzzy

UP-ideals and fuzzy UP-filters of UP-algebras. Guntasow et al. [4] studied fuzzy

translations of a fuzzy set in UP-algebras. Kesorn et al. [20] studied intuition-

istic fuzzy sets in UP-algebras. Kaijae et al. [17] studied anti-fuzzy UP-ideals

and anti-fuzzy UP-subalgebras. Tanamoon et al. [43] studied Q-fuzzy sets in

UP-algebras. Sripaeng et al. [41] studied anti Q-fuzzy UP-ideals and anti Q-

fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et al. [3] studied general-

ized fuzzy sets in UP-algebras. Songsaeng and Iampan [39, 40] studied N -fuzzy

UP-algebras and fuzzy proper UP-filters of UP-algebras. Senapati et al. [36, 34]

studies cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras.

A fuzzy set f in a nonempty set S is a function from S to the closed

interval [0, 1]. The concept of a fuzzy set in a nonempty set was first considered
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by Zadeh [46]. The fuzzy set theories developed by Zadeh and others have found

many applications in the domain of mathematics and elsewhere. Zadeh [47] was

introduced an interval-value fuzzy sets. An interval-valued fuzzy set is defined

by an interval-valued membership function. The concept of neutrosophic set was

introduced by Smarandache [37] in 1999. Wang et al. [45] introduced the concept

of interval-valued neutrosophic sets in 2005. The interval-valued neutrosophic set

is an instance of neutrosophic set which can be used in real scientific and engi-

neering applications. Jun et al. [14] introduced the concept of interval-valued

neutrosophic sets with applications in BCK/BCI-algebra, they also introduced

the concept of interval-valued neutrosophic length of an interval-valued neutro-

sophic set, and investigate their properties and relations. In 2018-2019, Muhi-

uddin et al. [23, 24, 25, 26, 27, 28] applied the concept of neutrosophic sets to

semigroups, BCK/BCI-algebras. The concept of neutrosophic N -structures and

their applications in semigroups was introduced Khan et al. [21] in 2017. Jun et

al. [15] applied the concept of neutrosophic N -structures to BCK/BCI-algebras

in 2017.

A cubic set in a nonempty set is a structure using an interval-value fuzzy

set and a fuzzy set was introduced by Jun et al. [13] in 2012. People find that

cubic sets have board applications in computer science and soft engineering. Jun

et al. [12] applied the concept of cubic sets to a subgroup in 2011. Senapati [35]

introduced the concept of cubic subalgebras and cubic closed ideals of B-algebras

in 2015. Senapati et al. [34] introduced the concept of cubic set structure applied

in UP-algebras in 2018.

A neutrosophic cubic set which is the generalized form of fuzzy sets, cubic

sets and neutrosophic sets and introduced by Jun et al. [16] in 2017. The concept

of truth-internals (indeterminacy-internals, falsity-internals) and truth-externals

(indeterminacy-externals, falsity-externals) were introduced and related proper-
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ties were investigated. Iqbal et al. [10] introduced the concept of neutrosophic

cubic subalgebras and neutrosophic cubic closed ideals of B-algebras in 2016.

Relation among neutrosophic cubic algebra with neutrosophic cubic ideals and

neutrosophic closed ideals of B-algebras were studied and some related properties

were investigated.



 

 

 

CHAPTER II

PRELIMINARIES

In 1965, Zadeh [46] introduced the concept of a fuzzy set in a nonempty

set as the following definition.

Definition 2.0.1 A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy subset

of X) is defined to be a function λ : X → [0, 1], where [0, 1] is the unit segment

of the real line. Denote by [0, 1]X the collection of all fuzzy sets in X. Define a

binary relation ≤ on [0, 1]X as follows:

(∀λ, µ ∈ [0, 1]X)(λ ≤ µ⇔ (∀x ∈ X)(λ(x) ≤ µ(x))). (2.0.1)

Definition 2.0.2 [38] Let λ be a fuzzy set in a nonempty set X. The complement

of λ, denoted by λC , is defined by

(∀x ∈ X)(λC(x) = 1− λ(x)). (2.0.2)

Definition 2.0.3 [22] Let {λi | i ∈ J} be a family of fuzzy sets in a nonempty

set X. We define the join and the meet of {λi | i ∈ J}, denoted by ∨i∈Jλi and

∧i∈Jλi, respectively, as follows:

(∀x ∈ X)((∨i∈Jλi)(x) = sup
i∈J

{λi(x)}), and (2.0.3)

(∀x ∈ X)((∧i∈Jλi)(x) = inf
i∈J

{λi(x)}). (2.0.4)

In particular, if λ and µ be fuzzy sets in X, we have the join and meet of λ and

µ as follows:

(∀x ∈ X)((λ ∨ µ)(x) = max{λ(x), µ(x)}), and (2.0.5)
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(∀x ∈ X)((λ ∧ µ)(x) = min{λ(x), µ(x)}), (2.0.6)

respectively.

Lemma 2.0.4 [44] Let a, b, c ∈ R. Then the following statements hold:

(1) a−min{b, c} = max{a− b, a− c}, and

(2) a−max{b, c} = min{a− b, a− c}.

The following lemma is easily proved.

Lemma 2.0.5 Let f be a fuzzy set in a nonempty set X. Then the following

statements hold:

(1) (∀x, y, z ∈ X)(f(x) ≥ min{f(y), f(z)} ⇔ f(x) ≤ max{f(y), f(z)}),

(2) (∀x, y, z ∈ X)(f(x) ≤ min{f(y), f(z)} ⇔ f(x) ≥ max{f(y), f(z)}),

(3) (∀x, y, z ∈ X)(f(x) ≥ max{f(y), f(z)} ⇔ f(x) ≤ min{f(y), f(z)}), and

(4) (∀x, y, z ∈ X)(f(x) ≤ max{f(y), f(z)} ⇔ f(x) ≥ min{f(y), f(z)}).

An interval number we mean a close subinterval ã = [a−, a+] of [0, 1],

where 0 ≤ a− ≤ a+ ≤ 1. The interval number ã = [a−, a+] with a− = a+ is

denoted by a. Denote by [[0, 1]] the set of all interval numbers.

Definition 2.0.6 [16] Let {ãi | i ∈ J} be a family of interval numbers. We

define the refined infimum and the refined supremum of {ãi | i ∈ J}, denoted by

rinfi∈J ãi and rsupi∈J ãi, respectively, as follows:

rinfi∈J{ãi} = [inf
i∈J

{a−i }, inf
i∈J

{a+i }], and (2.0.7)

rsupi∈J{ãi} = [sup
i∈J

{a−i }, sup
i∈J

{a+i }]. (2.0.8)
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In particular, if ã1 and ã2 are interval numbers, we define the refined minimum

and the refined maximum of ã1 and ã2, denoted by rmin{ã1, ã2} and rmax{ã1, ã2},

respectively, as follows:

rmin{ã1, ã2} = [min{a−1 , a−2 },min{a+1 , a+2 }], and (2.0.9)

rmax{ã1, ã2} = [max{a−1 , a−2 },max{a+1 , a+2 }]. (2.0.10)

Definition 2.0.7 [16] Let ã1 and ã2 be interval numbers. We define the symbols

“⪰”, “⪯”, “=” in case of ã1 and ã2 as follows:

ã1 ⪰ ã2 ⇔ a−1 ≥ a−2 and a+1 ≥ a+2 , (2.0.11)

and similarly we may have ã1 ⪯ ã2 and ã1 = ã2. To say ã1 ≻ ã2 (resp., ã1 ≺ ã2)

we mean ã1 ⪰ ã2 and ã1 ̸= ã2 (resp., ã1 ⪯ ã2 and ã1 ̸= ã2).

Definition 2.0.8 [47] Let ã be an interval number. The complement of ã, denoted

by ãC , is defined by the interval number

ãC = [1− a+, 1− a−]. (2.0.12)

In the [[0, 1]], the following assertions are valid (see [42]).

(∀ã ∈ [[0, 1]])(ã ⪰ ã), (2.0.13)

(∀ã ∈ [[0, 1]])((ãC)C = ã), (2.0.14)

(∀ã ∈ [[0, 1]])(rmax{ã, ã} = ã and rmin{ã, ã} = ã), (2.0.15)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2} = rmax{ã2, ã1} and rmin{ã1, ã2} = rmin{ã2, ã1}),

(2.0.16)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2} ⪰ ã1 and ã2 ⪰ rmin{ã1, ã2}), (2.0.17)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ⪰ ã2 ⇔ ãC1 ⪯ ãC2 ), (2.0.18)
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(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 ⪰ ã2, ã3 ⪰ ã4 ⇒ rmin{ã1, ã3} ⪰ rmin{ã2, ã4}),

(2.0.19)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ⪰ ã2, ã3 ⪰ ã2 ⇔ rmin{ã1, ã3} ⪰ ã2), (2.0.20)

(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 ⪰ ã2, ã3 ⪰ ã4 ⇒ rmax{ã1, ã3} ⪰ rmax{ã2, ã4}),

(2.0.21)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã2 ⪰ ã1, ã2 ⪰ ã3 ⇔ ã2 ⪰ rmax{ã1, ã3}), (2.0.22)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ⪰ ã2 ⇔ rmin{ã1, ã2} = ã2), (2.0.23)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ⪰ ã2 ⇔ rmax{ã1, ã2} = ã1), (2.0.24)

(∀ã1, ã2 ∈ [[0, 1]])(rmin{ãC1 , ãC2 } = rmax{ã1, ã2}C), (2.0.25)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ãC1 , ãC2 } = rmin{ã1, ã2}C), (2.0.26)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ⪯ rmax{ã2, ã3} ⇔ ãC1 ⪰ rmin{ãC2 , ãC3 }), (2.0.27)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ⪰ rmax{ã2, ã3} ⇔ ãC1 ⪯ rmin{ãC2 , ãC3 }), (2.0.28)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ⪯ rmin{ã2, ã3} ⇔ ãC1 ⪰ rmax{ãC2 , ãC3 }), and (2.0.29)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ⪰ rmin{ã2, ã3} ⇔ ãC1 ⪯ rmax{ãC2 , ãC3 }). (2.0.30)

In 1975, Zadeh [47] introduced the concept of an interval-valued fuzzy

set in a nonempty set as the following definition.

Definition 2.0.9 An interval-valued fuzzy set (briefly, an IVFS) in a nonempty

set X is an arbitrary function A : X → [[0, 1]]. Let IV FS(X) stands for the set

of all IVFS in X. For every A ∈ IV FS(X) and x ∈ X,A(x) = [A−(x), A+(x)] is

called the degree of membership of an element x to A, where A−, A+ are fuzzy sets

in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively.

For simplicity, we denote A = [A−, A+].

Definition 2.0.10 [47] Let A be an interval-valued fuzzy set in a nonempty set

X. The complement of A, denoted by AC , is defined as follows: AC(x) = A(x)C
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for all x ∈ X, that is,

(∀x ∈ X)(AC(x) = [1− A+(x), 1− A−(x)]). (2.0.31)

We note that AC−
(x) = 1− A+(x) and AC+

(x) = 1− A−(x) for all x ∈ X.

Definition 2.0.11 [16] Let A and B be interval-valued fuzzy sets in a nonempty

set X. We define the symbols “⊆”, “⊇”, “=” in case of A and B as follows:

(∀x ∈ X)(A ⊆ B ⇔ A(x) ⪯ B(x)), (2.0.32)

and similarly we may have A ⊇ B and A = B.

Definition 2.0.12 [47] Let {Ai | i ∈ J} be a family of interval-valued fuzzy sets

in a nonempty set X. We define the intersection and the union of {Ai | i ∈ J},

denoted by ∩i∈JAi and ∪i∈JAi, respectively, as follows:

(∀x ∈ X)((∩i∈JAi)(x) = rinfi∈J{Ai(x)}), and (2.0.33)

(∀x ∈ X)((∪i∈JAi)(x) = rsupi∈J{Ai(x)}). (2.0.34)

We note that

(∀x ∈ X)((∩i∈JAi)
−(x) = (∧i∈JA

−
i )(x) = inf

i∈J
{A−

i (x)})

and

(∀x ∈ X)((∩i∈JAi)
+(x) = (∧i∈JA

+
i )(x) = inf

i∈J
{A+

i (x)}).

Similarly,

(∀x ∈ X)((∪i∈JAi)
−(x) = (∨i∈JA

−
i )(x) = sup

i∈J
{A−

i (x)})
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and

(∀x ∈ X)((∪i∈JAi)
+(x) = (∨i∈JA

+
i )(x) = sup

i∈J
{A+

i (x)}).

In particular, if A1 and A2 are interval-valued fuzzy sets in X, we have the

intersection and the union of A1 and A2 as follows:

(∀x ∈ X)((A1 ∩ A2)(x) = rmin{A1(x), A2(x)}), and (2.0.35)

(∀x ∈ X)((A1 ∪ A2)(x) = rmax{A1(x), A2(x)}). (2.0.36)

In 1999, Smarandache [37] introduced the concept of a neutrosophic set

in a nonempty set as the following definition.

Definition 2.0.13 A neutrosophic set (briefly, NS) in a nonempty set X is a

structure of the form:

Λ = {(x, λT (x), λI(x), λF (x)) | x ∈ X}, (2.0.37)

where λT : X → [0, 1] is a truth membership function, λI : X → [0, 1] is an

indeterminate membership function, and λF : X → [0, 1] is a false membership

function. For our convenience, we will denote a NS as Λ = (X,λT , λI , λF ) =

(X,λT,I,F ) = {(x, λT (x), λI(x), λF (x)) | x ∈ X}.

Definition 2.0.14 [37] Let Λ be a NS in a nonempty set X. The NS Λ =

(X,λT,I,F ) in X defined by

(∀x ∈ X)


λT (x) = 1− λT (x)

λI(x) = 1− λI(x)

λF (x) = 1− λF (x)


is called the complement of Λ in X.

Remark 2.0.15 For all NS Λ in a nonempty set X, we have Λ = Λ.
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In 2005, Wang et al. [45] introduced the concept of an interval-valued

neutrosophic set in a nonempty set as the following definition.

Definition 2.0.16 An interval-valued neutrosophic set (briefly, IVNS) in a non-

empty set X is a structure of the form:

A := {(x,AT (x), AI(x), AF (x)) | x ∈ X}, (2.0.38)

where AT , AI and AF are interval-valued fuzzy sets in X, which are called an in-

terval truth membership function, an interval indeterminacy membership function

and an interval falsity membership function, respectively. For our convenience,

we will denote a IVNS as

A = (X,AT , AI , AF ) = (X,AT,I,F ) = {(x,AT (x), AI(x), AF (x)) | x ∈ X}.

In 2012, Jun et al. [13] introduced the concept of a cubic set in a

nonempty set as the following definition.

Definition 2.0.17 A cubic set (briefly, CS) in a nonempty set X is a structure

of the form:

C = {(x,A(x), λ(x)) | x ∈ X}, (2.0.39)

where A is an interval-valued fuzzy set in X and λ is a fuzzy set in X. For our

convenience, we will denote a CS as

C = (X,A, λ) = {(x,A(x), λ(x)) | x ∈ X}.

In 2017, Jun et al. [16] introduced the concept of a neutrosophic cubic

set in a nonempty set as the following definition.

Definition 2.0.18 A neutrosophic cubic set in a nonempty set X is a pair
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C = (A,Λ), where A = {(x,AT (x), AI(x), AF (x)) | x ∈ X} is an interval-

valued neutrosophic set in X and Λ = {(x, λT (x), λI(x), λF (x)) | x ∈ X} is a

neutrosophic set in X.

For our convenience, we will denote neutrosophic cubic set as

C = (AT,I,F , λT,I,F ) = {(x,AT,I,F (x), λT,I,F (x)) | x ∈ X}.



 

 

 

CHAPTER III

BASIC RESULTS ON UP-ALGEBRAS

Two important classes of logical algebras, KU-algebras and UP-algebras

were introduced by Prabpayak and Leerawat [30] in 2009, and Iampan [6] in 2017,

respectively. Now, we recall the definitions of KU-algebras and UP-algebras as

the following.

Definition 3.0.1 An algebra X = (X, ·, 0) of type (2, 0) is called a KU-algebra,

where X is a nonempty set, · is a binary operation on X, and 0 is a fixed element

of X (i.e., a nullary operation) if it satisfies the following axioms:

(KU-1) (∀x, y, z ∈ X)((y · x) · ((x · z) · (y · z)) = 0),

(KU-2) (∀x ∈ X)(0 · x = x),

(KU-3) (∀x ∈ X)(x · 0 = 0), and

(KU-4) (∀x, y ∈ X)(x · y = 0, y · x = 0 ⇒ x = y).

Definition 3.0.2 An algebra X = (X, ·, 0) of type (2, 0) is called a UP-algebra,

where X is a nonempty set, · is a binary operation on X, and 0 is a fixed element

of X (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1) (∀x, y, z ∈ X)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ X)(0 · x = x),

(UP-3) (∀x ∈ X)(x · 0 = 0), and

(UP-4) (∀x, y ∈ X)(x · y = 0, y · x = 0 ⇒ x = y).

From [6], we know that the concept of UP-algebras is a generalization of

KU-algebras.
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From [6], the binary relation ≤ on a UP-algebra X = (X, ·, 0) is defined

as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 0).

Example 3.0.3 [33] Let X be a universal set and let Ω ∈ P(X) where P(X)

means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary

operation · on PΩ(X) by putting A ·B = B∩(AC∪Ω) for all A,B ∈ PΩ(X) where

AC means the complement of a subset A. Then (PΩ(X), ·,Ω) is a UP-algebra and

we shall call it the generalized power UP-algebra of type 1 with respect to Ω. Let

PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by

putting A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a

UP-algebra and we shall call it the generalized power UP-algebra of type 2 with

respect to Ω. In particular, (P(X), ·, ∅) is a UP-algebra and we shall call it the

power UP-algebra of type 1, and (P(X), ∗, X) is a UP-algebra and we shall call

it the power UP-algebra of type 2.

Example 3.0.4 [3] Let N be the set of all natural numbers with two binary

operations ◦ and • defined by

(∀x, y ∈ N)

x ◦ y =

 y if x < y,

0 otherwise


and

(∀x, y ∈ N)

x • y =

 y if x > y or x = 0,

0 otherwise

 .

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.

For more examples of UP-algebras, see [1, 2, 7, 32, 33, 34, 36].

In a UP-algebra X = (X, ·, 0), the following assertions are valid (see
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[6, 7]).

(∀x ∈ X)(x · x = 0), (3.0.1)

(∀x, y, z ∈ X)(x · y = 0, y · z = 0 ⇒ x · z = 0), (3.0.2)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (z · x) · (z · y) = 0), (3.0.3)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (y · z) · (x · z) = 0), (3.0.4)

(∀x, y ∈ X)(x · (y · x) = 0), (3.0.5)

(∀x, y ∈ X)((y · x) · x = 0 ⇔ x = y · x), (3.0.6)

(∀x, y ∈ X)(x · (y · y) = 0), (3.0.7)

(∀a, x, y, z ∈ X)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (3.0.8)

(∀a, x, y, z ∈ X)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (3.0.9)

(∀x, y, z ∈ X)(((x · y) · z) · (y · z) = 0), (3.0.10)

(∀x, y, z ∈ X)(x · y = 0 ⇒ x · (z · y) = 0), (3.0.11)

(∀x, y, z ∈ X)(((x · y) · z) · (x · (y · z)) = 0), and (3.0.12)

(∀a, x, y, z ∈ X)(((x · y) · z) · (y · (a · z)) = 0). (3.0.13)

In UP-algebras, 5 types of special subsets are defined as follows.

Definition 3.0.5 [4, 5, 6, 38] A nonempty subset S of a UP-algebra X = (X, ·, 0)

is called

(1) a UP-subalgebra of X if (∀x, y ∈ S)(x · y ∈ S).

(2) a near UP-filter of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S).

(3) a UP-filter of X if
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(i) the constant 0 of X is in S, and

(ii) (∀x, y ∈ X)(x · y ∈ S, x ∈ S ⇒ y ∈ S).

(4) a UP-ideal of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y, z ∈ X)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y, z ∈ X)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

Guntasow et al. [4] and Iampan [5] proved that the concept of UP-

subalgebras is a generalization of near UP-filters, near UP-filters is a general-

ization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals

is a generalization of strong UP-ideals. Furthermore, they proved that the only

strong UP-ideal of a UP-algebra X is X.

Theorem 3.0.6 [4, 6, 31] Let F be a nonempty family of UP-subalgebras (resp.,

near UP-filters, UP-filters, UP-ideals, strong UP-ideals) of a UP-algebra X =

(X, ·, 0). Then
∩

F is a UP-subalgebra (resp., near UP-filter, UP-filter, UP-

ideal, strong UP-ideal) of X.

Definition 3.0.7 [8, 7] Let (X, ·, 0) and (X ′, ·′, 0′) be UP-algebras. A mapping

f from X to X ′ is called a UP-homomorphism if

f(x · y) = f(x) ·′ f(y) for all x, y ∈ X.

A UP-homomorphism f : X → X ′ is called a

(1) UP-endomorphism of X if X ′ = X,
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(2) UP-epimorphism if f is surjective,

(3) UP-monomorphism if f is injective, and

(4) UP-isomorphism if f is bijective. Moreover, we say X is UP-isomorphic to

X ′, symbolically, X ∼= X ′, if there is a UP-isomorphism from X to X ′.

Theorem 3.0.8 [8] Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras and let f : X →

Y be a UP-homomorphism. Then the following statements hold:

(1) f(0X) = 0Y ,

(2) for any x, y ∈ X, if x ≤ y, then f(x) ≤ f(y).



 

 

 

CHAPTER IV

MAIN RESULTS

4.1 Neutrosophic sets in UP-algebras

In this section, we introduce the concepts of neutrosophic UP-subalgebras,

neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals,

and neutrosophic strong UP-ideals of UP-algebras, provide the necessary exam-

ples, investigate their properties, and prove their generalizations.

From now on, unless another thing is stated, we take X = (X, ·, 0) as a

UP-algebra.

Definition 4.1.1 A NS Λ in X is called a neutrosophic UP-subalgebra of X if it

satisfies the following conditions:

(∀x, y ∈ X)(λT (x · y) ≥ min{λT (x), λT (y)}), (4.1.1)

(∀x, y ∈ X)(λI(x · y) ≤ max{λI(x), λI(y)}), and (4.1.2)

(∀x, y ∈ X)(λF (x · y) ≥ min{λF (x), λF (y)}). (4.1.3)

Example 4.1.2 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 2 4

2 0 0 0 2 4

3 0 0 0 0 4

4 0 1 2 3 0
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We define a NS Λ in X as follows:

λT =

(
0

0.9

1

0.7

2

0.5

3

0.3

4

0.3

)
, λI =

(
0

0

1

0.8

2

0.4

3

0.2

4

0.4

)
, and

λF =

(
0

1

1

0.6

2

0.8

3

0.3

4

0.2

)
.

Hence, Λ is a neutrosophic UP-subalgebra of X.

Definition 4.1.3 A NS Λ in X is called a neutrosophic near UP-filter of X if it

satisfies the following conditions:

(∀x ∈ X)(λT (0) ≥ λT (x)), (4.1.4)

(∀x ∈ X)(λI(0) ≤ λI(x)), (4.1.5)

(∀x ∈ X)(λF (0) ≥ λF (x)), (4.1.6)

(∀x, y ∈ X)(λT (x · y) ≥ λT (y)), (4.1.7)

(∀x, y ∈ X)(λI(x · y) ≤ λI(y)), and (4.1.8)

(∀x, y ∈ X)(λF (x · y) ≥ λF (y)). (4.1.9)

Example 4.1.4 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 2 4

2 0 0 0 1 4

3 0 0 0 0 4

4 0 1 2 3 0
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We define a NS Λ in X as follows:

λT =

(
0

1

1

0.7

2

0.5

3

0.4

4

0.8

)
, λI =

(
0

0.1

1

0.2

2

0.3

3

0.7

4

0.6

)
, and

λF =

(
0

0.9

1

0.8

2

0.4

3

0.3

4

0.5

)
.

Hence, Λ is a neutrosophic near UP-filter of X.

Definition 4.1.5 A NS Λ inX is called a neutrosophic UP-filter ofX if it satisfies

the following conditions: (4.1.4), (4.1.5), (4.1.6),

(∀x, y ∈ X)(λT (y) ≥ min{λT (x · y), λT (x)}), (4.1.10)

(∀x, y ∈ X)(λI(y) ≤ max{λI(x · y), λI(x)}), and (4.1.11)

(∀x, y ∈ X)(λF (y) ≥ min{λF (x · y), λF (x)}). (4.1.12)

Example 4.1.6 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 3 3

3 0 1 2 0 3

4 0 1 2 0 0

We define a NS Λ in X as follows:

λT =

(
0

0.9

1

0.4

2

0.3

3

0.1

4

0.1

)
, λI =

(
0

0.2

1

0.3

2

0.7

3

0.8

4

0.8

)
, and

λF =

(
0

0.8

1

0.7

2

0.4

3

0.3

4

0.3

)
.
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Hence, Λ is a neutrosophic UP-filter of X.

Definition 4.1.7 A NS Λ inX is called a neutrosophic UP-ideal ofX if it satisfies

the following conditions: (4.1.4), (4.1.5), (4.1.6),

(∀x, y, z ∈ X)(λT (x · z) ≥ min{λT (x · (y · z)), λT (y)}), (4.1.13)

(∀x, y, z ∈ X)(λI(x · z) ≤ max{λI(x · (y · z)), λI(y)}), and (4.1.14)

(∀x, y, z ∈ X)(λF (x · z) ≥ min{λF (x · (y · z)), λF (y)}). (4.1.15)

Example 4.1.8 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 2 4

3 0 0 0 0 4

4 0 1 2 3 0

We define a NS Λ in X as follows:

λT =

(
0

1

1

0.7

2

0.6

3

0.6

4

0.4

)
, λI =

(
0

0

1

0.3

2

0.5

3

0.5

4

0.7

)
, and

λF =

(
0

1

1

0.8

2

0.7

3

0.7

4

0.5

)
.

Hence, Λ is a neutrosophic UP-ideal of X.

Definition 4.1.9 A NS Λ in X is called a neutrosophic strong UP-ideal of X if

it satisfies the following conditions: (4.1.4), (4.1.5), (4.1.6),

(∀x, y, z ∈ X)(λT (x) ≥ min{λT ((z · y) · (z · x)), λT (y)}), (4.1.16)
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(∀x, y, z ∈ X)(λI(x) ≤ max{λI((z · y) · (z · x)), λI(y)}), and (4.1.17)

(∀x, y, z ∈ X)(λF (x) ≥ min{λF ((z · y) · (z · x)), λF (y)}). (4.1.18)

Example 4.1.10 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 1 0 2 4

3 0 1 0 0 4

4 0 1 0 3 0

We define a NS Λ in X as follows:

(∀x ∈ X)


λT (x) = 1

λI(x) = 0.2

λF (x) = 0.8

 .

Hence, Λ is a neutrosophic strong UP-ideal of X.

Definition 4.1.11 A NS Λ in X is said to be constant if Λ is a constant function

from X to [0, 1]3. That is, λT , λI , and λF are constant functions from X to [0, 1].

Theorem 4.1.12 Every neutrosophic UP-subalgebra of X satisfies the conditions

(4.1.4), (4.1.5), and (4.1.6).

Proof. Assume that Λ is a neutrosophic UP-subalgebra of X. Then for all x ∈ X,

λT (0) = λT (x · x) ≥ min{λT (x), λT (x)} = λT (x), ((3.0.1) and (4.1.1))

λI(0) = λI(x · x) ≤ max{λI(x), λI(x)} = λI(x), ((3.0.1) and (4.1.2))
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λF (0) = λF (x · x) ≥ min{λF (x), λF (x)} = λF (x). ((3.0.1) and (4.1.3))

Hence, Λ satisfies the conditions (4.1.4), (4.1.5), and (4.1.6).

Theorem 4.1.13 A NS Λ in X is constant if and only if it is a neutrosophic

strong UP-ideal of X.

Proof. Assume that Λ is constant. Then for all x ∈ X, λT (x) = λT (0), λI(x) =

λI(0), and λF (x) = λF (0) and so λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥

λF (x). Next, for all x, y, z ∈ X,

λT (x) = λT (0) = min{λT (0), λT (0)} = min{λT ((z · y) · (z · x)), λT (y)},

λI(x) = λI(0) = max{λI(0), λI(0)} = max{λI((z · y) · (z · x)), λI(y)},

λF (x) = λF (0) = min{λF (0), λF (0)} = min{λF ((z · y) · (z · x)), λF (y)}.

Hence, Λ is a neutrosophic strong UP-ideal of X.

Conversely, assume that Λ is a neutrosophic strong UP-ideal of X. For

any x ∈ X, we have

λT (x) ≥ min{λT ((x · 0) · (x · x)), λT (0)} ((4.1.16))

= min{λT (0 · (x · x)), λT (0)} ((UP-3))

= min{λT (x · x), λT (0)} ((UP-2))

= min{λT (0), λT (0)} ((3.0.1))

= λT (0),

λI(x) ≤ max{λI((x · 0) · (x · x)), λI(0)} ((4.1.17))

= max{λI(0 · (x · x)), λI(0)} ((UP-3))

= max{λI(x · x), λI(0)} ((UP-2))

= max{λI(0), λI(0)} ((3.0.1))
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= λI(0),

λF (x) ≥ min{λF ((x · 0) · (x · x)), λF (0)} ((4.1.18))

= min{λF (0 · (x · x)), λF (0)} ((UP-3))

= min{λF (x · x), λF (0)} ((UP-2))

= min{λF (0), λF (0)} ((3.0.1))

= λF (0).

Thus λT (x) = λT (0), λI(x) = λI(0), and λF (x) = λF (0) for all x ∈ X. Hence, Λ

is constant.

Theorem 4.1.14 Every neutrosophic strong UP-ideal of X is a neutrosophic

UP-ideal.

Proof. Assume that Λ is a neutrosophic strong UP-ideal of X. Then Λ satisfies

the conditions (4.1.4), (4.1.5), and (4.1.6). By Theorem 4.1.13, we have Λ is

constant. Let x, y, z ∈ X. Then

λT (x · z) = λT (y) ≥ min{λT (x · (y · z)), λT (y)},

λI(x · z) = λI(y) ≤ max{λI(x · (y · z)), λI(y)},

λF (x · z) = λF (y) ≥ min{λF (x · (y · z)), λF (y)}.

Hence, Λ is a neutrosophic UP-ideal of X.

The following example show that the converse of Theorem 4.1.14 is not

true.

Example 4.1.15 From Example 4.1.8, we have Λ is a neutrosophic UP-ideal

of X. Since Λ is not constant, it follows from Theorem 4.1.13 that it is not a

neutrosophic strong UP-ideal of X.
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Theorem 4.1.16 Every neutrosophic UP-ideal of X is a neutrosophic UP-filter.

Proof. Assume that Λ is a neutrosophic UP-ideal of X. Then Λ satisfies the

conditions (4.1.4), (4.1.5), and (4.1.6). Next, let x, y ∈ X. Then

λT (y) = λT (0 · y) ((UP-2))

≥ min{λT (0 · (x · y)), λT (x)} ((4.1.13))

= min{λT (x · y), λT (x)}, ((UP-2))

λI(y) = λI(0 · y) ((UP-2))

≤ max{λI(0 · (x · y)), λI(x)} ((4.1.14))

= max{λI(x · y), λI(x)}, ((UP-2))

λF (y) = λF (0 · y) ((UP-2))

≥ min{λF (0 · (x · y)), λF (x)} ((4.1.15))

= min{λF (x · y), λF (x)}. ((UP-2))

Hence, Λ is a neutrosophic UP-filter of X.

The following example show that the converse of Theorem 4.1.16 is not

true.

Example 4.1.17 From Example 4.1.6, we have Λ is a neutrosophic UP-filter of

X. Since λF (3 · 4) = 0.3 < 0.4 = min{λF (3 · (2 · 4)), λF (2)}, we have Λ is not a

neutrosophic UP-ideal of X.

Theorem 4.1.18 Every neutrosophic UP-filter of X is a neutrosophic near UP-

filter.

Proof. Assume that Λ is a neutrosophic UP-filter. Then Λ satisfies the conditions
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(4.1.4), (4.1.5), and (4.1.6). Next, let x, y ∈ X. Then

λT (x · y) ≥ min{λT (y · (x · y)), λT (y)} ((4.1.10))

= min{λT (0), λT (y)} ((3.0.5))

= λT (y), ((4.1.4))

λI(x · y) ≤ max{λI(y · (x · y)), λI(y)} ((4.1.11))

= max{λI(0), λI(y)} ((3.0.5))

= λI(y), ((4.1.5))

λF (x · y) ≥ min{λF (y · (x · y)), λF (y)} ((4.1.12))

= min{λF (0), λF (y)} ((3.0.5))

= λF (y). ((4.1.6))

Hence, Λ is a neutrosophic near UP-filter of X.

The following example show that the converse of Theorem 4.1.18 is not

true.

Example 4.1.19 From Example 4.1.4, we have Λ is a neutrosophic near UP-

filter of X. Since λI(3) = 0.7 > 0.3 = max{λI(2 · 3), λI(2)}, we have Λ is not a

neutrosophic UP-filter of X.

Theorem 4.1.20 Every neutrosophic near UP-filter of X is a neutrosophic UP-

subalgebra.

Proof. Assume that Λ is a neutrosophic near UP-filter of X. Then for all x, y ∈ X

λT (x · y) ≥ λT (y) ≥ min{λT (x), λT (y)}, ((4.1.7))

λI(x · y) ≤ λI(y) ≤ max{λI(x), λI(y)}, ((4.1.8))

λF (x · y) ≥ λF (y) ≥ min{λF (x), λF (y)}. ((4.1.9))
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Hence, Λ is a neutrosophic UP-subalgebra of X.

The following example show that the converse of Theorem 4.1.20 is not

true.

Example 4.1.21 From Example 4.1.2, we have Λ is a neutrosophic UP-subalgebra

of X. Since λI(2 · 3) = 0.4 > 0.2 = λI(3), we have Λ is not a neutrosophic near

UP-filter of X.

Theorem 4.1.22 If Λ is a neutrosophic UP-subalgebra of X satisfying the fol-

lowing condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


λT (x) ≥ λT (y)

λI(x) ≤ λI(y)

λF (x) ≥ λF (y)

 , (4.1.19)

then Λ is a neutrosophic near UP-filter of X.

Proof. Assume that Λ is a neutrosophic UP-subalgebra of X satisfying the con-

dition (4.1.19). By Theorem 4.1.12, we have Λ satisfies the conditions (4.1.4),

(4.1.5), and (4.1.6). Next, let x, y ∈ X.

Case 1: x · y = 0. Then

λT (x · y) = λT (0) ≥ λT (y), ((4.1.4))

λI(x · y) = λI(0) ≤ λI(y), ((4.1.5))

λF (x · y) = λF (0) ≥ λF (y). ((4.1.6))

Case 2: x · y ̸= 0. Then

λT (x · y) ≥ min{λT (x), λT (y)} = λT (y), ((4.1.1) and (4.1.19) for λT )
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λI(x · y) ≤ max{λI(x), λI(y)} = λI(y), ((4.1.2) and (4.1.19) for λI)

λF (x · y) ≥ min{λF (x), λF (y)} = λF (y). ((4.1.3) and (4.1.19) for λF )

Hence, Λ is a neutrosophic near UP-filter of X.

Theorem 4.1.23 If Λ is a neutrosophic near UP-filter of X satisfying the fol-

lowing condition:

λT = λI = λF , (4.1.20)

then Λ is a neutrosophic strong UP-ideal of X.

Proof. Assume that Λ is a neutrosophic near UP-filter of X satisfying the con-

dition (4.1.20). Then Λ satisfies the conditions (4.1.4), (4.1.5), and (4.1.6). Let

x ∈ X. Then

λT (0) ≥ λT (x) = λI(x) ≥ λI(0) = λT (0),

λI(0) ≤ λI(x) = λT (x) ≤ λT (0) = λI(0),

λF (0) ≥ λF (x) = λI(x) ≥ λI(0) = λF (0).

Thus λT (0) = λT (x), λI(0) = λI(x), and λF (0) = λF (x), that is, Λ is constant.

By Theorem 4.1.13, we have Λ is a neutrosophic strong UP-ideal of X.

Theorem 4.1.24 If Λ is a neutrosophic UP-filter of X satisfying the following

condition:

(∀x, y, z ∈ X)


λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))

 (4.1.21)

then Λ is a neutrosophic UP-ideal of X.

Proof. Assume that Λ is a neutrosophic UP-filter of X satisfying the condition

(4.1.21). Then Λ satisfies the conditions (4.1.4), (4.1.5), and (4.1.6). Next, let
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x, y, z ∈ X. Then

λT (x · z) ≥ min{λT (y · (x · z)), λT (y)} ((4.1.10))

= min{λT (x · (y · z)), λT (y)}, ((4.1.21) for λT )

λI(x · z) ≤ max{λI(y · (x · z)), λI(y)} ((4.1.11))

= max{λI(x · (y · z)), λI(y)}, ((4.1.21) for λI)

λF (x · z) ≥ min{λF (y · (x · z)), λF (y)} ((4.1.12))

= min{λF (x · (y · z)), λF (y)}. ((4.1.21) for λF )

Hence, Λ is a neutrosophic UP-ideal of X.

Theorem 4.1.25 If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≥ min{λT (x), λT (y)}

λI(z) ≤ max{λI(x), λI(y)}

λF (z) ≥ min{λF (x), λF (y)}

 , (4.1.22)

then Λ is a neutrosophic UP-subalgebra of X.

Proof. Assume that Λ is a NS inX satisfying the condition (4.1.22). Let x, y ∈ X.

By (3.0.1), we have (x ·y) · (x ·y) = 0, that is, x ·y ≤ x ·y. It follows from (4.1.22)

that

λT (x · y) ≥ min{λT (x), λT (y)},

λI(x · y) ≤ max{λI(x), λI(y)},

λF (x · y) ≥ min{λF (x), λF (y)}.

Hence, Λ is a neutrosophic UP-subalgebra of X.
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Theorem 4.1.26 If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (y) ≥ min{λT (z), λT (x)}

λI(y) ≤ max{λI(z), λI(x)}

λF (y) ≥ min{λF (z), λF (x)}

 , (4.1.23)

then Λ is a neutrosophic UP-filter of X.

Proof. Assume that Λ is a NS in X satisfying the condition (4.1.23). Let x ∈ X.

By (UP-3), we have x · (x · 0) = 0, that is, x ≤ x · 0. It follows from (4.1.23) that

λT (0) ≥ min{λT (x), λT (x)} = λT (x),

λI(0) ≤ max{λI(x), λI(x)} = λI(x),

λF (0) ≥ min{λF (x), λF (x)} = λF (x).

Next, let x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≤ x · y.

It follows from (4.1.23) that

λT (y) ≥ min{λT (x · y), λT (x)},

λI(y) ≤ max{λI(x · y), λI(x)},

λF (y) ≥ min{λF (x · y), λF (x)}.

Hence, Λ is a neutrosophic UP-filter of X.

Theorem 4.1.27 If Λ is a NS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


λT (x · z) ≥ min{λT (a), λT (y)}

λI(x · z) ≤ max{λI(a), λI(y)}

λF (x · z) ≥ min{λF (a), λF (y)}

 ,

(4.1.24)
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then Λ is a neutrosophic UP-ideal of X.

Proof. Assume that Λ is a NS in X satisfying the condition (4.1.24). Let x ∈ X.

By (UP-3), we have x · (0 · (x · 0) = 0, that is, x ≤ 0 · (x · 0). It follows from

(4.1.24) that

λT (0) = λT (0 · 0) ≥ min{λT (x), λT (x)} = λT (x), ((UP-2))

λI(0) = λI(0 · 0) ≤ max{λI(x), λI(x)} = λI(x), ((UP-2))

λF (0) = λF (0 · 0) ≥ min{λF (x), λF (x)} = λF (x). ((UP-2))

Next, let x, y, z ∈ X. By (3.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,

x · (y · z) ≤ x · (y · z). It follows from (4.1.24) that

λT (x · z) ≥ min{λT (x · (y · z)), λT (y)},

λI(x · z) ≤ max{λI(x · (y · z)), λI(y)},

λF (x · z) ≥ min{λF (x · (y · z)), λF (y)}.

Hence, Λ is a neutrosophic UP-ideal of X.

Theorem 4.1.28 A NS Λ in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≥ λT (y)

λI(z) ≤ λI(y)

λF (z) ≥ λF (y)

 (4.1.25)

if and only if Λ is a neutrosophic strong UP-ideal of X.

Proof. Assume that Λ is a NS inX satisfying the condition (4.1.25). Let x, y ∈ X.

By (UP-3) and (3.0.1), we have x · 0 = 0, that is, x ≤ 0 = y · y. It follows from

(4.1.25) that λT (x) ≥ λT (y), λI(x) ≤ λI(y), and λF (x) ≥ λF (y). Similarly,
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λT (y) ≥ λT (x), λI(y) ≤ λI(x), and λF (y) ≥ λF (x). Then λT (x) = λT (y), λI(x) =

λI(y), and λF (x) = λF (y). Thus Λ is constant. By Theorem 4.1.13, we have Λ is

a neutrosophic strong UP-ideal of X.

The converse follows from Theorem 4.1.13.

Then, we have the diagram of generalization of NSs in UP-algebras as

shown in Figure 4.1.

Figure 4.1: Neutrosophic sets in UP-algebras

For any fixed numbers α+, α−, β+, β−, γ+, γ− ∈ [0, 1] such that α+ >

α−, β+ > β−, γ+ > γ− and a nonempty subset G of X, the NS ΛG[α
+,β−,γ+

α−,β+,γ− ] =

(X,λGT [
α+

α− ], λGI [
β−

β+ ], λGF [
γ+

γ− ]) in X, where λGT [
α+

α− ], λGI [
β−

β+ ], and λGF [
γ+

γ− ] are fuzzy sets
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in X which are given as follows:

λGT [
α+

α− ](x) =


α+ if x ∈ G,

α− otherwise,

λGI [
β−

β+ ](x) =


β− if x ∈ G,

β+ otherwise,

λGF [
γ+

γ− ](x) =


γ+ if x ∈ G,

γ− otherwise.

Lemma 4.1.29 If the constant 0 of X is in a nonempty subset G of X, then a

NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X satisfies the conditions (4.1.4), (4.1.5), and (4.1.6).

Proof. If 0 ∈ G, then λGT [
α+

α− ](0) = α+, λGI [
β−

β+ ](0) = β−, λGF [
γ+

γ− ](0) = γ+. Thus

(∀x ∈ X)


λGT [

α+

α− ](0) = α+ ≥ λGT [
α+

α− ](x)

λGI [
β−

β+ ](0) = β− ≤ λGI [
β−

β+ ](x)

λGF [
γ+

γ− ](0) = γ+ ≥ λGF [
γ+

γ− ](x)

 .

Hence, ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the conditions (4.1.4), (4.1.5), and (4.1.6).

Lemma 4.1.30 If a NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X satisfies the condition (4.1.4) (resp.,

(4.1.5), (4.1.6)), then the constant 0 of X is in G.

Proof. Assume that the NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X satisfies the condition (4.1.4). Then

λGT [
α+

α− ](0) ≥ λGT [
α+

α− ](x) for all x ∈ X. Since G is nonempty, there exists g ∈ G.

Thus λGT [
α+

α− ](g) = α+ and so λGT [
α+

α− ](0) ≥ λGT [
α+

α− ](g) = α+ ≥ λGT [
α+

α− ](0), that is,

λGT [
α+

α− ](0) = α+. Hence, 0 ∈ G.
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Theorem 4.1.31 A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic UP-subalgebra of X

if and only if a nonempty subset G of X is a UP-subalgebra of X.

Proof. Assume that ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-subalgebra ofX. Let x, y ∈

G. Then λGT [
α+

α− ](x) = α+ = λGT [
α+

α− ](y). Thus

λGT [
α+

α− ](x · y) ≥ min{λGT [α
+

α− ](x), λGT [
α+

α− ](y)} = α+ ≥ λGT [
α+

α− ](x · y) ((4.1.1))

and so λGT [
α+

α− ](x · y) = α+. Thus x · y ∈ G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let x, y ∈ X.

Case 1: x, y ∈ G. Then

λGT [
α+

α− ](x) = α+ = λGT [
α+

α− ](y),

λGI [
β−

β+ ](x) = β− = λGI [
β−

β+ ](y),

λGF [
γ+

γ− ](x) = γ+ = λGF [
γ+

γ− ](y).

Thus

min{λGT [α
+

α− ](x), λGT [
α+

α− ](y)} = α+,

max{λGI [
β−

β+ ](x), λ
G
I [

β−

β+ ](y)} = β−,

min{λGF [
γ+

γ− ](x), λ
G
F [

γ+

γ− ](y)} = γ+.

Since G is a UP-subalgebra of X, we have x · y ∈ G and so λGT [
α+

α− ](x · y) =

α+, λGI [
β−

β+ ](x · y) = β−, and λGF [
γ+

γ− ](x · y) = γ+. Hence,

λGT [
α+

α− ](x · y) = α+ ≥ α+ = min{λGT [α
+

α− ](x), λGT [
α+

α− ](y)},

λGI [
β−

β+ ](x · y) = β− ≤ β− = max{λGI [
β−

β+ ](x), λ
G
I [

β−

β+ ](y)},

λGF [
γ+

γ− ](x · y) = γ+ ≥ γ+ = min{λGF [
γ+

γ− ](x), λ
G
F [

γ+

γ− ](y)}.
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Case 2: x ̸∈ G or y ̸∈ G. Then

λGT [
α−

α− ](x) = α− or λGT [
α+

α− ](y) = α−,

λGI [
β−

β+ ](x) = β+ or λGI [
β−

β+ ](y) = β+,

λGF [
γ+

γ− ](x) = γ− or λGF [
γ+

γ− ](y) = γ−.

Thus

min{λGT [α
+

α− ](x), λGT [
α+

α− ](y)} = α−,

max{λGI [
β−

β+ ](x), λ
G
I [

β−

β+ ](y)} = β+,

min{λGF [
γ+

γ− ](x), λ
G
F [

γ+

γ− ](y)} = γ−.

Therefore,

λGT [
α+

α− ](x · y) ≥ α− = min{λGT [α
+

α− ](x), λGT [
α+

α− ](y)},

λGI [
β−

β+ ](x · y) ≤ β+ = max{λGI [
β−

β+ ](x), λ
G
I [

β−

β+ ](y)},

λGF [
γ+

γ− ](x · y) ≥ γ− = min{λGF [
γ+

γ− ](x), λ
G
F [

γ+

γ− ](y)}.

Hence, ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-subalgebra of X.

Theorem 4.1.32 A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic near UP-filter of X

if and only if a nonempty subset G of X is a near UP-filter of X.

Proof. Assume that ΛG[α
+,β−,γ+

α−,β+,γ− ] is neutrosophic near UP-filter of X. Since

ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the condition (4.1.4), it follows from Lemma 4.1.30 that

0 ∈ G. Next, let x ∈ X and y ∈ G. Then λGT [
α+

α− ](y) = α+. Thus

λGT [
α+

α− ](x · y) ≥ λGT [
α+

α− ](y) = α+ ≥ λGT [
α+

α− ](x · y) ((4.1.7))

and so λGT [
α+

α− ](x · y) = α+. Thus x · y ∈ G. Hence, G is a near UP-filter of X.
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Conversely, assume thatG is a near UP-filter ofX. Since 0 ∈ G, it follows

from Lemma 4.1.29 that ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the conditions (4.1.4), (4.1.5), and

(4.1.6). Next, let x, y ∈ X.

Case 1: y ∈ G. Then λGT [
α+

α− ](y) = α+, λGI [
β−

β+ ](y) = β−, and λGF [
γ+

γ− ](y) =

γ+. Since G is a near UP-filter of X, we have x · y ∈ G and so λGT [
α+

α− ](x · y) =

α+, λGI [
β−

β+ ](x · y) = β−, and λGF [
γ+

γ− ](x · y) = γ+. Thus

λGT [
α+

α− ](x · y) = α+ ≥ α+ = λGT [
α+

α− ](y),

λGI [
β−

β+ ](x · y) = β− ≤ β− = λGI [
β−

β+ ](y),

λGF [
γ+

γ− ](x · y) = γ+ ≥ γ+ = λGF [
γ+

γ− ](y).

Case 2: y ̸∈ G. Then λGT [
α+

α− ](y) = α−, λGI [
β−

β+ ](y) = β+, and λGF [
γ+

γ− ](y) =

γ−. Thus

λGT [
α+

α− ](x · y) ≥ α− = λGT [
α+

α− ](y),

λGI [
β−

β+ ](x · y) ≤ β+ = λGI [
β−

β+ ](y),

λGF [
γ+

γ− ](x · y) ≥ γ− = λGF [
γ+

γ− ](y).

Hence, ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic near UP-filter of X.

Theorem 4.1.33 A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic UP-filter of X if and

only if a nonempty subset G of X is a UP-filter of X.

Proof. Assume that ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-filter of X. Since

ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the condition (4.1.4), it follows from Lemma 4.1.30 that

0 ∈ G. Next, let x, y ∈ X be such that x · y ∈ G and x ∈ G. Then λGT [
α+

α− ](x · y) =

α+ = λGT [
α+

α− ](x). Thus

λGT [
α+

α− ](y) ≥ min{λGT [α
+

α− ](x · y), λGT [α
+

α− ](x)} = α+ ≥ λGT [
α+

α− ](y) ((4.1.10))
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and so λGT [
α+

α− ](y) = α+. Thus y ∈ G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 ∈ G, it follows

from Lemma 4.1.29 that ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the conditions (4.1.4), (4.1.5), and

(4.1.6). Next, let x, y ∈ X.

Case 1: x · y ∈ G and x ∈ G. Then

λGT [
α+

α− ](x · y) = α+ = λGT [
α+

α− ](x),

λGI [
β−

β+ ](x · y) = β− = λGI [
β−

β+ ](x),

λGF [
γ+

γ− ](x · y) = γ+ = λGF [
γ+

γ− ](x).

SinceG is a UP-filter ofX, we have y ∈ G and so λGT [
α+

α− ](y) = α+, λGI [
β−

β+ ](y) = β−,

and λGF [
γ+

γ− ](y) = γ+. Thus

λGT [
α+

α− ](y) = α+ ≥ α+ = min{λGT [α
+

α− ](x · y), λGT [α
+

α− ](x)},

λGI [
β−

β+ ](y) = β− ≤ β− = max{λGI [
β−

β+ ](x · y), λGI [
β−

β+ ](x)},

λGF [
γ+

γ− ](y) = γ+ ≥ γ+ = min{λGF [
γ+

γ− ](x · y), λGF [
γ+

γ− ](x)}.

Case 2: x · y ̸∈ G or x ̸∈ G. Then

λGT [
α+

α− ](x · y) = α− or λGT [
α+

α− ](x) = α−,

λGI [
β−

β+ ](x · y) = β+ or λGI [
β−

β+ ](x) = β+,

λGF [
γ+

γ− ](x · y) = γ− or λGF [
γ+

γ− ](x) = γ−.

Thus

min{λGT [α
+

α− ](x · y), λGT [α
+

α− ](x)} = α−,

max{λGI [
β−

β+ ](x · y), λGI [
β−

β+ ](x)} = β+,
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min{λGF [
γ+

γ− ](x · y), λGF [
γ+

γ− ](x)} = γ−.

Therefore,

λGT [
α+

α− ](y) ≥ α− = min{λGT [α
+

α− ](x · y), λGT [α
+

α− ](x)},

λGI [
β−

β+ ](y) ≤ β+ = max{λGI [
β−

β+ ](x · y), λGI [
β−

β+ ](x)},

λGF [
γ+

γ− ](y) ≥ γ− = max{λGF [
γ+

γ− ](x · y), λGF [
γ+

γ− ](x)}.

Hence, ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-filter of X.

Theorem 4.1.34 A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic UP-ideal of X if and

only if a nonempty subset G of X is a UP-ideal of X.

Proof. Assume that ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-ideal of X. Since

ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the condition (4.1.4), it follows from Lemma 4.1.30 that

0 ∈ G. Next, let x, y, z ∈ X be such that x · (y · z) ∈ G and y ∈ G. Then

λGT [
α+

α− ](x · (y · z)) = α+ = λGT [
α+

α− ](y). Thus

λGT [
α+

α− ](x · z) ≥ min{λGT [α
+

α− ](x · (y · z)), λGT [α
+

α− ](y)} = α+ ≥ λGT [
α+

α− ](x · z)

((4.1.16))

and so λGT [
α+

α− ](x · z) = α+. Thus x · z ∈ G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 ∈ G, it follows

from Lemma 4.1.29 that ΛG[α
+,β−,γ+

α−,β+,γ− ] satisfies the conditions (4.1.4), (4.1.5), and

(4.1.6). Next, let x, y, z ∈ X.

Case 1: x · (y · z) ∈ G and y ∈ G. Then

λGT [
α+

α− ](x · (y · z)) = α+ = λGT [
α+

α− ](y),

λGI [
β−

β+ ](x · (y · z)) = β− = λGI [
β−

β+ ](y),
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λGF [
γ+

γ− ](x · (y · z)) = γ+ = λGF [
γ+

γ− ](y).

Thus

min{λGT [α
+

α− ](x · (y · z)), λGT [α
+

α− ](y)} = α+,

max{λGI [
β−

β+ ](x · (y · z)), λGI [
β−

β+ ](y)} = β−,

min{λGF [
γ+

γ− ](x · (y · z)), λGF [
γ+

γ− ](y)} = γ+.

Since G is a UP-ideal of X, we have x ·z ∈ G and so λGT [
α+

α− ](x ·z) = α+, λGI [
β−

β+ ](x ·

z) = β−, and λGF [
γ+

γ− ](x · z) = γ+. Thus

λGT [
α+

α− ](x · z) = α+ ≥ α+ = min{λGT [α
+

α− ](x · (y · z)), λGT [α
+

α− ](y)},

λGI [
β−

β+ ](x · z) = β− ≤ β− = max{λGI [
β−

β+ ](x · (y · z)), λGI [
β−

β+ ](y)},

λGF [
γ+

γ− ](x · z) = γ+ ≥ γ+ = min{λGF [
γ+

γ− ](x · (y · z)), λGF [
γ+

γ− ](y)}.

Case 2: x · (y · z) ̸∈ G or y ̸∈ G. Then

λGT [
α+

α− ](x · (y · z)) = α− or λGT [
α+

α− ](y) = α−,

λGI [
β−

β+ ](x · (y · z)) = β+ or λGI [
β−

β+ ](y) = β+,

λGF [
γ+

γ− ](x · (y · z)) = γ− or λGF [
γ+

γ− ](y) = γ−.

Thus

min{λGT [α
+

α− ](x · (y · z)), λGT [α
+

α− ](y)} = α−,

max{λGI [
β−

β+ ](x · (y · z)), λGI [
β−

β+ ](y)} = β+,

max{λGF [
γ+

γ− ](x · (y · z)), λGF [
γ+

γ− ](y)} = γ−.
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Therefore,

λGT [
α+

α− ](x · z) ≥ α− = min{λGT [α
+

α− ](x · (y · z)), λGT [α
+

α− ](y)},

λGI [
β−

β+ ](x · z) ≤ β+ = max{λGI [
β−

β+ ](x · (y · z)), λGI [
β−

β+ ](y)},

λGF [
γ+

γ− ](x · z) ≥ γ− = min{λGF [
γ+

γ− ](x · (y · z)), λGF [
γ+

γ− ](y)}.

Hence, ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic UP-ideal of X.

Theorem 4.1.35 A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic strong UP-ideal of

X if and only if a nonempty subset G of X is a strong UP-ideal of X.

Proof. Assume that ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic strong UP-ideal of X. By

Theorem 4.1.13, we have ΛG[α
+,β−,γ+

α−,β+,γ− ] is constant, that is, λGT [
α+

α− ] is constant.

Since G is nonempty, we have λGT [
α+

α− ](x) = α+ for all x ∈ X. Thus G = X.

Hence, G is a strong UP-ideal of X.

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

(∀x ∈ X)


λGT [

α+

α− ](x) = α+

λGI [
β−

β+ ](x) = β−

λGF [
γ+

γ− ](x) = γ+

 .

Thus λGT [
α+

α− ], λGI [
β−

β+ ], and λGF [
γ+

γ− ] are constant, that is, ΛG[α
+,β−,γ+

α−,β+,γ− ] is constant. By

Theorem 4.1.13, we have ΛG[α
+,β−,γ+

α−,β+,γ− ] is a neutrosophic strong UP-ideal of X.

Next, we discuss the relationships among neutrosophic UP-subalgebras

(resp., neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-

ideals, neutrosophic strong UP-ideals) of UP-algebras and their level subsets.

Definition 4.1.36 [38] Let f be a fuzzy set in A. For any t ∈ [0, 1], the sets

U(f ; t) = {x ∈ X | f(x) ≥ t},
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L(f ; t) = {x ∈ X | f(x) ≤ t},

E(f ; t) = {x ∈ X | f(x) = t}

are called an upper t-level subset, a lower t-level subset, and an equal t-level subset

of f , respectively.

Theorem 4.1.37 A NS Λ in X is a neutrosophic UP-subalgebra of X if and

only if for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β), and U(λF ; γ) are either

empty or UP-subalgebras of X.

Proof. Assume that Λ is a neutrosophic UP-subalgebra of X. Let α, β, γ ∈ [0, 1]

be such that U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x, y ∈ U(λT ;α). Then λT (x) ≥ α and λT (y) ≥ α, so α is an lower

bound of {λT (x), λT (y)}. By (4.1.1), we have λT (x ·y) ≥ min{λT (x), λT (y)} ≥ α.

Thus x · y ∈ U(λT ;α).

Let x, y ∈ L(λI ; β). Then λI(x) ≤ β and λI(y) ≤ β, so β is a upper

bound of {λI(x), λI(y)}. By (4.1.2), we have λI(x · y) ≤ max{λI(x), λI(y)} ≤ β.

Thus x · y ∈ L(λI ; β).

Let x, y ∈ U(λF ; γ). Then λF (x) ≥ γ and λF (y) ≥ γ, so γ is an lower

bound of {λF (x), λF (y)}. By (4.1.3), we have λF (x ·y) ≥ min{λF (x), λF (y)} ≥ γ.

Thus x · y ∈ U(λF ; γ).

Hence, U(λT ;α), L(λI ; β), and U(λF ; γ) are UP-subalgebras of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β),

and U(λF ; γ) are UP-subalgebras of X if U(λT ;α), L(λI ; β), and U(λF ; γ) are

nonempty.

Let x, y ∈ X. Then λT (x), λT (y) ∈ [0, 1]. Choose α = min{λT (x), λT (y)}.



 

 

 
41

Thus λT (x) ≥ α and λT (y) ≥ α, so x, y ∈ U(λT ;α) ̸= ∅. By assumption,

we have U(λT ;α) is a UP-subalgebra of X and so x · y ∈ U(λT ;α). Thus

λT (x · y) ≥ α = min{λT (x), λT (y)}.

Let x, y ∈ X. Then λI(x), λI(y) ∈ [0, 1]. Choose β = max{λI(x), λI(y)}.

Thus λI(x) ≤ β and λI(y) ≤ β, so x, y ∈ L(λI ; β) ̸= ∅. By assumption, we have

L(λI ; β) is a UP-subalgebra of X and so x · y ∈ L(λI ; β). Thus λI(x · y) ≤ β =

max{λI(x), λI(y)}.

Let x, y ∈ X. Then λF (x), λF (y) ∈ [0, 1]. Choose γ = min{λF (x), λF (y)}.

Thus λF (x) ≥ γ and λF (y) ≥ γ, so x, y ∈ U(λF ; γ) ̸= ∅. By assumption,

we have U(λF ; γ) is a UP-subalgebra of X and so x · y ∈ U(λF ; γ). Thus

λF (x · y) ≥ γ = min{λF (x), λF (y)}.

Therefore, Λ is a neutrosophic UP-subalgebra of X.

Theorem 4.1.38 A NS Λ in X is a neutrosophic near UP-filter of X if and

only if for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β), and U(λF ; γ) are either

empty or near UP-filters of X.

Proof. Assume that Λ is a neutrosophic near UP-filter of X. Let α, β, γ ∈ [0, 1]

be such that U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x ∈ U(λT ;α). Then λT (x) ≥ α. By (4.1.4), we have λT (0) ≥ λT (x) ≥

α. Thus 0 ∈ U(λT ;α). Next, let x ∈ X and y ∈ U(λT ;α). Then λT (y) ≥ α. By

(4.1.7), we have λT (x · y) ≥ λT (y) ≥ α. Thus x · y ∈ U(λT ;α).

Let x ∈ L(λI ; β). Then λI(x) ≤ β. By (4.1.5), we have λI(0) ≤ λI(x) ≤

β. Thus 0 ∈ L(λI ; β). Next, let x ∈ X and y ∈ L(λI ; β). Then λI(y) ≤ β. By

(4.1.8), we have λI(x · y) ≤ λI(y) ≤ β. Thus x · y ∈ L(λI ; β).

Let x ∈ U(λF ; γ). Then λF (x) ≥ γ. By (4.1.6), we have λF (0) ≥ λF (x) ≥

γ. Thus 0 ∈ U(λF ; γ). Next, let x ∈ X and y ∈ U(λF ; γ). Then λF (y) ≥ γ. By
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(4.1.9), we have λF (x · y) ≥ λF (y) ≥ γ. Thus x · y ∈ U(λF ; γ).

Hence, U(λT ;α), L(λI ; β), and U(λF ; γ) are near UP-filters of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β),

and U(λF ; γ) are near UP-filters of X if U(λT ;α), L(λI ; β), and U(λF ; γ) are

nonempty.

Let x ∈ X. Then λT (x) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≥ α,

so x ∈ U(λT ;α) ̸= ∅. By assumption, we have U(λT ;α) is a near UP-filter of

X and so 0 ∈ U(λT ;α). Thus λT (0) ≥ α = λT (x). Next, let x, y ∈ X. Then

λT (y) ∈ [0, 1]. Choose α = λT (y). Thus λT (y) ≥ α, so y ∈ U(λT ;α) ̸= ∅. By

assumption, we have U(λT ;α) is a near UP-filter of X and so x · y ∈ U(λT ;α).

Thus λT (x · y) ≥ α = λT (y).

Let x ∈ X. Then λI(x) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≤ β,

so x ∈ L(λI ; β) ̸= ∅. By assumption, we have L(λI ; β) is a near UP-filter of

X and so 0 ∈ L(λI ; β). Thus λI(0) ≤ β = λI(x). Next, let x, y ∈ X. Then

λI(y) ∈ [0, 1]. Choose β = λI(y). Thus λI(y) ≤ β, so y ∈ L(λI ; β) ̸= ∅. By

assumption, we have L(λI ; β) is a near UP-filter of X and so x · y ∈ L(λI ; β).

Thus λI(x · y) ≤ β = λI(y).

Let x ∈ X. Then λF (x) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≥ γ,

so x ∈ U(λF ; γ) ̸= ∅. By assumption, we have U(λF ; γ) is a near UP-filter of

X and so 0 ∈ U(λF ; γ). Thus λF (0) ≥ γ = λF (x). Next, let x, y ∈ X. Then

λF (y) ∈ [0, 1]. Choose γ = λF (y). Thus λF (y) ≥ γ, so y ∈ U(λF ; γ) ̸= ∅. By

assumption, we have L(λF ; γ) is a near UP-filter of X and so x · y ∈ U(λF ; γ).

Thus λF (x · y) ≥ γ = λF (y).

Therefore, Λ is a neutrosophic near UP-filter of X.

Theorem 4.1.39 A NS Λ in X is a neutrosophic UP-filter of X if and only if
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for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β), and U(λF ; γ) are either empty

or UP-filters of X.

Proof. Assume that Λ is a neutrosophic UP-filter of X. Let α, β, γ ∈ [0, 1] be

such that U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x ∈ U(λT ;α). Then λT (x) ≥ α. By (4.1.4), we have λT (0) ≥ λT (x) ≥

α. Thus 0 ∈ U(λT ;α). Next, let x, y ∈ X be such that x · y ∈ U(λT ;α) and

x ∈ U(λT ;α). Then λT (x · y) ≥ α and λT (x) ≥ α, so α is an lower bound of

{λT (x ·y), λT (x)}. By (4.1.10), we have λT (y) ≥ min{λT (x ·y), λT (x)} ≥ α. Thus

y ∈ U(λT ;α).

Let x ∈ L(λI ; β). Then λI(x) ≤ β. By (4.1.5), we have λI(0) ≤ λI(x) ≤

β. Thus 0 ∈ L(λI ; β). Next, let x, y ∈ X be such that x · y ∈ L(λI ; β) and

x ∈ L(λI ; β). Then λI(x · y) ≤ β and λI(x) ≤ β, so β is a upper bound of

{λI(x · y), λI(x)}. By (4.1.11), we have λI(y) ≤ max{λI(x · y), λI(x)} ≤ β Thus

y ∈ L(λI ; β).

Let x ∈ U(λF ; γ). Then λF (x) ≥ γ. By (4.1.6), we have λF (0) ≥

λF (x) ≥ γ. Thus 0 ∈ U(λF ; γ). Next, let x, y ∈ X be such that x · y ∈ U(λF ; γ)

and x ∈ U(λF ; γ). Then λF (x · y) ≥ γ and λF (x) ≥ γ, so γ is an lower bound

of {λF (x · y), λF (x)}. By (4.1.12), we have λF (y) ≥ min{λF (x · y), λF (x)} ≥ γ.

Thus y ∈ U(λF ; γ).

Hence, U(λT ;α), L(λI ; β), and U(λF ; γ) are UP-filters of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β),

and U(λF ; γ) are UP-filters ofX if U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x ∈ X. Then λT (x) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≥ α,

so x ∈ U(λT ;α) ̸= ∅. By assumption, we have U(λT ;α) is a UP-filter of X

and so 0 ∈ U(λT ;α). Thus λT (0) ≥ α = λT (x). Next, let x, y ∈ X. Then
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λT (x · y), λT (x) ∈ [0, 1]. Choose α = min{λT (x · y), λT (x)}. Thus λT (x · y) ≥ α

and λT (x) ≥ α, so x · y, x ∈ U(λT ;α) ̸= ∅. By assumption, we have U(λT ;α) is a

UP-filter of X and so y ∈ U(λT ;α). Thus λT (y) ≥ α = min{λT (x · y), λT (x)}.

Let x ∈ X. Then λI(x) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≤ β,

so x ∈ L(λI ; β) ̸= ∅. By assumption, we have L(λI ; β) is a UP-filter of X

and so 0 ∈ L(λI ; β). Thus λI(0) ≤ β = λI(x). Next, let x, y ∈ X. Then

λI(x · y), λI(x) ∈ [0, 1]. Choose β = max{λI(x · y), λI(x)}. Thus λI(x · y) ≤ β

and λI(x) ≤ β, so x · y, x ∈ L(λI ; β) ̸= ∅. By assumption, we have L(λI ; β) is a

UP-filter of X and so y ∈ L(λI ; β). Thus λI(y) ≤ β = max{λI(x · y), λI(x)}.

Let x ∈ X. Then λF (x) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≥ γ,

so x ∈ U(λF ; γ) ̸= ∅. By assumption, we have U(λF ; γ) is a UP-filter of X

and so 0 ∈ U(λF ; γ). Thus λF (0) ≥ γ = λF (x). Next, let x, y ∈ X. Then

λF (x · y), λF (x) ∈ [0, 1]. Choose γ = min{λF (x · y), λF (x)}. Thus λF (x · y) ≥ γ

and λF (x) ≥ γ, so x · y, x ∈ U(λF ; γ) ̸= ∅. By assumption, we have U(λF ; γ) is a

UP-filter of X and so y ∈ U(λF ; γ). Thus λF (y) ≥ γ = min{λF (x · y), λF (x)}.

Therefore, Λ is a neutrosophic UP-filter of X.

Theorem 4.1.40 A NS Λ in X is a neutrosophic UP-ideal of X if and only if

for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β), and U(λF ; γ) are either empty

or UP-ideals of X.

Proof. Assume that Λ is a neutrosophic UP-ideal of X. Let α, β, γ ∈ [0, 1] be

such that U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x ∈ U(λT ;α). Then λT (x) ≥ α. By (4.1.4), we have λT (0) ≥ λT (x) ≥

α. Thus 0 ∈ U(λT ;α). Next, let x, y, z ∈ X be such that x · (y ·z) ∈ U(λT ;α) and

y ∈ U(λT ;α). Then λT (x · (y · z)) ≥ α and λT (y) ≥ α, so α is an lower bound of

{λT (x·(y·z)), λT (y)}. By (4.1.13), we have λT (x·z) ≥ min{λT (x·(y·z)), λT (y)} ≥

α. Thus x · z ∈ U(λT ;α).
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Let x ∈ L(λI ;α). Then λI(x) ≤ β. By (4.1.5), we have λI(0) ≤ λI(x) ≤

β. Thus 0 ∈ L(λI ; β). Next, let x, y, z ∈ X be such that x · (y · z) ∈ L(λI ; β) and

y ∈ L(λI ; β). Then λI(x · (y · z)) ≤ β and λI(y) ≤ β, so β is a upper bound of

{λI(x ·(y ·z)), λI(y)}. By (4.1.14), we have λI(x ·z) ≤ max{λI(x ·(y ·z)), λI(y)} ≤

β. Thus x · z ∈ L(λI ; β).

Let x ∈ U(λF ; γ). Then λF (x) ≥ γ. By (4.1.6), we have λF (0) ≥ λF (x) ≥

γ. Thus 0 ∈ U(λF ; γ). Next, let x, y, z ∈ X be such that x · (y · z) ∈ U(λF ; γ) and

y ∈ U(λF ; γ). Then λF (x · (y · z)) ≥ γ and λF (y) ≥ γ, so γ is an lower bound of

{λF (x·(y·z)), λF (y)}. By (4.1.15), we have λF (x·z) ≥ min{λF (x·(y·z)), λF (y)} ≥

γ. Thus x · z ∈ U(λF ; γ).

Hence, U(λT ;α), L(λI ; β), and U(λF ; γ) are UP-ideals of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β),

and U(λF ; γ) are UP-ideals ofX if U(λT ;α), L(λI ; β), and U(λF ; γ) are nonempty.

Let x ∈ X. Then λT (x) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≥ α,

so x ∈ U(λT ;α) ̸= ∅. By assumption, we have U(λT ;α) is a UP-ideal of X

and so 0 ∈ U(λT ;α). Thus λT (0) ≥ α = λT (x). Next, let x, y, z ∈ X. Then

λT (x · (y · z)), λT (y) ∈ [0, 1]. Choose α = min{λT (x · (y · z)), λT (y)}. Thus

λT (x · (y · z)) ≥ α and λT (y) ≥ α, so x · (y · z), y ∈ U(λT ;α) ̸= ∅. By assumption,

we have U(λT ;α) is a UP-ideal of X and so x · z ∈ U(λT ;α). Thus λT (x · z) ≥

α = min{λT (x · (y · z)), λT (y)}.

Let x ∈ X. Then λI(x) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≤ β,

so x ∈ L(λI ; β) ̸= ∅. By assumption, we have L(λI ; β) is a UP-ideal of X

and so 0 ∈ L(λI ; β). Thus λI(0) ≤ β = λI(x). Next, let x, y, z ∈ X. Then

λI(x · (y · z)), λI(y) ∈ [0, 1]. Choose β = max{λI(x · (y · z)), λI(y)}. Thus

λI(x · (y · z)) ≤ β and λI(y) ≤ β, so x · (y · z), y ∈ L(λI ; β) ̸= ∅. By assumption,

we have L(λI ; β) is a UP-ideal of X and so x · z ∈ L(λI ; β). Thus λI(x · z) ≤ β =
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max{λI(x · (y · z)), λI(y)}.

Let x ∈ X. Then λF (x) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≥ γ,

so x ∈ U(λF ; γ) ̸= ∅. By assumption, we have U(λF ; γ) is a UP-ideal of X

and so 0 ∈ U(λF ; γ). Thus λF (0) ≥ γ = λF (x). Next, let x, y, z ∈ X. Then

λF (x · (y · z)), λF (y) ∈ [0, 1]. Choose γ = min{λF (x · (y · z)), λF (y)}. Thus

λF (x · (y · z)) ≥ γ and λF (y) ≥ γ, so x · (y · z), y ∈ U(λF ; γ) ̸= ∅. By assumption,

we have U(λF ; γ) is a UP-ideal of X and so x · z ∈ U(λF ; γ). Thus λF (x · z) ≥

γ = min{λF (x · (y · z)), λF (y)}.

Therefore, Λ is a neutrosophic UP-ideal of X.

Theorem 4.1.41 A NS Λ in X is a neutrosophic strong UP-ideal of X if and

only if the sets E(λT ;λT (0)), E(λI ;λI(0)), and E(λF ;λF (0)) are strong UP-ideals

of X.

Proof. Assume that Λ is a neutrosophic strong UP-ideal of X. By Theorem

4.1.13, we have Λ is constant, that is, λT , λI , and λF are constant. Thus

(∀x ∈ X)


λT (x) = λT (0)

λI(x) = λI(0)

λF (x) = λF (0)

 .

Hence, E(λT ;λT (0)) = X,E(λI ;λI(0)) = X, and E(λF ;λF (0)) = X and so

E(λT ;λT (0)), E(λI ;λI(0)), and E(λF ;λF (0)) are strong UP-ideals of X.

Conversely, assume that E(λT ;λT (0)), E(λI ;λI(0)), and E(λF ;λF (0)) are

strong UP-ideals of X. Then E(λT ;λT (0)) = X,E(λI ;λI(0)) = X, E(λF ;λF (0))
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= X and so

(∀x ∈ X)


λT (x) = λT (0)

λI(x) = λI(0)

λF (x) = λF (0)

 .

Thus λT , λI , and λF are constant, that is, Λ is constant. By Theorem 4.1.13, we

have Λ is a neutrosophic strong UP-ideal of X.

Definition 4.1.42 Let Λ be a NS in X. For α, β, γ ∈ [0, 1], the sets

ULUΛ(α, β, γ) = {x ∈ X | λT (x) ≥ α, λI(x) ≤ β, λF (x) ≥ γ},

LULΛ(α, β, γ) = {x ∈ X | λT (x) ≤ α, λI(x) ≥ β, λF (x) ≤ γ},

EΛ(α, β, γ) = {x ∈ X | λT (x) = α, λI(x) = β, λF (x) = γ}

are called a ULU-(α, β, γ)-level subset, an LUL-(α, β, γ)-level subset, and an E-

(α, β, γ)-level subset of Λ, respectively. Then we see that

ULUΛ(α, β, γ) = U(λT ;α) ∩ L(λI ; β) ∩ U(λF ; γ),

LULΛ(α, β, γ) = L(λT ;α) ∩ U(λI ; β) ∩ L(λF ; γ),

EΛ(α, β, γ) = E(λT ;α) ∩ E(λI ; β) ∩ E(λF ; γ).

Corollary 4.1.43 A NS Λ in X is a neutrosophic UP-subalgebra of X if and

only if for all α, β, γ ∈ [0, 1], ULUΛ(α, β, γ) is a UP-subalgebra of X where

ULUΛ(α, β, γ) is nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.1.37.

Corollary 4.1.44 A NS Λ in X is a neutrosophic near UP-filter of X if and

only if for all α, β, γ ∈ [0, 1], ULUΛ(α, β, γ) is a near UP-filter of X where

ULUΛ(α, β, γ) is nonempty.
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Proof. It is straightforward by Theorems 3.0.6 and 4.1.38.

Corollary 4.1.45 A NS Λ in X is a neutrosophic UP-filter of X if and only if

for all α, β, γ ∈ [0, 1], ULUΛ(α, β, γ) is a UP-filter of X where ULUΛ(α, β, γ) is

nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.1.39.

Corollary 4.1.46 A NS Λ in X is a neutrosophic UP-ideal of X if and only if

for all α, β, γ ∈ [0, 1], ULUΛ(α, β, γ) is a UP-ideal of X where ULUΛ(α, β, γ) is

nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.1.40.

Corollary 4.1.47 A NS Λ in X is a neutrosophic strong UP-ideal of X if and

only if EΛ(λT (0), λI(0), λF (0)) is a strong UP-ideal of X.

Proof. It is straightforward by Theorems 3.0.6 and 4.1.41.

4.2 Special neutrosophic sets in UP-algebras

In this section, we introduce the parallel concepts of special neutrosophic

UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-

filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals

of UP-algebras, provide the necessary examples, investigate their properties, and

prove their generalizations.

Definition 4.2.1 A NS Λ in X is called an special neutrosophic UP-subalgebra

of X if it satisfies the following conditions:

(∀x, y ∈ X)(λT (x · y) ≤ max{λT (x), λT (y)}), (4.2.1)

(∀x, y ∈ X)(λI(x · y) ≥ min{λI(x), λI(y)}), and (4.2.2)
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(∀x, y ∈ X)(λF (x · y) ≤ max{λF (x), λF (y)}). (4.2.3)

Example 4.2.2 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 0 4

2 0 0 0 0 4

3 0 1 1 0 4

4 0 3 3 3 0

We define a NS Λ in X as follows:

λT =

(
0

0.2

1

0.3

2

0.5

3

0.7

4

0.8

)
, λI =

(
0

1

1

0.7

2

0.6

3

0.5

4

0.2

)
,

λF =

(
0

0.1

1

0.4

2

0.6

3

0.7

4

0.9

)
.

Hence, Λ is a special neutrosophic UP-subalgebra of X.

Definition 4.2.3 A NS Λ in X is called an special neutrosophic near UP-filter

of X if it satisfies the following conditions:

(∀x ∈ X)(λT (0) ≤ λT (x)), (4.2.4)

(∀x ∈ X)(λI(0) ≥ λI(x)), (4.2.5)

(∀x ∈ X)(λF (0) ≤ λF (x)), (4.2.6)

(∀x, y ∈ X)(λT (x · y) ≤ λT (y)), (4.2.7)

(∀x, y ∈ X)(λI(x · y) ≥ λI(y)), and (4.2.8)

(∀x, y ∈ X)(λF (x · y) ≤ λF (y)). (4.2.9)
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Example 4.2.4 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 2 4

2 0 1 0 1 4

3 0 0 0 0 4

4 0 1 2 3 0

We define a NS Λ in X as follows:

λT =

(
0

0

1

0.3

2

0.5

3

0.6

4

0.2

)
, λI =

(
0

0.9

1

0.8

2

0.7

3

0.3

4

0.4

)
,

λF =

(
0

0.1

1

0.2

2

0.6

3

0.7

4

0.5

)
.

Hence, Λ is a special neutrosophic near UP-filter of X.

Definition 4.2.5 A NS Λ in X is called an special neutrosophic UP-filter of X

if it satisfies the following conditions: (4.2.4), (4.2.5), (4.2.6),

(∀x, y ∈ X)(λT (y) ≤ max{λT (x · y), λT (x)}), (4.2.10)

(∀x, y ∈ X)(λI(y) ≥ min{λI(x · y), λI(x)}), and (4.2.11)

(∀x, y ∈ X)(λF (y) ≤ max{λF (x · y), λF (x)}). (4.2.12)

Example 4.2.6 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 2 4

2 0 1 0 1 4

3 0 0 0 0 4

4 0 1 1 1 0

We define a NS Λ in X as follows:

λT =

(
0

0.1

1

0.5

2

0.4

3

0.5

4

0.8

)
, λI =

(
0

0.8

1

0.3

2

0.5

3

0.3

4

0.4

)
,

λF =

(
0

0.2

1

0.6

2

0.4

3

0.6

4

0.3

)
.

Hence, Λ is a special neutrosophic UP-filter of X.

Definition 4.2.7 A NS Λ in X is called an special neutrosophic UP-ideal of X

if it satisfies the following conditions: (4.2.4), (4.2.5), (4.2.6),

(∀x, y, z ∈ X)(λT (x · z) ≤ max{λT (x · (y · z)), λT (y)}), (4.2.13)

(∀x, y, z ∈ X)(λI(x · z) ≥ min{λI(x · (y · z)), λI(y)}), and (4.2.14)

(∀x, y, z ∈ X)(λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}). (4.2.15)

Example 4.2.8 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 0 4

3 0 0 2 0 4

4 0 0 0 0 0

We define a NS Λ in X as follows:

λT =

(
0

0

1

0.3

2

0.5

3

0.4

4

0.6

)
, λI =

(
0

1

1

0.7

2

0.4

3

0.7

4

0.3

)
,

λF =

(
0

0.1

1

0.2

2

0.7

3

0.3

4

0.9

)
.

Hence, Λ is a special neutrosophic UP-ideal of X.

Definition 4.2.9 A NS Λ in X is called an special neutrosophic strong UP-ideal

of X if it satisfies the following conditions: (4.2.4), (4.2.5), (4.2.6),

(∀x, y, z ∈ X)(λT (x) ≤ max{λT ((z · y) · (z · x)), λT (y)}), (4.2.16)

(∀x, y, z ∈ X)(λI(x) ≥ min{λI((z · y) · (z · x)), λI(y)}), and (4.2.17)

(∀x, y, z ∈ X)(λF (x) ≤ max{λF ((z · y) · (z · x)), λF (y)}). (4.2.18)

Example 4.2.10 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 0

2 0 1 0 3 4

3 0 1 0 0 4

4 0 1 0 3 0

We define a NS Λ in X as follows:

(∀x ∈ X)


λT (x) = 0.5

λI(x) = 0.4

λF (x) = 0.7

 .

Hence, Λ is a special neutrosophic strong UP-ideal X.

Theorem 4.2.11 Every special neutrosophic UP-subalgebra of X satisfies the

conditions (4.2.4), (4.2.5), and (4.2.6).

Proof. Assume that Λ is a special neutrosophic UP-subalgebra of X. Then for

all x ∈ X,

λT (0) = λT (x · x) ≤ max{λT (x), λT (x)} = λT (x), ((3.0.1) and (4.2.1))

λI(0) = λI(x · x) ≥ min{λI(x), λI(x)} = λI(x), ((3.0.1) and (4.2.2))

λF (0) = λF (x · x) ≤ max{λF (x), λF (x)} = λF (x). ((3.0.1) and (4.2.3))

Hence, Λ satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).

By Lemma 2.0.5 (1) and (4), we have the following five theorems.
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Theorem 4.2.12 A NS Λ in X is a neutrosophic UP-subalgebra of X if and only

if Λ is a special neutrosophic UP-subalgebra of X.

Theorem 4.2.13 A NS Λ in X is a neutrosophic near UP-filter of X if and only

if Λ is a special neutrosophic near UP-filter of X.

Theorem 4.2.14 A NS Λ in X is a neutrosophic UP-filter of X if and only if

Λ is a special neutrosophic UP-filter of X.

Theorem 4.2.15 A NS Λ in X is a neutrosophic UP-ideal of X if and only if Λ

is a special neutrosophic UP-ideal of X.

Theorem 4.2.16 A NS Λ in X is a neutrosophic strong UP-ideal of X if and

only if Λ is a special neutrosophic strong UP-ideal of X.

Theorem 4.2.17 A NS Λ in X is constant if and only if it is a special neutro-

sophic strong UP-ideal of X.

Proof. It is straightforward by Remark 2.0.15 and Theorems 4.1.13 and 4.2.16.

Corollary 4.2.18 Neutrosophic strongly UP-ideals, special neutrosophic strong

UP-ideals, and constant neutrosophic sets coincide.

Proof. It is straightforward by Theorems 4.1.13 and 4.2.17.

Theorem 4.2.19 If Λ is a special neutrosophic UP-subalgebra of X satisfying

the following condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


λT (x) ≤ λT (y)

λI(x) ≥ λI(y)

λF (x) ≤ λF (y)

 , (4.2.19)

then Λ is a special neutrosophic near UP-filter of X.
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Proof. Assume that Λ is a special neutrosophic UP-subalgebra of X satisfying

the condition (4.2.19). By Theorem 4.2.11, we have Λ satisfies the conditions

(4.2.4), (4.2.5), and (4.2.6). Next, let x, y ∈ X.

Case 1: x · y = 0. Then

λT (x · y) = λT (0) ≤ λT (y), ((4.2.4))

λI(x · y) = λI(0) ≥ λI(y), ((4.2.5))

λF (x · y) = λF (0) ≤ λF (y). ((4.2.6))

Case 2: x · y ̸= 0. Then

λT (x · y) ≤ max{λT (x), λT (y)} = λT (y), ((4.2.1) and (4.2.19) for λT )

λI(x · y) ≥ min{λI(x), λI(y)} = λI(y), ((4.2.2) and (4.2.19) for λI)

λF (x · y) ≤ max{λF (x), λF (y)} = λF (y). ((4.2.3) and (4.2.19) for λF )

Hence, Λ is a special neutrosophic near UP-filter of X.

Theorem 4.2.20 If Λ is a special neutrosophic near UP-filter of X satisfying the

following condition:

λT = λI = λF , (4.2.20)

then Λ is a special neutrosophic strong UP-ideal of X.

Proof. Assume that Λ is a special neutrosophic near UP-filter of X satisfying the

condition (4.2.20). Then Λ satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).

let x ∈ X. Then Then

λT (0) ≤ λT (x) = λI(x) ≤ λI(0) = λT (0),

λI(0) ≥ λI(x) = λT (x) ≥ λT (0) = λI(0),
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λF (0) ≤ λF (x) = λI(x) ≤ λI(0) = λF (0).

Thus λT (0) = λT (x), λI(0) = λI(x), and λF (0) = λF (x), that is, Λ is constant.

By theorem 4.2.17, we have Λ is a special neutrosophic strong UP-ideal of X.

Theorem 4.2.21 If Λ is a special neutrosophic UP-filter of X satisfying the

following condition:

(∀x, y, z ∈ X)


λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))

 , (4.2.21)

then Λ is a special neutrosophic UP-ideal of X.

Proof. Assume that Λ is a special neutrosophic UP-filter of X satisfying the

condition (4.2.21). Then Λ satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).

Next, let x, y, z ∈ X. Then

λT (x · z) ≤ max{λT (y · (x · z)), λT (y)} ((4.2.10))

= max{λT (x · (y · z)), λT (y)}, ((4.2.21) for λT )

λI(x · z) ≥ min{λI(y · (x · z)), λI(y)} ((4.2.11))

= min{λI(x · (y · z)), λI(y)}, ((4.2.21) for λI)

λF (x · z) ≤ max{λF (y · (x · z)), λF (y)} ((4.2.12))

= max{λF (x · (y · z)), λF (y)}. ((4.2.21) for λF )

Hence, Λ is a special neutrosophic UP-ideal of X.
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Theorem 4.2.22 If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≤ max{λT (x), λT (y)}

λI(z) ≥ min{λI(x), λI(y)}

λF (z) ≤ max{λF (x), λF (y)}

 , (4.2.22)

then Λ is a special neutrosophic UP-subalgebra of X.

Proof. Assume that Λ is a NS inX satisfying the condition (4.2.22). Let x, y ∈ X.

By (3.0.1), we have (x ·y) · (x ·y) = 0, that is, x ·y ≥ x ·y. It follows from (4.2.22)

that

λT (x · y) ≤ max{λT (x), λT (y)},

λI(x · y) ≥ min{λI(x), λI(y)},

λF (x · y) ≤ max{λF (x), λF (y)}.

Hence, Λ is a special neutrosophic UP-subalgebra of X.

Theorem 4.2.23 If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (y) ≤ max{λT (z), λT (x)}

λI(y) ≥ min{λI(z), λI(x)}

λF (y) ≤ max{λF (z), λF (x)}

 , (4.2.23)

then Λ is a special neutrosophic UP-filter of X.

Proof. Assume that Λ is a NS in X satisfying the condition (4.2.23). Let x ∈ X.

By (UP-3), we have x · (x · 0) = 0, that is, x ≤ x · 0. It follows from (4.2.23) that

λT (0) ≤ max{λT (x), λT (x)} = λT (x),
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λI(0) ≥ min{λI(x), λI(x)} = λI(x),

λF (0) ≤ max{λF (x), λF (x)} = λF (x).

Next, let x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≥ x · y.

It follows from (4.2.23) that

λT (y) ≤ max{λT (x · y), λT (x)},

λI(y) ≥ min{λI(x · y), λI(x)},

λF (y) ≤ max{λF (x · y), λF (x)}.

Hence, Λ is a special neutrosophic UP-filter of X.

Theorem 4.2.24 If Λ is a NS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


λT (x · z) ≤ max{λT (a), λT (y)}

λI(x · z) ≥ min{λI(a), λI(y)}

λF (x · z) ≤ max{λF (a), λF (y)}

 ,

(4.2.24)

then Λ is a special neutrosophic UP-ideal of X.

Proof. Assume that Λ is a NS in X satisfying the condition (4.2.24). Let x ∈ X.

By (UP-3), we have x · (0 · (x · 0)) = 0, that is, x ≤ 0 · (x · 0). It follows from

(4.2.24) that

λT (0) = λT (0 · 0) ≤ max{λT (x), λT (x)} = λT (x), ((UP-2))

λI(0) = λI(0 · 0) ≥ min{λI(x), λI(x)} = λI(x), ((UP-2))

λF (0) = λF (0 · 0) ≤ max{λF (x), λF (x)} = λF (x). ((UP-2))

Next, let x, y, z ∈ X. By (3.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,
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x · (y · z) ≥ x · (y · z). It follows from (4.2.24) that

λT (x · z) ≤ max{λT (x · (y · z)), λT (y)},

λI(x · z) ≥ min{λI(x · (y · z)), λI(y)},

λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}.

Hence, Λ is a special neutrosophic UP-ideal of X.

Theorem 4.2.25 A NS Λ in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≤ λT (y)

λI(z) ≥ λI(y)

λF (z) ≤ λF (y)

 (4.2.25)

if and only if Λ is a special neutrosophic strong UP-ideal of X.

Proof. Assume that Λ is a NS inX satisfying the condition (4.2.25). Let x, y ∈ X.

By (UP-3) and (3.0.1), we have x · 0 = 0, that is, x ≤ 0 = y · y. It follows from

(4.2.25) that λT (x) ≤ λT (y), λI(x) ≥ λI(y), and λF (x) ≤ λF (y). Similarly,

λT (y) ≤ λT (x), λI(y) ≥ λI(x), and λF (y) ≤ λF (x). Then λT (x) = λT (y), λI(x) =

λI(y), and λF (x) = λF (y). Thus Λ is constant. By Theorem 4.2.17, we have Λ is

a special neutrosophic strong UP-ideal of X.

The converse follows from Theorem 4.2.17.

Then, we have the diagram of generalization of special NSs in UP-

algebras as shown in Figure 4.2.
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Figure 4.2: Special neutrosophic sets in UP-algebras

For any fixed numbers α+, α−, β+, β−, γ+, γ− ∈ [0, 1] such that α+ >

α−, β+ > β−, γ+ > γ− and a nonempty subset G of X, the NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] =

(X, GλT [
α−

α+ ], GλI [
β+

β− ], GλF [
γ−

γ+ ]) inX, where GλT [
α−

α+ ], GλI [
β+

β− ], and GλF [
γ−

γ+ ] are fuzzy

sets in X which are given as follows:

GλT [
α−

α+ ](x) =


α− if x ∈ G,

α+ otherwise,

GλI [
β+

β− ](x) =


β+ if x ∈ G,

β− otherwise,

GλF [
γ−

γ+ ](x) =


γ− if x ∈ G,

γ+ otherwise.
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Lemma 4.2.26 Let α+, α−, β+, β−, γ+, γ− ∈ [0, 1]. Then the following state-

ments hold:

(1) ΛG[α
+,β−,γ+

α−,β+,γ− ] = GΛ[1−α+,1−β−,1−γ+

1−α−,1−β+,1−γ− ], and

(2) GΛ[α
−,β+,γ−

α+,β−,γ+ ] = ΛG[1−α−,1−β+,1−γ−

1−α+,1−β−,1−γ+ ].

Proof. (1) Let ΛG[α
+,β−,γ+

α−,β+,γ− ] be a NS in X. Then ΛG[α
+,β−,γ+

α−,β+,γ− ] = (X,λGT [
α+

α− ],

λGI [
β−

β+ ], λGF [
γ+

γ− ]). Since

λGT [
α+

α− ](x) =


α+ if x ∈ G,

α− otherwise,

λGI [
β−

β+ ](x) =


β− if x ∈ G,

β+ otherwise,

λGF [
γ+

γ− ](x) =


γ+ if x ∈ G,

γ− otherwise.

Thus

λGT [
α+

α− ](x) =


1− α+ if x ∈ G,

1− α− otherwise

= GλT [
1−α+

1−α− ](x),

λGI [
β−

β+ ](x) =


1− β− if x ∈ G,

1− β+ otherwise

= GλI [
1−β−

1−β+ ](x),

λGF [
γ+

γ− ](x) =


1− γ+ if x ∈ G,

1− γ− otherwise

= GλF [
1−γ+

1−γ− ](x).

Hence, (X, GλT [
1−α+

1−α− ], GλI [
1−β−

1−β+ ], GλF [
1−γ+

1−γ− ]) = GΛ[1−α+,1−β−,1−γ+

1−α−,1−β+,1−γ− ].
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(2) Let GΛ[α
−,β+,γ−

α+,β−,γ+ ] be a NS in X. Then GΛ[α
−,β+,γ−

α+,β−,γ+ ] = (X, GλT [α
−

α+ ],

GλI [
β+

β− ], GλF [
γ−

γ+ ]). Since

GλT [
α−

α+ ](x) =


α− if x ∈ G,

α+ otherwise,

GλI [
β+

β− ](x) =


β+ if x ∈ G,

β− otherwise,

GλF [
γ−

γ+ ](x) =


γ− if x ∈ G,

γ+ otherwise.

Thus

GλT [α
−

α+ ](x) =


1− α− if x ∈ G,

1− α+ otherwise

= λGT [
1−α−

1−α+ ](x),

GλI [
β+

β− ](x) =


1− β+ if x ∈ G,

1− β− otherwise

= λGI [
1−β+

1−β− ](x),

GλF [
γ−

γ+ ](x) =


1− γ− if x ∈ G,

1− γ+ otherwise

= λGF [
1−γ−

1−γ+ ](x).

Hence, (X,λGT [
1−α−

1−α+ ], λGI [
1−β+

1−β− ], λGF [
1−γ−

1−γ+ ]) = ΛG[1−α−,1−β+,1−γ−

1−α+,1−β−,1−γ+ ].

Lemma 4.2.27 If the constant 0 of X is in a nonempty subset G of X, then a

NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).

Proof. If 0 ∈ G, then GλT [
α−

α+ ](0) = α−, GλI [
β+

β− ](0) = β+, and GλF [
γ−

γ+ ](0) = γ−.
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Thus

(∀x ∈ X)


GλT [

α−

α+ ](0) = α− ≤ GλT [
α−

α+ ](x)

GλI [
β+

β− ](0) = β− ≥ GλI [
β+

β− ](x)

GλF [
γ−

γ+ ](0) = γ− ≤ GλF [
γ−

γ+ ](x)

 .

Hence, GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).

Lemma 4.2.28 If a NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X satisfies the condition (4.2.4) (resp.,

(4.2.5), (4.2.6)), then the constant 0 of X is in G.

Proof. Assume that a NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X satisfies the condition (4.2.4). Then

GλT [
α−

α+ ](0) ≤ GλT [
α−

α+ ](x) for all x ∈ X. Since G is nonempty, there exists g ∈ G.

Thus GλT [
α−

α+ ](g) = α−, so GλT [
α−

α+ ](0) ≤ GλT [
α−

α+ ](g) = α−, that is, GλT [
α−

α+ ](0) =

α−. Hence, 0 ∈ G.

Theorem 4.2.29 A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic UP-subalgebra

of X if and only if a nonempty subset G of X is a UP-subalgebra of X.

Proof. Assume that GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic UP-subalgebra of X.

Let x, y ∈ G. Then GλT [
α−

α+ ](x) = α− = GλT [
α−

α+ ](y). Thus

GλT [
α−

α+ ](x · y) ≤ max{GλT [α
−

α+ ](x), GλT [
α−

α+ ](y)} = α− ≤ GλT [
α−

α+ ](x · y) ((4.2.1))

and so GλT [
α−

α+ ](x · y) = α−. Thus x · y ∈ G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let x, y ∈ X.

Case 1: x, y ∈ G. Then

GλT [
α−

α+ ](x) = α− = GλT [
α−

α+ ](y),

GλI [
β+

β− ](x) = β+ = GλI [
β+

β− ](y),



 

 

 
64

GλF [
γ−

γ+ ](x) = γ− = GλF [
γ−

γ+ ](y).

Thus

max{GλT [α
−

α+ ](x), GλT [
α−

α+ ](y)} = α−,

min{GλI [β
+

β− ](x),
GλI [

β+

β− ](y)} = β+,

max{GλF [γ
−

γ+ ](x),
GλF [

γ−

γ+ ](y)} = γ−.

Since G is a UP-subalgebra of X, we have x · y ∈ G and so GλT [
α−

α+ ](x · y) =

α−, GλI [
β+

β− ](x · y) = β+, and GλF [
γ−

γ+ ](x · y) = γ−. Hence,

GλT [
α−

α+ ](x · y) = α− ≤ α− = max{GλT [α
−

α+ ](x), GλT [
α−

α+ ](y)},

GλI [
β+

β− ](x · y) = β+ ≥ β+ = min{GλI [β
+

β− ](x),
GλI [

β+

β− ](y)},

GλF [
γ−

γ+ ](x · y) = γ− ≤ γ− = max{GλF [γ
−

γ+ ](x),
GλF [

γ−

γ+ ](y)}.

Case 2: x ̸∈ G or y ̸∈ G. Then

GλT [
α+

α− ](x) = α− or GλT [
α+

α− ](y) = α−,

GλI [
β−

β+ ](x) = β+ or GλI [
β−

β+ ](y) = β+,

GλF [
γ+

γ− ](x) = γ− or GλF [
γ+

γ− ](y) = γ−.

Thus

max{GλT [α
+

α− ](x), GλT [
α+

α− ](y)} = α−,

min{GλI [β
−

β+ ](x),
GλI [

β−

β+ ](y)} = β+,

max{GλF [γ
+

γ− ](x),
GλF [

γ+

γ− ](y)} = γ−.
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Therefore,

GλT [
α+

α− ](x · y) ≥ α− = max{GλT [α
+

α− ](x), GλT [
α+

α− ](y)},

GλI [
β−

β+ ](x · y) ≤ β+ = min{GλI [β
−

β+ ](x),
GλI [

β−

β+ ](y)},

GλF [
γ+

γ− ](x · y) ≥ γ− = max{GλF [γ
+

γ− ](x),
GλF [

γ+

γ− ](y)}.

Hence, GΛ[α
+,β−,γ+

α−,β+,γ− ] is a special neutrosophic UP-subalgebra of X.

Theorem 4.2.30 A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic near UP-filter

of X if and only if a nonempty subset G of X is a near UP-filter of X.

Proof. Assume that GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic near UP-filter of X.

Since GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the condition (4.2.4), it follows from Lemma 4.2.28

that 0 ∈ G. Next, let x ∈ X and y ∈ G. Then GλT [
α−

α+ ](y) = α−. Thus

GλT [
α−

α+ ](x · y) ≤ GλT [
α−

α+ ](y) = α− ≤ GλT [
α−

α+ ](x · y) ((4.2.7))

and so GλT [
α−

α+ ](x · y) = α−. Thus x · y ∈ G. Hence, G is a near UP-filter of X.

Conversely, assume thatG is a near UP-filter ofX. Since 0 ∈ G, it follows

from Lemma 4.2.27 that GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the conditions (4.2.4), (4.2.5), and

(4.2.6). Next, let x, y ∈ X.

Case 1: y ∈ G. Then GλT [
α−

α+ ](y) = α−, GλI [
β+

β− ](y) = β+, and GλF [
γ−

γ+ ](y)

= γ−. Since G is a near UP-filter of X, we have x · y ∈ G and so GλT [
α−

α+ ](x · y) =

α−, GλI [
β+

β− ](x · y) = β+, and GλF [
γ−

γ+ ](x · y) = γ−. Thus

GλT [
α−

α+ ](x · y) = α− ≤ α− = GλT [
α−

α+ ](y),

GλI [
β+

β− ](x · y) = β+ ≥ β+ = GλI [
β+

β− ](y),

GλF [
γ−

γ+ ](x · y) = γ− ≤ γ− = GλF [
γ−

γ+ ](y).
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Case 2: y ̸∈ G. Then GλT [
α−

α+ ](y) = α+, GλI [
β+

β− ](y) = β−, and GλF [
γ−

γ+ ](y)

= γ+. Thus

GλT [
α−

α+ ](x · y) ≤ α+ = GλT [
α−

α+ ](y),

GλI [
β+

β− ](x · y) ≥ β− = GλI [
β+

β− ](y),

GλF [
γ−

γ+ ](x · y) ≤ γ+ = GλF [
γ−

γ+ ](y).

Hence, GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic near UP-filter of X.

Theorem 4.2.31 A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic UP-filter of

X if and only if a nonempty subset G of X is a UP-filter of X.

Proof. Assume that GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic UP-filter of X. Since

GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the condition (4.2.4), it follows from Lemma 4.2.28 that

0 ∈ G. Next, let x, y ∈ X be such that x ·y ∈ G and x ∈ G. Then GλT [
α−

α+ ](x ·y) =

α− = GλT [
α−

α+ ](x). Thus

GλT [
α−

α+ ](y) ≤ max{GλT [α
−

α+ ](x · y), GλT [α
−

α+ ](x)} = α− ≤ GλT [
α−

α+ ](y) ((4.2.10))

and so GλT [
α−

α+ ](y) = α−. Thus y ∈ G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 ∈ G, it follows

from Lemma 4.2.27 that GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the conditions (4.2.4), (4.2.5), and

(4.2.6). Next, let x, y ∈ X.

Case 1: x · y ∈ G and x ∈ G. Then

GλT [
α−

α+ ](x · y) = α− = GλT [
α−

α+ ](x),

GλI [
β+

β− ](x · y) = β+ = GλI [
β+

β− ](x),

GλF [
γ−

γ+ ](x · y) = γ− = GλF [
γ−

γ+ ](x).
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Since G is a UP-filter of X, we have y ∈ G and so GλT [
α−

α+ ](y) = α−, GλI [
β+

β− ](y) =

β+, and GλF [
γ−

γ+ ](y) = γ−. Thus

GλT [
α−

α+ ](y) = α− ≤ α− = max{GλT [α
−

α+ ](x · y), GλT [α
−

α+ ](x)},

GλI [
β+

β− ](y) = β+ ≥ β+ = min{GλI [β
+

β− ](x · y), GλI [β
+

β− ](x)},

GλF [
γ−

γ+ ](y) = γ− ≤ γ+ = max{GλF [γ
−

γ+ ](x · y), GλF [γ
−

γ+ ](x)}.

Case 2: x · y ̸∈ G or x ̸∈ G. Then

GλT [
α−

α+ ](x · y) = α+ or GλT [
α−

α+ ](x) = α+,

GλI [
β+

β− ](x · y) = β− or GλI [
β+

β− ](x) = β−,

GλF [
γ−

γ+ ](x · y) = γ+ or GλF [
γ−

γ+ ](x) = γ+.

Thus

max{GλT [α
−

α+ ](x · y), GλT [α
−

α+ ](x)} = α+,

min{GλI [β
+

β− ](x · y), GλI [β
+

β− ](x)} = β−,

max{GλF [γ
−

γ+ ](x · y), GλF [γ
−

γ+ ](x)} = γ+.

Therefore,

GλT [
α−

α+ ](x) ≤ α+ = max{GλT [α
−

α+ ](x · y), GλT [α
−

α+ ](x)},

GλI [
β+

β− ](x) ≥ β− = min{GλI [β
+

β− ](x · y), GλI [β
+

β− ](x)},

GλF [
γ−

γ+ ](x) ≤ γ+ = max{GλF [γ
−

γ+ ](x · y), GλF [γ
−

γ+ ](x)}.

Hence, GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic UP-filter of X.

Theorem 4.2.32 A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic UP-ideal of

X if and only if a nonempty subset G of X is a UP-ideal of X.
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Proof. Assume that GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic UP-ideal of X. Since

GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the condition (4.2.4), it follows from Lemma 4.2.28 that

0 ∈ G. Next, let x, y, z ∈ X be such that x · (y · z) ∈ G and y ∈ G. Then

GλT [
α−

α+ ](x · (y · z)) = α− = GλT [
α−

α+ ](y). Thus

GλT [
α−

α+ ](x · z) ≤ max{GλT [α
−

α+ ](x · (y · z)), GλT [α
−

α+ ](y)} = α− ≤ GλT [
α−

α+ ](x · z)

((4.2.13))

and so GλT [
α−

α+ ](x · z) = α−. Thus x · z ∈ G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 ∈ G, it follows

from Lemma 4.2.27 that GΛ[α
−,β+,γ−

α+,β−,γ+ ] satisfies the conditions (4.2.4), (4.2.5), and

(4.2.6). Next, let x, y, z ∈ X.

Case 1: x · (y · z) ∈ G and y ∈ G. Then

GλT [
α−

α+ ](x · (y · z)) = α− = GλT [
α−

α+ ](y),

GλI [
β+

β− ](x · (y · z)) = β+ = GλI [
β+

β− ](y),

GλF [
γ−

γ+ ](x · (y · z)) = γ− = GλF [
γ−

γ+ ](y).

Thus

max{GλT [α
−

α+ ](x · (y · z)), GλT [α
−

α+ ](y)} = α−,

min{GλI [β
+

β− ](x · (y · z)), GλI [β
+

β− ](y)} = β+,

max{GλF [γ
−

γ+ ](x · (y · z)), GλF [γ
−

γ+ ](y)} = γ−.

Since G is a UP-ideal ofX, we have x·z ∈ G and so GλT [
α−

α+ ](x·z) = α−, GλI [
β+

β− ](x·

z) = β+, and GλF [
γ−

γ+ ](x · z) = γ−. Thus

GλT [
α−

α+ ](x · z) = α− ≤ α− = max{GλT [α
−

α+ ](x · (y · z)), GλT [α
−

α+ ](y)},
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GλI [
β+

β− ](x · z) = β+ ≥ β+ = min{GλI [β
+

β− ](x · (y · z)), GλI [β
+

β− ](y)},

GλF [
γ−

γ+ ](x · z) = γ− ≤ γ− = max{GλF [γ
−

γ+ ](x · (y · z)), GλF [γ
−

γ+ ](y)}.

Case 2: x · (y · z) ̸∈ G or y ̸∈ G. Then

GλT [
α−

α+ ](x · (y · z)) = α+ or GλT [
α−

α+ ](y) = α+,

GλI [
β+

β− ](x · (y · z)) = β− or GλI [
β+

β− ](y) = β−,

GλF [
γ−

γ+ ](x · (y · z)) = γ+ or GλF [
γ−

γ+ ](y) = γ+.

Thus

max{GλT [α
−

α+ ](x · (y · z)), GλT [α
−

α+ ](y)} = α+,

min{GλI [β
+

β− ](x · (y · z)), GλI [β
+

β− ](y)} = β−,

max{GλF [γ
−

γ+ ](x · (y · z)), GλF [γ
−

γ+ ](y)} = γ+.

Therefore,

GλT [
α−

α+ ](x · z) ≤ α+ = max{GλT [α
−

α+ ](x · (y · z)), GλT [α
−

α+ ](y)},

GλI [
β+

β− ](x · z) ≥ β− = min{GλI [β
+

β− ](x · (y · z)), GλI [β
+

β− ](y)},

GλF [
γ−

γ+ ](x · z) ≤ γ+ = max{GλF [γ
−

γ+ ](x · (y · z)), GλF [γ
−

γ+ ](y)}.

Hence, GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic UP-ideal of X.

Theorem 4.2.33 A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic strong UP-

ideal of X if and only if a nonempty subset G of X is a strong UP-ideal of X.

Proof. Assume that GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic strong UP-ideal of X.

By Theorem 4.2.17, we have GλT [
α−

α+ ] is constant, that is, GλT [
α−

α+ ] is constant.

Since G is nonempty, we have GλT [
α−

α+ ](x) = α− for all x ∈ X. Thus G = X.
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Hence, G is a strong UP-ideal of X.

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

(∀x ∈ X)


GλT [

α−

α+ ](x) = α−

GλI [
β+

β− ](x) = β+

GλF [
γ−

γ+ ](x) = γ−

 .

Thus GλT [
α−

α+ ], GλI [
β+

β− ], and GλF [
γ−

γ+ ] are constant, that is, GΛ[α
−,β+,γ−

α+,β−,γ+ ] is constant.

By Theorem 4.2.17, we have GΛ[α
−,β+,γ−

α+,β−,γ+ ] is a special neutrosophic strong UP-ideal

of X.

Next, we discuss the relationships among special neutrosophic UP-sub-

algebras (resp., special neutrosophic near UP-filters, special neutrosophic UP-

filters, special neutrosophic UP-ideals, special neutrosophic strong UP-ideals) of

UP-algebras and their level subsets.

Theorem 4.2.34 A NS Λ in X is a special neutrosophic UP-subalgebra of X if

and only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ; β), and L(λF ; γ) are

either empty or UP-subalgebras of X.

Proof. Assume that Λ is a special neutrosophic UP-subalgebra ofX. Let α, β, γ ∈

[0, 1] be such that L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x, y ∈ L(λT ;α). Then λT (x) ≤ α and λT (y) ≤ α, so α is a upper

bound of {λT (x), λT (y)}. By (4.2.1), we have λT (x·y) ≤ max{λT (x), λT (y)} ≤ α.

Thus x · y ∈ L(λT ;α).

Let x, y ∈ U(λI ; β). Then λI(x) ≥ β and λI(y) ≥ β, so β is an lower

bound of {λI(x), λI(y)}. By (4.2.2), we have λI(x · y) ≥ min{λI(x), λI(y)} ≥ β.

Thus x · y ∈ U(λI ; β).
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Let x, y ∈ L(λF ; γ). Then λF (x) ≤ γ and λF (y) ≤ γ, so γ is a upper

bound of {λF (x), λF (y)}. By (4.2.3), we have λF (x·y) ≤ max{λF (x), λF (y)} ≤ γ.

Thus x · y ∈ L(λF ; γ).

Hence, L(λT ;α), U(λI ; β), and L(λF ; γ) are UP-subalgebras of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the set L(λT ;α), U(λI ; β),

and L(λF ; γ) are UP-subalgebras if L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x, y ∈ X. Then λT (x), λT (y) ∈ [0, 1]. Choose α = max{λT (x), λT (y)}.

Thus λT (x) ≤ α and λT (y) ≤ α, so x, y ∈ L(λT ;α) ̸= ∅. By assumption, we have

L(λT ;α) is a UP-subalgebra of X and so x, y ∈ L(λT ;α). Thus λT (x · y) ≤ α =

max{λT (x), λT (y)}.

Let x, y ∈ X. Then λI(x), λI(y) ∈ [0, 1]. Choose β = min{λI(x), λI(y)}.

Thus λI(x) ≥ β and λI(y) ≥ β, so x, y ∈ U(λI ; β) ̸= ∅. By assumption, we have

U(λI ; β) is a UP-subalgebra of X and so x, y ∈ U(λI ; β). Thus λI(x · y) ≥ β =

min{λI(x), λI(y)}.

Let x, y ∈ X. Then λF (x), λF (y) ∈ [0, 1]. Choose γ = max{λF (x), λF (y)}.

Thus λF (x) ≤ γ and λF (y) ≤ γ, so x, y ∈ L(λF ; γ) ̸= ∅. By assumption, we have

L(λF ; γ) is a UP-subalgebra of X and so x, y ∈ L(λF ; γ). Thus λF (x · y) ≤ γ =

max{λF (x), λF (y)}.

Therefore, Λ is a special neutrosophic UP-subalgebra of X.

Theorem 4.2.35 A NS Λ in X is a special neutrosophic near UP-filter of X if

and only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ; β), and L(λF ; γ) are

either empty or near UP-filters of X.

Proof. Assume that Λ is a special neutrosophic near UP-filter of X. Let α, β, γ ∈

[0, 1] be such that L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.
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Let x ∈ L(λT ;α). Then λT (x) ≤ α. By (4.2.4), we have λT (0) ≤ λT (x) ≤

α. Thus 0 ∈ L(λT ;α). Next, let y ∈ L(λT ;α). Then λT (y) ≤ α. By (4.2.7), we

have λT (x · y) ≤ λT (y) ≤ α. Thus x · y ∈ L(λT ;α).

Let x ∈ U(λI ; β). Then λI(x) ≥ β. By (4.2.5), we have λI(0) ≥ λI(x) ≥

β. Thus 0 ∈ U(λI ; β). Next, let y ∈ U(λI ; β). Then λI(y) ≥ β. By (4.2.8), we

have λI(x · y) ≥ λI(y) ≥ β. Thus x · y ∈ U(λI ; β).

Let x ∈ L(λF ; γ). Then λF (x) ≤ γ. By (4.2.6), we have λF (0) ≤ λF (x) ≤

γ. Thus 0 ∈ L(λF ; γ). Next, y ∈ L(λF ; γ). Then λF (y) ≤ γ. By (4.2.8), we have

λF (x · y) ≤ λF (y) ≤ γ. Thus x · y ∈ L(λF ; γ).

Hence, L(λT ;α), U(λI ; β), and L(λF ; γ) are near UP-filters of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the set L(λT ;α), U(λI ; β),

and L(λF ; γ) are near UP-filters if L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x ∈ X. Then λT (0) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≤ α,

so x ∈ L(λT ;α) ̸= ∅. By assumption, we have L(λT ;α) is a near UP-filter of

X and so 0 ∈ L(λT ;α). Thus λT (0) ≤ α = λT (x). Next, let y ∈ X. Then

λT (y) ∈ [0, 1]. Choose α = λT (y). Thus λT (y) ≤ α, so y ∈ L(λT ;α) ̸= ∅. By

assumption, we have L(λT ;α) is a near UP-filter of X, and so x · y ∈ L(λT ;α).

Thus λT (x · y) ≤ α = λT (y).

Let x ∈ X. Then λI(0) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≥ β,

so x ∈ U(λI ; β) ̸= ∅. By assumption, we have U(λI ; β) is a near UP-filter of

X and so 0 ∈ U(λI ; β). Thus λI(0) ≥ β = λI(x). Next, let y ∈ X. Then

λI(y) ∈ [0, 1]. Choose β = λI(y). Thus λI(y) ≥ β, so y ∈ U(λI ; β) ̸= ∅. By

assumption, we have U(λI ; β) is a near UP-filter of X, and so x · y ∈ U(λI ; β).

Thus λI(x · y) ≥ β = λI(y).

Let x ∈ X. Then λF (0) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≤ γ,
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so x ∈ L(λF ; γ) ̸= ∅. By assumption, we have L(λF ; γ) is a near UP-filter of

X and so 0 ∈ L(λF ; γ). Thus λF (0) ≤ γ = λF (x). Next, let y ∈ X. Then

λF (y) ∈ [0, 1]. Choose γ = λF (y). Thus λF (y) ≤ γ, so y ∈ L(λF ; γ) ̸= ∅. By

assumption, we have L(λF ; γ) is a near UP-filter of X, and so x · y ∈ L(λF ; γ).

Thus λF (x · y) ≤ γ = λF (y).

Therefore, Λ is a special neutrosophic near UP-filter of X.

Theorem 4.2.36 A NS Λ in X is a special neutrosophic UP-filter of X if and

only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ; β), and L(λF ; γ) are either

empty or UP-filters of X.

Proof. Assume that Λ is a special neutrosophic UP-filter of X. Let α, β, γ ∈ [0, 1]

be such that L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x ∈ L(λT ;α). Then λT (x) ≤ α. By (4.2.4), we have λT (0) ≤

λT (x) ≤ α. Thus 0 ∈ L(λT ;α). Next, let x · y ∈ L(λT ;α) and x ∈ L(λT ;α).

Then λT (x · y) ≤ α and λT (x) ≤ α, so α is a upper bound of {λT (x · y), λT (x)}.

By (4.2.10), we have λT (y) ≤ max{λT (x · y), λT (x)} ≤ α. Thus y ∈ L(λT ;α).

Let x ∈ U(λI ; β). Then λI(x) ≥ β. By (4.2.5), we have λI(0) ≥ λI(x) ≥

β. Thus 0 ∈ U(λI ; β). Next, let x · y ∈ U(λI ; β) and x ∈ U(λI ; β). Then

λI(x · y) ≥ β and λI(x) ≥ β, so β is an lower bound of {λI(x · y), λI(x)}. By

(4.2.11), we have λI(y) ≥ min{λI(x · y), λI(x)} ≥ β. Thus y ∈ U(λI ; β).

Let x ∈ L(λF ; γ). Then λF (x) ≤ γ. By (4.2.6), we have λF (0) ≤

λF (x) ≤ γ. Thus 0 ∈ L(λF ; γ). Next, let x ·y ∈ L(λF ; γ) and x ∈ L(λF ; γ). Then

λF (x · y) ≤ γ and λF (x) ≤ γ, so γ is a upper bound of {λF (x · y), λF (x)}. By

(4.2.12), we have λF (y) ≤ max{λF (x · y), λF (x)} ≤ γ. Thus y ∈ L(λF ; γ).

Hence, L(λT ;α), U(λI ; β), and L(λF ; γ) are UP-filters of X.
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Conversely, assume that for all α, β, γ ∈ [0, 1], the set L(λT ;α), U(λI ; β),

and L(λF ; γ) are UP-filters if L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x ∈ X. Then λT (x) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≤ α,

so x ∈ L(λT ;α) ̸= ∅. By assumption, we have L(λT ;α) is a UP-filter of X

and so 0 ∈ L(λT ;α). Thus λT (0) ≤ α = λT (x). Next, let x, y ∈ X. Then

λT (x · y), λT (x) ∈ [0, 1]. Choose α = max{λT (x · y), λT (x)}. Thus λT (x · y) ≤ α

and λT (x) ≤ α, so x · y, x ∈ L(λT ;α) ̸= ∅. By assumption, we have L(λT ;α) is a

UP-filter of X and so y ∈ L(λT ;α). Thus λT (y) ≤ α = max{λT (x · y), λT (x)}.

Let x ∈ X. Then λI(x) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≥ β,

so x ∈ U(λI ; β) ̸= ∅. By assumption, we have U(λI ; β) is a UP-filter of X

and so 0 ∈ U(λI ; β). Thus λI(0) ≥ β = λI(x). Next, let x, y ∈ X. Then

λI(x · y), λI(x) ∈ [0, 1]. Choose β = min{λI(x · y), λI(x)}. Thus λI(x · y) ≥ β

and λI(x) ≥ β, so x · y, x ∈ U(λI ; β) ̸= ∅. By assumption, we have U(λI ; β) is a

UP-filter of X and so y ∈ U(λI ; β). Thus λI(y) ≥ β = min{λI(x · y), λI(x)}.

Let x ∈ X. Then λF (x) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≤ γ,

so x ∈ L(λF ; γ) ̸= ∅. By assumption, we have L(λF ; γ) is a UP-filter of X

and so 0 ∈ L(λF ; γ). Thus λF (0) ≤ γ = λF (x). Next, let x, y ∈ X. Then

λF (x · y), λF (x) ∈ [0, 1]. Choose γ = max{λF (x · y), λF (x)}. Thus λF (x · y) ≤ γ

and λF (x) ≤ γ, so x · y, x ∈ L(λF ; γ) ̸= ∅. By assumption, we have L(λF ; γ) is a

UP-filter of X and so y ∈ L(λF ; γ). Thus λF (y) ≤ γ = max{λF (x · y), λF (x)}.

Therefore, Λ is a special neutrosophic UP-filter of X.

Theorem 4.2.37 A NS Λ in X is a special neutrosophic UP-ideals of X if and

only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ; β), and L(λF ; γ) are either

empty or UP-ideals of X.

Proof. Assume that Λ is a special neutrosophic UP-ideal of X. Let α, β, γ ∈ [0, 1]

be such that L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.
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Let x ∈ L(λT ;α). Then λT (x) ≤ α. By (4.2.4), we have λT (0) ≤ λT (x) ≤

α. Thus 0 ∈ L(λT ;α). Next, let x · (y · z) ∈ L(λT ;α) and y ∈ L(λT ;α). Then

λT (x·(y·z)) ≤ α and λT (y) ≤ α, so α is a upper bound of {λT (x·(y·z)), λT (y)}. By

(4.2.13), we have λT (x·z) ≤ max{λT (x·(y ·z)), λT (y)} ≤ α. Thus x·z ∈ L(λT ;α).

Let x ∈ U(λI ; β). Then λI(x) ≥ β. By (4.2.5), we have λI(0) ≥ λI(x) ≥

β. Thus 0 ∈ U(λI ; β). Next, let x · (y · z) ∈ U(λI ; β) and y ∈ U(λI ; β). Then

λI(x·(y·z)) ≥ β and λI(y) ≥ β, so β is an lower bound of {λI(x·(y·z)), λI(y)}. By

(4.2.14), we have λI(x · z) ≥ min{λI(x · (y · z)), λI(y)} ≥ β. Thus x · z ∈ U(λI ; β).

Let x ∈ L(λF ; γ). Then λF (x) ≤ γ. By (4.2.6), we have λF (0) ≤ λF (x) ≤

γ. Thus 0 ∈ L(λF ; γ). Next, let x · (y · z) ∈ L(λF ; γ) and y ∈ L(λF ; γ). Then

λF (x·(y·z)) ≤ γ and λF (y) ≤ γ, so γ is a upper bound of {λF (x·(y·z)), λF (y)}. By

(4.2.15), we have λF (x·z) ≤ max{λF (x·(y ·z)), λF (y)} ≤ γ. Thus x·z ∈ L(λF ; γ).

Hence, L(λT ;α), U(λI ; β), and L(λF ; γ) are UP-ideals of X.

Conversely, assume that for all α, β, γ ∈ [0, 1], the set L(λT ;α), U(λI ; β),

and L(λF ; γ) are UP-ideals if L(λT ;α), U(λI ; β), and L(λF ; γ) are nonempty.

Let x ∈ X. Then λT (x) ∈ [0, 1]. Choose α = λT (x). Thus λT (x) ≤ α,

so x ∈ L(λT ;α) ̸= ∅. By assumption, we have L(λT ;α) is a UP-ideal of X

and so 0 ∈ L(λT ;α). Thus λT (0) ≤ α = λT (x). Next, let x, y, z ∈ X. Then

λT (x · (y · z)), λT (y) ∈ [0, 1]. Choose α = max{λT (x · (y · z)), λT (y)}. Thus

λT (x · (y · z)) ≤ α and λT (y) ≤ α, so x · (y · z), y ∈ L(λT ;α) ̸= ∅. By assumption,

we have L(λT ;α) is a UP-ideal of X and so x · z ∈ L(λT ;α). Thus λT (x · z) ≤

α = max{λT (x · (y · z)), λT (y)}.

Let x ∈ X. Then λI(x) ∈ [0, 1]. Choose β = λI(x). Thus λI(x) ≥ β, so

x ∈ U(λI ; β) ̸= ∅. By assumption, we have U(λI ; β) is a UP-ideal of X and so

0 ∈ U(λI ; β). Thus λI(0) ≥ β = λI(x). Next, let x, y, z ∈ X. Then λI(x · (y ·
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z)), λI(y) ∈ [0, 1]. Choose β = min{λI(x·(y·z)), λI(y)}. Thus λI(x·(y·z)) ≥ β and

λI(y) ≥ β, so x·(y·z), y ∈ U(λI ; β) ̸= ∅. By assumption, we have U(λI ; β) is a UP-

ideal of X and so x ·z ∈ U(λI ; β). Thus λI(x ·z) ≥ β = min{λI(x · (y ·z)), λI(y)}.

Let x ∈ X. Then λF (x) ∈ [0, 1]. Choose γ = λF (x). Thus λF (x) ≤ γ,

so x ∈ L(λF ; γ) ̸= ∅. By assumption, we have L(λF ; γ) is a UP-ideal of X

and so 0 ∈ L(λF ; γ). Thus λF (0) ≤ γ = λF (x). Next, let x, y, z ∈ X. Then

λF (x · (y · z)), λF (y) ∈ [0, 1]. Choose γ = max{λF (x · (y · z)), λF (y)}. Thus

λF (x · (y · z)) ≤ γ and λF (y) ≤ γ, so x · (y · z), y ∈ L(λF ; γ) ̸= ∅. By assumption,

we have L(λF ; γ) is a UP-ideal of X and so x · z ∈ L(λF ; γ). Thus λF (x · z) ≤

γ = max{λF (x · (y · z)), λF (y)}.

Therefore, Λ is a special neutrosophic UP-ideal of X.

Theorem 4.2.38 A NS Λ in X is a special neutrosophic strong UP-ideal of X

if and only if the sets E(λT ;λT (0)), E(λI ;λI(0)), and E(λF ;λF (0)) are strong

UP-ideals of X.

Proof. It is straightforward by Theorems 4.1.13, 4.1.41, and 4.2.17.

Corollary 4.2.39 A NS Λ in X is a special neutrosophic UP-subalgebra of X if

and only if for all α, β, γ ∈ [0, 1], LULΛ(α, β, γ) is a UP-subalgebra of X, where

LULΛ(α, β, γ) is nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.2.34.

Corollary 4.2.40 A NS Λ in X is a special neutrosophic near UP-filter of X if

and only if for all α, β, γ ∈ [0, 1], LULΛ(α, β, γ) is a near UP-filter of X, where

LULΛ(α, β, γ) is nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.2.35.
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Corollary 4.2.41 A NS Λ in X is a special neutrosophic UP-filter of X if

and only if for all α, β, γ ∈ [0, 1], LULΛ(α, β, γ) is a UP-filter of X, where

LULΛ(α, β, γ) is nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.2.36.

Corollary 4.2.42 A NS Λ in X is a special neutrosophic UP-ideal of X if

and only if for all α, β, γ ∈ [0, 1], LULΛ(α, β, γ) is a UP-ideal of X, where

LULΛ(α, β, γ) is nonempty.

Proof. It is straightforward by Theorems 3.0.6 and 4.2.37.

Corollary 4.2.43 A NS Λ in X is a special neutrosophic strong UP-ideal of X

if and only if EΛ(λT (0), λI(0), λF (0)) is a strong UP-ideal of X.

Proof. It is straightforward by Theorems 3.0.6 and 4.2.38.

4.3 Interval-valued neutrosophic sets in UP-algebras

From closed subinterval of unit interval [0, 1], we introduce the concepts

of interval-valued neutrosophic UP-subalgebras, interval-valued neutrosophic near

UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic

UP-ideals, and interval-valued neutrosophic strong UP-ideals of UP-algebras, pro-

vide the necessary examples, investigate their properties, and prove their gener-

alizations.

Definition 4.3.1 An IVNS A in X is called an interval-valued neutrosophic UP-

subalgebra of X if it holds the following conditions:

(∀x, y ∈ X)(AT (x · y) ⪰ rmin{AT (x), AT (y)}), (4.3.1)

(∀x, y ∈ X)(AI(x · y) ⪯ rmax{AI(x), AI(y)}), and (4.3.2)
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(∀x, y ∈ X)(AF (x · y) ⪰ rmin{AF (x), AF (y)}). (4.3.3)

Proposition 4.3.2 If A is an interval-valued neutrosophic UP-subalgebra of X,

then

(∀x ∈ X)(AT (0) ⪰ AT (x)), (4.3.4)

(∀x ∈ X)(AI(0) ⪯ AI(x)), and (4.3.5)

(∀x ∈ X)(AF (0) ⪰ AF (x)). (4.3.6)

Proof. Let A be an interval-valued neutrosophic UP-subalgebra of X. By (3.0.1),

we have

(∀x ∈ X)


AT (0) = AT (x · x) ⪰ rmin{AT (x), AT (x)} = AT (x),

AI(0) = AI(x · x) ⪯ rmin{AI(x), AI(x)} = AI(x), and

AF (0) = AF (x · x) ⪰ rmin{AF (x), AF (x)} = AF (x)

 .

Example 4.3.3 Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and

a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 0 2

2 0 1 0 3

3 0 0 0 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.2, 0.5]

2

[0.3, 0.4]

3

[0.3, 0.4]

)
,
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AI =

(
0

[0, 0.3]

1

[0.7, 0.8]

2

[0.2, 0.3]

3

[0.8, 0.9]

)
,

AF =

(
0

[0.7, 1]

1

[0.1, 0.3]

2

[0.5, 0.7]

3

[0.6, 0.7]

)
.

Then A is an interval-valued neutrosophic UP-subalgebra of X.

Definition 4.3.4 An IVNS A in X is called an interval-valued neutrosophic near

UP-filter of X if it holds the following conditions: (4.3.4), (4.3.5), (4.3.6),

(∀x, y ∈ X)(AT (x · y) ⪰ AT (y)), (4.3.7)

(∀x, y ∈ X)(AI(x · y) ⪯ AI(y)), and (4.3.8)

(∀x, y ∈ X)(AF (x · y) ⪰ AF (y)). (4.3.9)

Example 4.3.5 Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and

a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 0

2 0 1 0 3

3 0 1 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.6, 0.8]

2

[0.5, 0.6]

3

[0.4, 0.6]

)
,

AI =

(
0

[0, 0.1]

1

[0.1, 0.3]

2

[0.3, 0.4]

3

[0.5, 0.8]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.6, 0.8]

2

[0.5, 0.7]

3

[0.4, 0.6]

)
.

Then A is an interval-valued neutrosophic near UP-filter of X.

Definition 4.3.6 An IVNS A in X is called an interval-valued neutrosophic UP-
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filter of X if it holds the following conditions: (4.3.4), (4.3.5), (4.3.6),

(∀x, y ∈ X)(AT (y) ⪰ rmin{AT (x · y), AT (x)}), (4.3.10)

(∀x, y ∈ X)(AI(y) ⪯ rmax{AI(x · y), AI(x)}), and (4.3.11)

(∀x, y ∈ X)(AF (y) ⪰ rmin{AF (x · y), AF (x)}). (4.3.12)

Example 4.3.7 Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and

a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 1 0 0

3 0 1 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.5, 0.8]

2

[0.3, 0.6]

3

[0.3, 0.6]

)
,

AI =

(
0

[0, 0.1]

1

[0.2, 0.3]

2

[0.6, 0.8]

3

[0.6, 0.8]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.4, 0.5]

2

[0.3, 0.4]

3

[0.3, 0.4]

)
.

Then A is an interval-valued neutrosophic UP-filter of X.

Definition 4.3.8 An IVNS A in X is called an interval-valued neutrosophic UP-

ideal of X if it holds the following conditions: (4.3.4), (4.3.5), (4.3.6),

(∀x, y, z ∈ X)(AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)}), (4.3.13)

(∀x, y, z ∈ X)(AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)}), and (4.3.14)

(∀x, y, z ∈ X)(AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)}). (4.3.15)
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Example 4.3.9 Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and

a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 0

3 0 0 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.7, 0.9]

2

[0.6, 0.8]

3

[0.6, 0.9]

)
,

AI =

(
0

[0.1, 0.3]

1

[0.3, 0.5]

2

[0.4, 0.7]

3

[0.3, 0.6]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.5, 0.9]

2

[0.4, 0.6]

3

[0.5, 0.8]

)
.

Then A is an interval-valued neutrosophic UP-ideal of X.

Definition 4.3.10 An IVNS A in X is called an interval-valued neutrosophic

strong UP-ideal of X if it holds the following conditions: (4.3.4), (4.3.5), (4.3.6),

(∀x, y, z ∈ X)(AT (x) ⪰ rmin{AT ((z · y) · (z · x)), AT (y)}), (4.3.16)

(∀x, y, z ∈ X)(AI(x) ⪯ rmax{AI((z · y) · (z · x)), AI(y)}), (4.3.17)

(∀x, y, z ∈ X)(AF (x) ⪰ rmin{AF ((z · y) · (z · x)), AF (y)}). (4.3.18)

Example 4.3.11 Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 1 2 0

We define an IVNS A in X as follows:

(∀x ∈ X)


AT (x) = [0.7, 0.9]

AI(x) = [0.3, 0.5]

AF (x) = [0.5, 0.9]

 .

Then A is an interval-valued neutrosophic strong UP-ideal of X.

Definition 4.3.12 An IVNS A in a nonempty set X is said to be constant if A

is a constant function from X to [[0, 1]]3. That is, AT , AI , and AF are constant

functions from X to [[0, 1]].

Theorem 4.3.13 An IVNS A in X is constant if and only if it is an interval-

valued neutrosophic strong UP-ideal of X.

Proof. Assume that an IVNS A is constant in X. Then AT (x) = AT (0), AI(x) =

AI(0), and AF (x) = AF (0) for all x ∈ X. Then for all x ∈ X,AT (0) ⪰

AT (x), AT (0) ⪯ AI(x), and AF (0) ⪰ AF (x), and for all x, y, z ∈ X,

rmin{AT ((z · y) · (z · x)), AT (y)} = rmin{AT (0), AT (0)}

= AT (0) ((2.0.15))

= AT (x),

rmax{AI((z · y) · (z · x)), AI(y)} = rmax{AI(0), AI(0)}
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= AI(0) ((2.0.15))

= AI(x),

rmin{AF ((z · y) · (z · x)), AF (y)} = rmin{AF (0), AF (0)}

= AF (0) ((2.0.15))

= AF (x).

Hence, A is an interval-valued neutrosophic strong UP-ideal of X.

Conversely, assume that A is an interval-valued neutrosophic strong UP-

ideal of X. Then for all x ∈ X,

AT (x) ⪰ rmin{AT ((x · 0) · (x · x)), AT (0)}

= rmin{AT (0 · (x · x)), AT (0)} ((UP-3))

= rmin{AT (x · x), AT (0)} ((UP-2))

= rmin{AT (0), AT (0)} ((3.0.1))

= AT (0) ((2.0.15))

⪰ AT (x),

AI(x) ⪯ rmax{AI((x · 0) · (x · x)), AI(0)}

= rmax{AI(0 · (x · x)), AI(0)} ((UP-3))

= rmax{AI(x · x), AI(0)} ((UP-2))

= rmax{AI(0), AI(0)} ((3.0.1))

= AI(0) ((2.0.15))

⪯ AI(x),

AF (x) ⪰ rmin{AF ((x · 0) · (x · x)), AF (0)}

= rmin{AF (0 · (x · x)), AF (0)} ((UP-3))

= rmin{AF (x · x), AF (0)} ((UP-2))
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= rmin{AF (0), AF (0)} ((3.0.1))

= AF (0) ((2.0.15))

⪰ AF (x).

Thus AT (0) = AT (x), AI(0) = AI(x), and AF (0) = AF (x) for all x ∈ X. Hence,

A is constant.

Theorem 4.3.14 Every interval-valued neutrosophic strong UP-ideal of X is an

interval-valued neutrosophic UP-ideal.

Proof. Assume that A is an interval-valued neutrosophic strong UP-ideal of X.

Then for all x ∈ X,AT (0) ⪰ AT (x), AT (0) ⪯ AI(x), and AF (0) ⪰ AF (x). Let

x, y, z ∈ X. Then

AT (x · z) = AT (y) ⪰ rmin{AT (x · (y · z)), AT (y)}, ((2.0.17))

AI(x · z) = AI(y) ⪯ rmax{AT (x · (y · z)), AT (y)}, ((2.0.17))

AF (x · z) = AF (y) ⪰ rmin{AF (x · (y · z)), AF (y)}. ((2.0.17))

Hence, A is an interval-valued neutrosophic UP-ideal of X.

The following example show that the converse of Theorem 4.3.14 is not

true.

Example 4.3.15 From Example 4.3.9, we have A is an interval-valued neutro-

sophic UP-ideal of X. Since AT (1) = [0.7, 0.9] ⪰̸ [0.9, 1] = rmin{AT ((2 · 0) · (2 ·

1)), AT (0)}, we have A is not an interval-valued neutrosophic strong UP-ideal of

X.

Theorem 4.3.16 Every interval-valued neutrosophic UP-ideal of X is an interval-

valued neutrosophic UP-filter.
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Proof. Assume that A is an interval-valued neutrosophic UP-ideal of X. Then

for all x ∈ X,AT (0) ⪰ AT (x), AT (0) ⪯ AI(x), and AF (0) ⪰ AF (x). Let x, y ∈ X.

Then

AT (y) = AT (0 · y) ((UP-2))

⪰ rmin{AT (0 · (x · y)), AT (x)}

= rmin{AT (x · y), AT (x)}, ((UP-2))

AI(y) = AI(0 · y) ((UP-2))

⪯ rmax{AI(0 · (x · y)), AI(x)}

= rmax{AI(x · y), AI(x)}, ((UP-2))

AF (y) = AF (0 · y) ((UP-2))

⪰ rmin{AF (0 · (x · y)), AF (x)}

= rmin{AF (x · y), AF (x)}. ((UP-2))

Hence, A is an interval-valued neutrosophic UP-filter of X.

The following example show that the converse of Theorem 4.3.16 is not

true.

Example 4.3.17 From Example 4.3.7, we have A is an interval-valued neutro-

sophic UP-filter of X. Since AI(3 · 2) = [0.6, 0.8] ⪯̸ [0.2, 0.3] = rmax{AI(3 · (1 ·

2)), AI(1)}, we have A is not an interval-valued neutrosophic UP-ideal of X.

Theorem 4.3.18 Every interval-valued neutrosophic UP-filter of X is an interval-

valued neutrosophic near UP-filter.

Proof. Assume that A is an interval-valued neutrosophic UP-filter of X. Then

for all x ∈ X,AT (0) ⪰ AT (x), AT (0) ⪯ AI(x), and AF (0) ⪰ AF (x). Let x, y ∈ X.
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Then

AT (x · y) ⪰ rmin{AT (y · (x · y)), AT (y)}

= rmin{AT (0), AT (y)} ((3.0.5))

= AT (y),

AI(x · y) ⪯ rmax{AI(y · (x · y)), AI(y)}

= rmax{AI(0), AI(y)} ((3.0.5))

= AI(y),

AF (x · y) ⪰ rmin{AF (y · (x · y)), AF (y)}

= rmin{AF (0), AF (y)} ((3.0.5))

= AF (y).

Hence, A is an interval-valued neutrosophic near UP-filter of X.

The following example show that the converse of Theorem 4.3.18 is not

true.

Example 4.3.19 From Example 4.3.5, we have A is an interval-valued neutro-

sophic near UP-filter of X. Since AF (3) = [0.4, 0.6] ⪰̸ [0.6, 0.8] = rmin{AF (1 ·

3), AF (1)}, we have A is not an interval-valued neutrosophic UP-filter of X.

Theorem 4.3.20 Every interval-valued neutrosophic near UP-filter of X is an

interval-valued neutrosophic UP-subalgebra.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of X.

Then for all x ∈ X,AT (0) ⪰ AT (x), AT (0) ⪯ AI(x), and AF (0) ⪰ AF (x). Let

x, y ∈ X. By (2.0.17), we have

AT (x · y) ⪰ AT (y) ⪰ rmin{AT (x), AT (y)},
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AI(x · y) ⪯ AI(y) ⪯ rmax{AI(x), AI(y)},

AF (x · y) ⪰ AF (y) ⪰ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X.

The following example show that the converse of Theorem 4.3.20 is not

true.

Example 4.3.21 From Example 4.3.3, we have A is an interval-valued neutro-

sophic UP-subalgebra of X. Since AF (1 · 3) = [0.5, 0.7] ⪰̸ [0.6, 0.8] = AF (3), we

have A is not an interval-valued neutrosophic near UP-filter of X.

Theorem 4.3.22 If A is an interval-valued neutrosophic UP-subalgebra of X

satisfying the following condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


AT (x) ⪰ AT (y)

AI(x) ⪯ AI(y)

AF (x) ⪰ AF (y)

 , (4.3.19)

then A is an interval-valued neutrosophic near UP-filter of X.

Proof. Assume that A is an interval-valued neutrosophic UP-subalgebra of X

satisfying the condition (4.3.19). By Theorem 4.3.2, we have A satisfies the

conditions (4.3.4), (4.3.5), and (4.3.6). Next, let x, y ∈ X.

Case 1: x · y = 0. Then

AT (x · y) = AT (0) ⪰ AT (y), ((4.3.4))

AI(x · y) = AI(0) ⪯ AI(y), ((4.3.5))

AF (x · y) = AF (0) ⪰ AF (y). ((4.3.6))
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Case 2: x · y ̸= 0. By (4.3.19), it follows that

AT (x · y) ⪰ rmin{AT (x), AT (y)} ((4.3.1))

= AT (y), ((2.0.23))

AI(x · y) ⪯ rmax{AI(x), AI(y)} ((4.3.2))

= AI(y), ((2.0.24))

AF (x · y) ⪰ rmin{AF (x), AF (y)} ((4.3.3))

= AF (y). ((2.0.23))

Hence, A is an interval-valued neutrosophic near UP-filter of X.

Theorem 4.3.23 If A is an interval-valued neutrosophic near UP-filter of X

satisfying the following condition:

AT = AI = AF , (4.3.20)

then A is an interval-valued neutrosophic strong UP-ideal of X.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of X

satisfying the condition (4.3.20). Then A satisfies the conditions (4.3.4), (4.3.5),

and (4.3.6). Let x ∈ X. Then

AT (0) ⪰ AT (x) = AI(x) ⪰ AI(0) = AT (0),

AI(0) ⪯ AI(x) = AT (x) ⪯ AT (0) = AI(0),

AF (0) ⪰ AF (x) = AI(x) ⪰ AI(0) = AF (0).

Thus AT (0) = AT (x), AI(0) = AI(x), and AF (0) = AF (x), that is, A is constant.

By Theorem 4.3.13, we have A is an interval-valued neutrosophic strong UP-ideal

of X.
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Theorem 4.3.24 If A is an interval-valued neutrosophic UP-filter of X satisfy-

ing the following condition:

(∀x, y, z ∈ X)


AT (y · (x · z)) = AT (x · (y · z))

AI(y · (x · z)) = AI(x · (y · z))

AF (y · (x · z)) = AF (x · (y · z))

 , (4.3.21)

then A is an interval-valued neutrosophic UP-ideal of X.

Proof. Assume that A is an interval-valued neutrosophic UP-filter of X satisfying

the condition (4.3.21). ThenA satisfies the conditions (4.3.4), (4.3.5), and (4.3.6).

Next, let x, y, z ∈ X. Then

AT (x · z) ⪰ rmin{AT (y · (x · z)), AT (y)} ((4.3.10))

= rmin{AT (x · (y · z)), AT (y)}, ((4.3.21) for AT )

AI(x · z) ⪯ rmax{AI(y · (x · z)), AI(y)} ((4.3.11))

= rmax{AI(x · (y · z)), AI(y)}, ((4.3.21) for AI)

AF (x · z) ⪰ rmin{AF (y · (x · z)), AF (y)} ((4.3.12))

= rmin{AF (x · (y · z)), AF (y)}. ((4.3.21) for AF )

Hence, A is an interval-valued neutrosophic UP-ideal of X.

Theorem 4.3.25 If A is an IVNS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (z) ⪰ rmin{AT (x), AT (y)}

AI(z) ⪯ rmax{AI(x), AI(y)}

AF (z) ⪰ rmin{AF (x), AF (y)}

 , (4.3.22)

then A is an interval-valued neutrosophic UP-subalgebra of X.
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Proof. Assume that A is an IVNS in X satisfying the condition (4.3.22). Let

x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≤ x · y. It follows

from (4.3.22) that

AT (x · y) ⪰ rmin{AT (x), AT (y)},

AI(x · y) ⪯ rmax{AI(x), AI(y)},

AF (x · y) ⪰ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X.

Theorem 4.3.26 If A is an IVNS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (y) ⪰ rmin{AT (z), AT (x)}

AI(y) ⪯ rmax{AI(z), AI(x)}

AF (y) ⪰ rmin{AF (z), AF (x)}

 , (4.3.23)

then A is an interval-valued neutrosophic UP-filter of X.

Proof. Assume that A is an IVNS in X satisfying the condition (4.3.23). Let

x ∈ X. By (UP-3), we have x · (x · 0) = 0, that is, x ≤ x · 0. It follows from

(4.3.23) and (2.0.15) that

AT (0) ⪰ rmin{AT (x), AT (x)} = AT (x),

AI(0) ⪯ rmax{AI(x), AI(x)} = AI(x),

AF (0) ⪰ rmin{AF (x), AF (x)} = AF (x).

Next, let x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≤ x · y.

It follows from (4.3.23) that

AT (y) ⪰ rmin{AT (x · y), AT (x)},
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AI(y) ⪯ rmax{AI(x · y), AI(x)},

AF (y) ⪰ rmin{AF (x · y), AF (x)}.

Hence, A is an interval-valued neutrosophic UP-filter of X.

Theorem 4.3.27 If A is an IVNS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


AT (x · z) ⪰ rmin{AT (a), AT (y)}

AI(x · z) ⪯ rmax{AI(a), AI(y)}

AF (x · z) ⪰ rmin{AF (a), AF (y)}

 ,

(4.3.24)

then A is an interval-valued neutrosophic UP-ideal of X.

Proof. Assume that A is an IVNS in X satisfying the condition (4.3.24). Let

x ∈ X. By (UP-3), we have x · (0 · (x · 0)) = 0, that is, x ≤ 0 · (x · 0). It follows

from (4.3.24) and (2.0.15) that

AT (0) = AT (0 · 0) ⪰ rmin{AT (x), AT (x)} = AT (x), ((UP-2))

AI(0) = AI(0 · 0) ⪯ rmax{AI(x), AI(x)} = AI(x), ((UP-2))

AF (0) = AF (0 · 0) ⪰ rmin{AF (x), AF (x)} = AF (x). ((UP-2))

Next, let x, y, z ∈ X. By (3.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,

x · (y · z) ≤ x · (y · z). It follows from (4.3.24) that

AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)},

AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)},

AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X.
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Theorem 4.3.28 An IVNS A in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (z) ⪰ AT (y)

AI(z) ⪯ AI(y)

AF (z) ⪰ AF (y)

 (4.3.25)

if and only if A is an interval-valued neutrosophic strong UP-ideal of X.

Proof. Assume that A is an IVNS in X satisfying the condition (4.3.25). Let

x, y ∈ X. By (UP-3) and (3.0.1), we have x · 0 = 0, that is, x ≤ 0 = y · y. It

follows from (4.3.25) that AT (x) ⪰ AT (y), AI(x) ⪯ AI(y), and AF (x) ⪰ AF (y).

Similarly, AT (y) ⪰ AT (x), AI(y) ⪯ AI(x), and AF (y) ⪰ AF (x). Then AT (x) =

AT (y), AI(x) = AI(y), and AF (x) = AF (y). Thus A is constant. By Theorem

4.3.13, we have A is an interval-valued neutrosophic strong UP-ideal of X.

The converse follows from Theorem 4.3.13.

Then, we have the diagram of generalization of IVNSs in UP-algebras as

shown in Figure 4.3.
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Figure 4.3: Interval-valued neutrosophic sets in UP-algebras

For any fixed interval numbers ã+, ã−, b̃+, b̃−, c̃+, c̃− ∈ [[0, 1]] such that

ã+ ≻ ã−, b̃+ ≻ b̃−, c̃+ ≻ c̃− and a nonempty subset G of X, the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
]

= (X,AG
T [

ã+

ã− ], A
G
I [

b̃−

b̃+
], AG

F [
c̃+

c̃− ]) in X, where AG
T [

ã+

ã− ], A
G
I [

b̃−

b̃+
], and AG

F [
c̃+

c̃− ] are IVFSs

in X which are given as follows:

AG
T [

ã+

ã− ](x) =


ã+ if x ∈ G,

ã− otherwise,

AG
I [

b̃−

b̃+
](x) =


b̃− if x ∈ G,

b̃+ otherwise,

AG
F [

c̃+

c̃− ](x) =


c̃+ if x ∈ G,

c̃− otherwise.
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Lemma 4.3.29 If the constant 0 of X is in a nonempty subset G of X, then the

IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the conditions (4.3.4), (4.3.5), and (4.3.6).

Proof. If 0 ∈ G, then AG
T [

ã+

ã− ](0) = ã+, AG
I [

b̃−

b̃+
](0) = b̃−, and AG

F [
c̃+

c̃− ](0) = c̃+. Thus

(∀x ∈ X)


AG

T [
ã+

ã− ](0) = ã+ ⪰ AG
T [

ã+

ã− ](x)

AG
I [

b̃−

b̃+
](0) = b̃− ⪯ AG

I [
b̃−

b̃+
](x)

AG
F [

c̃+

c̃− ](0) = c̃+ ⪰ AG
F [

c̃+

c̃− ](x)

 .

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (4.3.4), (4.3.5), and (4.3.6).

Lemma 4.3.30 If the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the condition (4.3.4)

(resp., (4.3.5), (4.3.6)), then the constant 0 of X is in G.

Proof. Assume that the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the condition (4.3.4).

Then AG
T [

ã+

ã− ](0) ⪰ AG
T [

ã+

ã− ](x) for all x ∈ X. Since G is nonempty, there exists

g ∈ G. Thus AG
T [

ã+

ã− ](g) = ã+ and so AG
T [

ã+

ã− ](0) ⪰ AG
T [

ã+

ã− ](g) = ã+ ⪰ AG
T [

ã+

ã− ](0),

that is, AG
T [

ã+

ã− ](0) = ã+. Hence, 0 ∈ G.

Theorem 4.3.31 The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

UP-subalgebra of X if and only if a nonempty subset G of X is a UP-subalgebra

of X.

Proof. Assume thatAG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-subalgebra

of X. Let x, y ∈ G. Then AG
T [

ã+

ã− ](x) = ã+ = AG
T [

ã+

ã− ](y). Thus

AG
T [

ã+

ã− ](x · y) ⪰ rmin{AG
T [

ã+

ã− ](x), A
G
T [

ã+

ã− ](y)} ((4.3.1))

= rmin{ã+, ã+}

= ã+ ((2.0.15))

⪰ AG
T [

ã+

ã− ](x · y)
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and so AG
T [

ã+

ã− ](x · y) = ã+. Thus x · y ∈ G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let x, y ∈ X.

Case 1: x, y ∈ G. Then

AG
T [

ã+

ã− ](x) = ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x) = b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x) = c̃+ = AG
F [

c̃+

c̃− ](y).

Since G is a UP-subalgebra of X, we have x · y ∈ G and so AG
T [

ã+

ã− ](x · y) =

ã+, AG
I [

b̃−

b̃+
](x · y) = b̃−, and AG

F [
c̃+

c̃− ](x · y) = c̃+. By (2.0.15), it follows that

AG
T [

ã+

ã− ](x · y) = ã+ ⪰ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x), A
G
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · y) = b̃− ⪯ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · y) = c̃+ ⪰ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)}.

Case 2: x ̸∈ G or y ̸∈ G. Then

AG
T [

ã−

ã− ](x) = ã− or AG
T [

ã+

ã− ](y) = ã−,

AG
I [

b̃−

b̃+
](x) = b̃+ or AG

I [
b̃−

b̃+
](y) = b̃+,

AG
F [

c̃+

c̃− ](x) = c̃− or AG
F [

c̃+

c̃− ](y) = c̃−.

By (2.0.15), it follows that

rmin{AG
T [

ã+

ã− ](x), A
G
T [

ã+

ã− ](y)} = ã−,

rmax{AG
I [

b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)} = c̃−.
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Therefore,

AG
T [

ã+

ã− ](x · y) ⪰ ã− = rmin{AG
T [

ã+

ã− ](x), A
G
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · y) ⪯ b̃+ = rmax{AG

I [
b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · y) ⪰ c̃− = rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)}.

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-subalgebra of X.

Theorem 4.3.32 The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

near UP-filter of X if and only if a nonempty subset G of X is a near UP-filter

of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic near UP-filter

of X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (4.3.4), it follows from Lemma

4.3.30 that 0 ∈ G. Next, let x ∈ X and y ∈ G. Then AG
T [

ã+

ã− ](y) = ã+. By (4.3.7)

AG
T [

ã+

ã− ](x · y) ⪰ AG
T [

ã+

ã− ](y) = ã+ ⪰ AG
T [

ã+

ã− ](x · y)

and so AG
T [

ã+

ã− ](x · y) = ã+. Thus x · y ∈ G. Hence, G is a near UP-filter of X.

Conversely, assume thatG is a near UP-filter ofX. Since 0 ∈ G, it follows

from Lemma 4.3.29 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (4.3.4), (4.3.5), and

(4.3.6). Next, let x, y ∈ X.

Case 1: y ∈ G. Then AG
T [

ã+

ã− ](y) = ã+, AG
I [

b̃−

b̃+
](y) = b̃−, and AG

F [
c̃+

c̃− ](y) =

c̃+. Since G is a near UP-filter of X, we have x · y ∈ G and so AG
T [

ã+

ã− ](x · y) =

ã+, AG
I [

b̃−

b̃+
](x · y) = b̃−, and AG

F [
c̃+

c̃− ](x · y) = c̃+. Thus

AG
T [

ã+

ã− ](x · y) = ã+ ⪰ ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · y) = b̃− ⪯ b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · y) = c̃+ ⪰ c̃+ = AG
F [

c̃+

c̃− ](y).
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Case 2: y ̸∈ G. Then AG
T [

ã+

ã− ](y) = ã−, AG
I [

b̃−

b̃+
](y) = b̃+, and AG

F [
c̃+

c̃− ](y) =

c̃−. Thus

AG
T [

ã+

ã− ](x · y) ⪰ ã− = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · y) ⪯ b̃+ = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · y) ⪰ c̃− = AG
F [

c̃+

c̃− ](y).

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic near UP-filter of X.

Theorem 4.3.33 The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

UP-filter of X if and only if a nonempty subset G of X is a UP-filter of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-filter of

X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (4.3.4), it follows from Lemma 4.3.30

that 0 ∈ G. Next, let x, y ∈ X be such that x · y ∈ G and x ∈ G. Then

AG
T [

ã+

ã− ](x · y) = ã+ = AG
T [

ã+

ã− ](x). Thus

AG
T [

ã+

ã− ](y) ⪰ rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)} ((4.3.10))

= rmin{ã+, ã+}

= ã+ ((2.0.15))

⪰ AG
T [

ã+

ã− ](y)

and so AG
T [

ã+

ã− ](y) = ã+. Thus y ∈ G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 ∈ G, it follows

from Lemma 4.3.29 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (4.3.4), (4.3.5), and

(4.3.6). Next, let x, y ∈ X.
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Case 1: x · y ∈ G and x ∈ G. Then

AG
T [

ã+

ã− ](x · y) = ã+ = AG
T [

ã+

ã− ](x),

AG
I [

b̃−

b̃+
](x · y) = b̃− = AG

I [
b̃−

b̃+
](x),

AG
F [

c̃+

c̃− ](x · y) = c̃+ = AG
F [

c̃+

c̃− ](x).

Since G is a UP-filter of X, we have y ∈ G and so AG
T [

ã+

ã− ](y) = ã+, AG
I [

b̃−

b̃+
](y) = b̃−,

and AG
F [

c̃+

c̃− ](y) = c̃+. By (2.0.15), it follows that

AG
T [

ã+

ã− ](y) = ã+ ⪰ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)},

AG
I [

b̃−

b̃+
](y) = b̃− ⪯ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)},

AG
F [

c̃+

c̃− ](y) = c̃+ ⪰ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)}.

Case 2: x · y ̸∈ G or x ̸∈ G. Then

AG
T [

ã+

ã− ](x · y) = ã− or AG
T [

ã+

ã− ](x) = ã−,

AG
I [

b̃−

b̃+
](x · y) = b̃+ or AG

I [
b̃−

b̃+
](x) = b̃+,

AG
F [

c̃+

c̃− ](x · y) = c̃− or AG
F [

c̃+

c̃− ](x) = c̃−.

By (2.0.15), it follows that

rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)} = ã−,

rmax{AG
I [

b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)} = c̃−.

Therefore,

AG
T [

ã+

ã− ](y) ⪰ ã− = rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)},
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AG
I [

b̃−

b̃+
](y) ⪯ b̃+ = rmax{AG

I [
b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)},

AG
F [

c̃+

c̃− ](y) ⪰ c̃− = rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)}.

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-filter of X.

Theorem 4.3.34 The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

UP-ideal of X if and only if a nonempty subset G of X is a UP-ideal of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-ideal of

X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (4.3.4), it follows from Lemma 4.3.30

that 0 ∈ G. Next, let x, y, z ∈ X be such that x · (y · z) ∈ G and y ∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã+ = AG
T [

ã+

ã− ](y). Thus

AG
T [

ã+

ã− ](x · z) ⪰ rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)} ((4.3.13))

= rmin{ã+, ã+}

= ã+ ((2.0.15))

⪰ AG
T [

ã+

ã− ](x · z)

and so AG
T [

ã+

ã− ](x · z) = ã+. Thus x · z ∈ G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 ∈ G, it follows

from Lemma 4.3.29 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (4.3.4), (4.3.5), and

(4.3.6). Next, let x, y, z ∈ X.

Case 1: x · (y · z) ∈ G and y ∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · (y · z)) = b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · (y · z)) = c̃+ = AG
F [

c̃+

c̃− ](y).
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Since G is a UP-ideal of X, we have x ·z ∈ G and so AG
T [

ã+

ã− ](x ·z) = ã+, AG
I [

b̃−

b̃+
](x ·

z) = b̃−, and AG
F [

c̃+

c̃− ](x · z) = c̃+. By (2.0.15), it follows that

AG
T [

ã+

ã− ](x · z) = ã+ ⪰ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · z) = b̃− ⪯ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · z) = c̃+ ⪰ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)}.

Case 2: x · (y · z) ̸∈ G or y ̸∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã− or AG
T [

ã+

ã− ](y) = ã−,

AG
I [

b̃−

b̃+
](x · (y · z)) = b̃+ or AG

I [
b̃−

b̃+
](y) = b̃+,

AG
F [

c̃+

c̃− ](x · (y · z)) = c̃− or AG
F [

c̃+

c̃− ](y) = c̃−.

By (2.0.15), it follows that

rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)} = ã−,

rmax{AG
I [

b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)} = c̃−.

Therefore,

AG
T [

ã+

ã− ](x · z) ⪰ ã− = rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · z) ⪯ b̃+ = rmax{AG

I [
b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · z) ⪰ c̃− = rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)}.

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-ideal of X.

Theorem 4.3.35 The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

strong UP-ideal of X if and only if a nonempty subset G of X is a strong UP-ideal
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of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic strong UP-

ideal of X. By Theorem 4.3.13, we have AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is constant, that is, AG

T [
ã+

ã− ]

is constant. Since G is nonempty, we have AG
T [

ã+

ã− ](x) = ã+ for all x ∈ X. Thus

G = X. Hence, G is a strong UP-ideal of X.

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

(∀x ∈ X)


AG

T [
ã+

ã− ](x) = ã+

AG
I [

b̃−

b̃+
](x) = b̃−

AG
F [

c̃+

c̃− ](x) = c̃+

 .

Thus AG
T [

ã+

ã− ], A
G
I [

b̃−

b̃+
], and AG

F [
c̃+

c̃− ] are constant, that is, A
G[ã

+,b̃−,c̃+

ã−,b̃+,c̃−
] is constant. By

Theorem 4.3.13, we have AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic strong

UP-ideal of X.

In the next order, we also discuss the relationships among interval-valued

neutrosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters,

interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals,

interval-valued neutrosophic strong UP-ideals) of UP-algebras and their level sub-

sets.

Definition 4.3.36 Let A be an IVFS in a nonempty set X. For any ã ∈ [[0, 1]],

the sets

U(A; ã) = {x ∈ X | A(x) ⪰ ã},

L(A; ã) = {x ∈ X | A(x) ⪯ ã},

E(A; ã) = {x ∈ X | A(x) = ã}
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are called an upper ã-level subset, a lower ã-level subset, and an equal ã-level

subset of A, respectively.

Theorem 4.3.37 An IVNS A in X is an interval-valued neutrosophic UP-sub-

algebra of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and

U(AF ; c̃) are either empty or UP-subalgebras of X.

Proof. Assume that A is an interval-valued neutrosophic UP-subalgebra of X.

Let ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x, y ∈ U(AT ; ã). Then AT (x) ⪰ ã and AT (y) ⪰ ã. Since A is an

interval-valued neutrosophic UP-subalgebra of X and by (2.0.20), we have

AT (x · y) ⪰ rmin{AT (x), AT (y)} ⪰ ã.

Thus x · y ∈ U(AT ; ã).

Let x, y ∈ L(AI ; b̃). Then AI(x) ⪯ b̃ and AI(y) ⪯ b̃. Since A is an

interval-valued neutrosophic UP-subalgebra of X and by (2.0.22), we have

AI(x · y) ⪯ rmax{AI(x), AI(y)} ⪯ b̃.

Thus x · y ∈ L(AI ; b̃).

Let x, y ∈ U(AF ; c̃). Then AF (x) ⪰ c̃ and AF (y) ⪰ c̃. Since A is an

interval-valued neutrosophic UP-subalgebra of X and by (2.0.20), we have

AF (x · y) ⪰ rmin{AF (x), AF (y)} ⪰ c̃.

Thus x · y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-subalgebras of X.
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Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃),

and U(AF ; c̃) are either empty or UP-subalgebras of X.

Let x, y ∈ X. By (2.0.17), we have AT (x) ⪰ rmin{AT (x), AT (y)} and

AT (y) ⪰ rmin{AT (x), AT (y)}. Thus x, y ∈ U(AT ; rmin{AT (x), AT (y)}). By

assumption, we have U(AT ; rmin{AT (x), AT (y)}) is a UP-subalgebra of X. Then

x · y ∈ U(AT ; rmin{AT (x), AT (y)}). Thus AT (x · y) ⪰ rmin{AT (x), AT (y)}.

Let x, y ∈ X. By (2.0.17), we have AI(x) ⪯ rmax{AI(x), AI(y)} and

AI(y) ⪯ rmax{AI(x), AI(y)}. Thus x, y ∈ L(AI ; rmax{AI(x), AI(y)}). By as-

sumption, we have L(AI ; rmax{AI(x), AI(y)}) is a UP-subalgebra of X. Then

x · y ∈ L(AI ; rmax{AI(x), AI(y)}). Thus AI(x · y) ⪯ rmax{AI(x), AI(y)}.

Let x, y ∈ X. By (2.0.17), we have AF (x) ⪰ rmin{AF (x), AF (y)} and

AF (y) ⪰ rmin{AF (x), AF (y)}. Thus x, y ∈ U(AF ; rmin{AF (x), AF (y)}). By

assumption, we have U(AF ; rmin{AF (x), AF (y)}) is a UP-subalgebra of X. Then

x · y ∈ U(AF ; rmin{AF (x), AF (y)}). Thus AF (x · y) ⪰ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X.

Theorem 4.3.38 An IVNS A in X is an interval-valued neutrosophic near UP-

filter of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and

U(AF ; c̃) are either empty or near UP-filters of X.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of X. Let

ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-

valued neutrosophic near UP-filter of X, we have

AT (0) ⪰ AT (x) ⪰ ã, AI(0) ⪯ AI(y) ⪯ b̃, AF (0) ⪰ AF (z) ⪰ c̃.
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Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).

Let x ∈ X and y ∈ U(AT ; ã). Then AT (y) ⪰ ã. Since A is an interval-

valued neutrosophic near UP-filter of X, we have

AT (x · y) ⪰ AT (y) ⪰ ã.

Thus x · y ∈ U(AT ; ã).

Let x ∈ X and y ∈ L(AI ; b̃). Then AI(y) ⪯ b̃. Since A is an interval-

valued neutrosophic near UP-filter of X, we have

AI(x · y) ⪯ AI(y) ⪯ b̃.

Thus x · y ∈ L(AI ; b̃).

Let x ∈ X and y ∈ U(AF ; c̃). Then AF (y) ⪰ c̃. Since A is an interval-

valued neutrosophic near UP-filter of X, we have

AF (x · y) ⪰ AF (y) ⪰ c̃.

Thus x · y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are near UP-filters of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃),

and U(AF ; c̃) are either empty or near UP-filters of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and

x ∈ U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and

U(AF ;AF (x)) are near UP-filters ofX. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)),

and 0 ∈ U(AF ;AF (x)). Thus AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), and AF (0) ⪰
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AF (x).

Let x, y ∈ X. Then y ∈ U(AT ;AT (y)) ̸= ∅. By assumption, we have

U(AT ;AT (y)) is a near UP-filter of X. Then x · y ∈ U(AT ;AT (y)). Thus AT (x ·

y) ⪰ AT (y).

Let x, y ∈ X. Then y ∈ L(AI ;AI(y)) ̸= ∅. By assumption, we have

L(AI ;AI(y)) is a near UP-filter of X. Then x ·y ∈ L(AI ;AI(y)). Thus AI(x ·y) ⪯

AI(y).

Let x, y ∈ X. Then y ∈ U(AF ;AF (y)) ̸= ∅. By assumption, we have

U(AF ;AF (y)) is a near UP-filter of X. Then x · y ∈ U(AF ;AF (y)). Thus AF (x ·

y) ⪰ AF (y).

Hence, A is an interval-valued neutrosophic near UP-filter of X.

Theorem 4.3.39 An IVNS A in X is an interval-valued neutrosophic UP-filter

of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃)

are either empty or UP-filters of X.

Proof. Assume that A is an interval-valued neutrosophic UP-filter of X. Let ã,

b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-

valued neutrosophic UP-filter of X, we have

AT (0) ⪰ AT (x) ⪰ ã, AI(0) ⪯ AI(y) ⪯ b̃, AF (0) ⪰ AF (z) ⪰ c̃.

Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).

Let x, y ∈ X be such that x · y, x ∈ U(AT ; ã). Then AT (x · y) ⪰ ã and



 

 

 
106

AT (x) ⪰ ã. Since A is an interval-valued neutrosophic UP-filter of X, we have

AT (y) ⪰ rmin{AT (x · y), AT (x)} ⪰ ã.

Thus y ∈ U(AT ; ã).

Let x, y ∈ X be such that x · y, x ∈ L(AI ; b̃). Then AI(x · y) ⪯ b̃ and

AI(x) ⪯ b̃. Since A is an interval-valued neutrosophic UP-filter of X, we have

AI(y) ⪯ rmax{AI(x · y), AI(x)} ⪯ b̃.

Thus y ∈ L(AI ; b̃).

Let x, y ∈ X be such that x · y, x ∈ U(AF ; c̃). Then AF (x · y) ⪰ c̃ and

AF (x) ⪰ c̃. Since A is an interval-valued neutrosophic UP-filter of X, we have

AF (y) ⪰ rmin{AF (x · y), AF (x)} ⪰ c̃.

Thus y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-filters of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃),

and U(AF ; c̃) are either empty or UP-filters of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and

x ∈ U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and

U(AF ;AF (x)) are UP-filters ofX. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)), and

0 ∈ U(AF ;AF (x)). Thus AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), and AF (0) ⪰ AF (x).

Let x, y ∈ X. By (2.0.17), we have AT (x·y) ⪰ rmin{AT (x·y), AT (x)} and

AT (x) ⪰ rmin{AT (x · y), AT (x)}. Thus x · y, x ∈ U(AT ; rmin{AT (x · y), AT (x)}).
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By assumption, we have U(AT ; rmin{AT (x ·y), AT (x)}) is a UP-filter of X. Then

y ∈ U(AT ; rmin{AT (x · y), AT (x)}). Thus AT (y) ⪰ rmin{AT (x · y), AT (x)}.

Let x, y ∈ X. By (2.0.17), we have AI(x·y) ⪯ rmax{AI(x·y), AI(x)} and

AI(x) ⪯ rmax{AI(x · y), AI(x)}. Thus x · y, x ∈ L(AI ; rmax{AI(x · y), AI(x)}).

By assumption, we have L(AI ; rmax{AI(x · y), AI(x)}) is a UP-filter of X. Then

y ∈ L(AI ; rmax{AI(x · y), AI(x)}). Thus AI(y) ⪯ rmax{AI(x · y), AI(x)}.

Let x, y ∈ X. By (2.0.17), we have AF (x·y) ⪰ rmin{AF (x·y), AF (x)} and

AF (x) ⪰ rmin{AF (x · y), AF (x)}. Thus x · y, x ∈ U(AF ; rmin{AF (x · y), AF (x)}).

By assumption, we have U(AF ; rmin{AF (x ·y), AF (x)}) is a UP-filter of X. Then

y ∈ U(AF ; rmin{AF (x · y), AF (x)}). Thus AF (y) ⪰ rmin{AF (x · y), AF (x)}.

Hence, A is an interval-valued neutrosophic UP-filter of X.

Theorem 4.3.40 An IVNS A in X is an interval-valued neutrosophic UP-ideal

of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃)

are either empty or UP-ideals of X.

Proof. Assume that A is an interval-valued neutrosophic UP-ideal of X. Let

ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-

valued neutrosophic UP-ideal of X, we have

AT (0) ⪰ AT (x) ⪰ ã, AI(0) ⪯ AI(y) ⪯ b̃, AF (0) ⪰ AF (z) ⪰ c̃.

Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).

Let x, y, z ∈ X be such that x·(y·z), y ∈ U(AT ; ã). Then AT (x·(y·z)) ⪰ ã

and AT (y) ⪰ ã. Since A is an interval-valued neutrosophic UP-ideal of X, we
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have

AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)} ⪰ ã.

Thus x · z ∈ U(AT ; ã).

Let x, y, z ∈ X be such that x ·(y ·z), y ∈ L(AI ; b̃). Then AI(x ·(y ·z)) ⪯ b̃

and AI(y) ⪯ b̃. SinceA is an interval-valued neutrosophic UP-ideal of X, we have

AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)} ⪯ b̃.

Thus x · z ∈ L(AI ; b̃).

Let x, y, z ∈ X be such that x·(y·z), y ∈ U(AF ; c̃). Then AF (x·(y·z)) ⪰ c̃

and AF (y) ⪰ c̃. Since A is an interval-valued neutrosophic UP-ideal of X, we

have

AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)} ⪰ c̃.

Thus x · z ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-ideals of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃),

and U(AF ; c̃) are either empty or UP-ideals of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and

x ∈ U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and

U(AF ;AF (x)) are UP-ideals ofX. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)), and

0 ∈ U(AF ;AF (x)). Thus AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), and AF (0) ⪰ AF (x).

Let x, y ∈ X. By (2.0.17), we have AT (x · (y · z)) ⪰ rmin{AT (x · (y ·
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z)), AT (y)} and AT (y) ⪰ rmin{AT (x · (y · z)), AT (y)}. Thus x · (y · z), y ∈

U(AT ; rmin{AT (x · (y · z)), AT (y)}). By assumption, we have U(AT ; rmin{AT (x ·

(y·z)), AT (y)}) is a UP-ideal ofX. Then x·z ∈ U(AT ; rmin{AT (x·(y·z)), AT (y)}).

Thus AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)}.

Let x, y ∈ X. By (2.0.17), we have AI(x · (y · z)) ⪯ rmax{AI(x ·

(y · z)), AI(y)} and AI(y) ⪯ rmax{AI(x · (y · z)), AI(y)}. Thus x · (y · z), y ∈

L(AI ; rmax{AI(x · (y · z)), AI(y)}). By assumption, we have L(AI ; rmax{AI(x ·

(y ·z)), AI(x)}) is a UP-ideal of X. Then x·z ∈ L(AI ; rmax{AI(x·(y ·z)), AI(y)}).

Thus AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)}.

Let x, y ∈ X. By (2.0.17), we have AF (x · (y · z)) ⪰ rmin{AF (x · (y ·

z)), AF (y)} and AF (y) ⪰ rmin{AF (x · (y · z)), AF (y)}. Thus x · (y · z), y ∈

U(AF ; rmin{AF (x · (y · z)), AF (y)}). By assumption, we have U(AF ; rmin{AF (x ·

(y·z)), AF (y)}) is a UP-ideal ofX. Then x·z ∈ U(AF ; rmin{AF (x·(y·z)), AF (y)}).

Thus AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X.

Theorem 4.3.41 An IVNS A in X is an interval-valued neutrosophic strong UP-

ideal if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets E(AT ;AT (0)), E(AI ;AI(0)),

and E(AF ;AF (0)) are strong UP-ideals of X.

Proof. Assume that A is an interval-valued neutrosophic strong UP-ideal of X.

By Theorem 4.3.13, we haveA is constant, that is, AT , AI , AF are constant. Thus

(∀x ∈ X)


AT (x) = AT (0)

AI(x) = AI(0)

AF (x) = AF (0)

 .

Hence, E(AT ;AT (0)) = X,E(AI ;AI(0)) = X, and E(AF ;AF (0)) = X and so

E(AT ;AT (0)), E(AI ;AI(0)), and E(AF ;AF (0)) are strong UP-ideals of X.
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Conversely, assume that E(AT ;AT (0)), E(AI ;AI(0)), and E(AF ;AF (0))

are strong UP-ideals of X. Then E(AT ;AT (0)) = X,E(AI ;AI(0)) = X, and

E(AF ;AF (0)) = X and so

(∀x ∈ X)


AT (x) = AT (0)

AI(x) = AI(0)

AF (x) = AF (0)

 .

Thus AT , AI , AF are constant, that is, A is constant. By Theorem 4.3.13, we

have A is an interval-valued neutrosophic strong UP-ideal of X.

4.4 Neutrosophic cubic sets in UP-algebras

In this section, we introduce the mixed concepts of neutrosophic cu-

bic UP-subalgebras, neutrosophic cubic near UP-filters, neutrosophic cubic UP-

filters, neutrosophic cubic UP-ideals, and neutrosophic cubic strong UP-ideals of

UP-algebras, provide the necessary examples, investigate their properties, and

prove their generalizations.

Definition 4.4.1 A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-

subalgebra of X if it holds the following conditions:

(∀x, y ∈ X)


AT (x · y) ⪰ rmin{AT (x), AT (y)}

AI(x · y) ⪯ rmax{AI(x), AI(y)}

AF (x · y) ⪰ rmin{AF (x), AF (y)}

 (4.4.1)

and

(∀x, y ∈ X)


λT (x · y) ≤ max{λT (x), λT (y)}

λI(x · y) ≥ min{λI(x), λI(y)}

λF (x · y) ≤ max{λF (x), λF (y)}

 . (4.4.2)
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Proposition 4.4.2 If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X,

then

(∀x ∈ X)


AT (0) ⪰ AT (x)

AI(0) ⪯ AI(x)

AF (0) ⪰ AF (x)

 (4.4.3)

and

(∀x ∈ X)


λT (0) ≤ λT (x)

λI(0) ≥ λI(x)

λF (0) ≤ λF (x)

 . (4.4.4)

Proof. Let A = (A,Λ) be a neutrosophic cubic UP-subalgebra of X. By (3.0.1)

and (2.0.15), we have

(∀x ∈ X)



AT (0) = AT (x · x) ⪰ rmin{AT (x), AT (x)} = AT (x)

AI(0) = AI(x · x) ⪯ rmax{AI(x), AI(x)} = AI(x)

AF (0) = AF (x · x) ⪰ rmin{AF (x), AF (x)} = AF (x)

λT (0) = λT (x · x) ≤ max{λT (x), λT (x)} = λT (x)

λI(0) = λI(x · x) ≥ min{λI(x), λI(x)} = λI(x)

λF (0) = λF (x · x) ≤ max{λF (x), λF (x)} = λF (x)


.

Example 4.4.3 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0
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and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 3 4

2 0 0 0 3 4

3 0 0 0 0 4

4 0 0 0 0 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)

0 ([1, 1], [0, 0.3], [0.7, 1]) (0, 1, 0)

1 ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) (0.3, 0.2, 0.4)

2 ([0.4, 0.8], [0.1, 0.4], [0.5, 0.7]) (0.5, 0.6, 0.2)

3 ([0.3, 0.4], [0.8, 0.9], [0.2, 0.3]) (0.7, 0.8, 0.7)

4 ([0.7, 0.8], [0.2, 0.4], [0.6, 0.7]) (0.5, 0.4, 0.8)

Then A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

Definition 4.4.4 A NCS A = (A,Λ) in X is called a neutrosophic cubic near

UP-filter of X if it holds the following conditions: (4.4.3), (4.4.4),

(∀x, y ∈ X)


AT (x · y) ⪰ AT (y)

AI(x · y) ⪯ AI(y)

AF (x · y) ⪰ AF (y)

 (4.4.5)

and

(∀x, y ∈ X)


λT (x · y) ≤ λT (y)

λI(x · y) ≥ λI(y)

λF (x · y) ≤ λF (y)

 . (4.4.6)
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Example 4.4.5 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 2 4

2 0 0 0 1 4

3 0 0 0 0 4

4 0 1 2 3 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)

0 ([0.9, 1], [0, 0.1], [1, 1]) (0, 0.9, 0.1)

1 ([0.6, 0.8], [0.1, 0.3], [0.6, 0.8]) (0.3, 0.8, 0.2)

2 ([0.5, 0.6], [0.3, 0.4], [0.5, 0.7]) (0.5, 0.7, 0.6)

3 ([0.4, 0.6], [0.5, 0.6], [0.4, 0.6]) (0.6, 0.3, 0.7)

4 ([0.1, 0.7], [0.8, 0.9], [0.1, 0.3]) (0.2, 0.4, 0.5)

Then A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Definition 4.4.6 A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-

filter of X if it holds the following conditions: (4.4.3), (4.4.4),

(∀x, y ∈ X)


AT (y) ⪰ rmin{AT (x · y), AT (x)}

AI(y) ⪯ rmax{AI(x · y), AI(x)}

AF (y) ⪰ rmin{AF (x · y), AF (x)}

 (4.4.7)
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and

(∀x, y ∈ X)


λT (y) ≤ max{λT (x · y), λT (x)}

λI(y) ≥ min{λI(x · y), λI(x)}

λF (y) ≤ max{λF (x · y), λF (x)}

 . (4.4.8)

Example 4.4.7 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 3 3

3 0 1 2 0 3

4 0 1 2 0 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)

0 ([0.9, 1], [0, 0.1], [0.8, 0.9]) (0, 1, 0.1)

1 ([0.5, 0.8], [0.2, 0.3], [0.6, 0.7]) (0.2, 0.7, 0.2)

2 ([0.3, 0.7], [0.4, 0.5], [0.5, 0.6]) (0.5, 0.5, 0.9)

3 ([0.1, 0.4], [0.7, 0.9], [0.2, 0.4]) (0.7, 0.4, 0.3)

4 ([0.1, 0.4], [0.7, 0.9], [0.2, 0.4]) (0.7, 0.4, 0.3)

Then A = (A,Λ) is a neutrosophic cubic UP-filter of X.

Definition 4.4.8 A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-
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ideal of X if it holds the following conditions: (4.4.3), (4.4.4),

(∀x, y, z ∈ X)


AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)}

AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)}

AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)}

 (4.4.9)

and

(∀x, y, z ∈ X)


λT (x · z) ≤ max{λT (x · (y · z)), λT (y)}

λI(x · z) ≥ min{λI(x · (y · z)), λI(y)}

λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}

 . (4.4.10)

Example 4.4.9 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 0 0 0 4

3 0 0 2 0 4

4 0 0 0 0 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)

0 ([0.9, 1], [0.1, 0.3], [0.8, 0.9]) (0, 1, 0)

1 ([0.7, 0.9], [0.3, 0.5], [0.5, 0.9]) (0.3, 0.6, 0.2)

2 ([0.6, 0.8], [0.4, 0.7], [0.4, 0.6]) (0.5, 0.5, 0.7)

3 ([0.6, 0.9], [0.3, 0.6], [0.5, 0.8]) (0.4, 0.6, 0.4)

4 ([0.3, 0.5], [0.5, 0.9], [0.4, 0.5]) (0.6, 0.2, 0.9)
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Then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Definition 4.4.10 A NCS A = (A,Λ) in X is called a neutrosophic cubic strong

UP-ideal of X if it holds the following conditions: (4.4.3), (4.4.4),

(∀x, y, z ∈ X)


AT (x) ⪰ rmin{AT ((z · y) · (z · x)), AT (y)}

AI(x) ⪯ rmax{AI((z · y) · (z · x)), AI(y)}

AF (x) ⪰ rmin{AF ((z · y) · (z · x)), AF (y)}

 (4.4.11)

and

(∀x, y, z ∈ X)


λT (x) ≤ max{λT ((z · y) · (z · x)), λT (y)}

λI(x) ≥ min{λI((z · y) · (z · x)), λI(y)}

λF (x) ≤ max{λF ((z · y) · (z · x)), λF (y)}

 . (4.4.12)

Example 4.4.11 Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0

and a binary operation · defined by the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 4

2 0 1 0 3 4

3 0 1 0 0 4

4 0 1 0 3 0
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We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)

0 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

1 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

2 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

3 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

4 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

Then A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Theorem 4.4.12 A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra

(resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutro-

sophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if and only if the

IVNS A is an interval-valued neutrosophic UP-subalgebra (resp., interval-valued

neutrosophic near UP-filter, interval-valued neutrosophic UP-filter, interval-valued

neutrosophic UP-ideal, interval-valued neutrosophic strong UP-ideal) of X and

the NS Λ is a special neutrosophic UP-subalgebra (resp., special neutrosophic

near UP-filter, special neutrosophic UP-filter, special neutrosophic UP-ideal, spe-

cial neutrosophic strong UP-ideal) of X.

Proof. It is straightforward by Definitions 4.1.1 and 4.2.1.

Theorem 4.4.13 A NCS A = (A,Λ) in X is constant if and only if it is a

neutrosophic cubic strong UP-ideal of X.

Proof. Assume that A = (A,Λ) is a constant neutrosophic cubic set in X. Then

AT (x) = AT (0), AI(x) = AI(0), AF (x) = AF (0), λT (x) = λT (0), λI(x) = λI(0),

and λF (x) = λF (0) for all x ∈ X. Then for all x ∈ X,AT (0) ⪰ AT (x), AI(0) ⪯

AI(x), AF (0) ⪰ AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x), and λF (0) ≤ λF (x), and
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for all x, y, z ∈ X,

rmin{AT ((z · y) · (z · x)), AT (y)} = rmin{AT (0), AT (0)}

= AT (0) ((2.0.15))

= AT (x),

rmax{AI((z · y) · (z · x)), AI(y)} = rmax{AI(0), AI(0)}

= AI(0) ((2.0.15))

= AI(x),

rmin{AF ((z · y) · (z · x)), AF (y)} = rmin{AF (0), AF (0)}

= AF (0) ((2.0.15))

= AF (x),

max{λT ((z · y) · (z · x)), λT (y)} = max{λT (0), λT (0)}

= λT (0)

= λT (x),

min{λI((z · y) · (z · x)), λI(y)} = min{λI(0), λI(0)}

= λI(0)

= λI(x),

max{λF ((z · y) · (z · x)), λF (y)} = max{λF (0), λF (0)}

= λF (0)

= λF (x).

Hence, A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Conversely, assume that A = (A,Λ) is a neutrosophic cubic strong UP-

ideal of X. Then for all x ∈ X,

AT (x) ⪰ rmin{AT ((x · 0) · (x · x)), AT (0)}



 

 

 
119

= rmin{AT (0 · (x · x)), AT (0)} ((UP-3))

= rmin{AT (x · x), AT (0)} ((UP-2))

= rmin{AT (0), AT (0)} ((3.0.1))

= AT (0) ((2.0.15))

⪰ AT (x),

AI(x) ⪯ rmax{AI((x · 0) · (x · x)), AI(0)}

= rmax{AI(0 · (x · x)), AI(0)} ((UP-3))

= rmax{AI(x · x), AI(0)} ((UP-2))

= rmax{AI(0), AI(0)} ((3.0.1))

= AI(0) ((2.0.15))

⪯ AI(x),

AF (x) ⪰ rmin{AF ((x · 0) · (x · x)), AF (0)}

= rmin{AF (0 · (x · x)), AF (0)} ((UP-3))

= rmin{AF (x · x), AF (0)} ((UP-2))

= rmin{AF (0), AF (0)} ((3.0.1))

= AF (0) ((2.0.15))

⪰ AF (x),

λT (x) ≤ max{λT ((x · 0) · (x · x)), λT (0)}

= max{λT (0 · (x · x)), λT (0)} ((UP-3))

= max{λT (x · x), λT (0)} ((UP-2))

= max{λT (0), λT (0)} ((3.0.1))

= λT (0)

≤ λT (x),

λI(x) ≥ min{λI((x · 0) · (x · x)), λI(0)}

= min{λI(0 · (x · x)), λI(0)} ((UP-3))
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= min{λI(x · x), λI(0)} ((UP-2))

= min{λI(0), λI(0)} ((3.0.1))

= λI(0)

≥ λI(x),

λF (x) ≤ max{λF ((x · 0) · (x · x)), λF (0)}

= max{λF (0 · (x · x)), λF (0)} ((UP-3))

= max{λF (x · x), λF (0)} ((UP-2))

= max{λF (0), λF (0)} ((3.0.1))

= λF (0)

≤ λF (x).

Thus AT (0) = AT (x), AI(0) = AI(x), AF (0) = AF (x), λT (0) = λT (x), λI(0) =

λI(x), and λF (0) = λF (x) for all x ∈ X. Hence, A = (A,Λ) is constant.

Theorem 4.4.14 Every neutrosophic cubic strong UP-ideal of X is a neutro-

sophic cubic UP-ideal.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Then for all x ∈ X,AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), AF (0) ⪰ AF (x), λT (0) ≤

λT (x), λI(0) ≥ λI(x), and λF (0) ≤ λF (x). Let x, y, z ∈ X. Then

AT (x · z) = AT (y) ⪰ rmin{AT (x · (y · z)), AT (y)}, ((2.0.17))

AI(x · z) = AI(y) ⪯ rmax{AT (x · (y · z)), AT (y)}, ((2.0.17))

AF (x · z) = AF (y) ⪰ rmin{AF (x · (y · z)), AF (y)}, ((2.0.17))

λT (x · z) = AT (y) ≤ max{λT (x · (y · z)), λT (y)},

λI(x · z) = AI(y) ≥ min{λI(x · (y · z)), λI(y)},

λF (x · z) = AF (y) ≤ max{λF (x · (y · z)), λF (y)}.
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Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

The following example show that the converse of Theorem 4.4.14 is not

true.

Example 4.4.15 From Example 4.4.9, we have A = (A,Λ) is a neutrosophic

cubic UP-ideal of X. Since λF (3) = 0.6 > 0.3 = max{λF ((2 · 0) · (2 · 3)), λF (0)},

we have A = (A,Λ) is not a neutrosophic cubic strong UP-ideal of X.

Theorem 4.4.16 Every neutrosophic cubic UP-ideal of X is a neutrosophic cubic

UP-filter.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-ideal of X. Then for

all x ∈ X,AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), AF (0) ⪰ AF (x), λT (0) ≤ λT (x), λI(0)

≥ λI(x), and λF (0) ≤ λF (x). Let x, y ∈ X. Then

AT (y) = AT (0 · y) ((UP-2))

⪰ rmin{AT (0 · (x · y)), AT (x)}

= rmin{AT (x · y), AT (x)}, ((UP-2))

AI(y) = AI(0 · y) ((UP-2))

⪯ rmax{AI(0 · (x · y)), AI(x)}

= rmax{AI(x · y), AI(x)}, ((UP-2))

AF (y) = AF (0 · y) ((UP-2))

⪰ rmin{AF (0 · (x · y)), AF (x)}

= rmin{AF (x · y), AF (x)}, ((UP-2))

λT (y) = λT (0 · y) ((UP-2))

≤ max{λT (0 · (x · y)), λT (x)}

= max{λT (x · y), λT (x)}, ((UP-2))

λI(y) = λI(0 · y) ((UP-2))
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≥ min{λI(0 · (x · y)), λI(x)}

= max{λI(x · y), λI(x)}, ((UP-2))

λF (y) = λF (0 · y) ((UP-2))

≤ max{λF (0 · (x · y)), λF (x)}

= max{λF (x · y), λF (x)}. ((UP-2))

Hence, A = (A,Λ) is a neutrosophic cubic UP-filter of X.

The following example show that the converse of Theorem 4.4.16 is not

true.

Example 4.4.17 From Example 4.4.7, we have A = (A,Λ) is a neutrosophic

cubic UP-filter of X. Since AF (3 · 4) = [0.2, 0.4] ⪰̸ [0.5, 0.6] = rmin{AF (3 · (2 ·

4)), AF (2)}, we have A = (A,Λ) is not a neutrosophic cubic UP-ideal of X.

Theorem 4.4.18 Every neutrosophic cubic UP-filter of X is a neutrosophic cubic

near UP-filter.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-filter of X. Then for

all x ∈ X,AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), AF (0) ⪰ AF (x), λT (0) ≤ λT (x), λI(0)

≥ λI(x), and λF (0) ≤ λF (x). Let for all x, y ∈ X. Then

AT (x · y) ⪰ rmin{AT (y · (x · y)), AT (y)}

= rmin{AT (0), AT (y)} ((3.0.5))

= AT (y),

AI(x · y) ⪯ rmax{AI(y · (x · y)), AI(y)}

= rmax{AI(0), AI(y)} ((3.0.5))

= AI(y),

AF (x · y) ⪰ rmin{AF (y · (x · y)), AF (y)}



 

 

 
123

= rmin{AF (0), AF (y)} ((3.0.5))

= AF (y),

λT (x · y) ≤ max{λT (y · (x · y)), λT (y)}

= max{λT (0), λT (y)} ((3.0.5))

= λT (y),

λI(x · y) ≥ min{λI(y · (x · y)), λI(y)}

= min{λI(0), λI(y)} ((3.0.5))

= λI(y),

λF (x · y) ≤ max{λF (y · (x · y)), λF (y)}

= max{λF (0), λF (y)} ((3.0.5))

= λF (y).

Hence, A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

The following example show that the converse of Theorem 4.4.18 is not

true.

Example 4.4.19 From Example 4.4.5, we have A = (A,Λ) is a neutrosophic

cubic near UP-filter of X. Since AT (2) = [0.5, 0.6] ⪰̸ [0.6, 0.8] = rmin{AT (1 ·

2), AT (1)}, we have A = (A,Λ) is not a neutrosophic cubic UP-filter of X.

Theorem 4.4.20 Every neutrosophic cubic near UP-filter of X is a neutrosophic

cubic UP-subalgebra.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Then for all x ∈ X,AT (0) ⪰ AT (x), AI(0) ⪯ AI(x), AF (0) ⪰ AF (x), λT (0) ≤

λT (x), λI(0) ≥ λI(x), and λF (0) ≤ λF (x). Let x, y ∈ X. By (2.0.15), we have

AT (x · y) ⪰ AT (y) ⪰ rmin{AT (x), AT (y)},
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AI(x · y) ⪯ AI(y) ⪯ rmax{AI(x), AI(y)},

AF (x · y) ⪰ AF (y) ⪰ rmin{AF (x), AF (y)},

λT (x · y) ≤ λT (y) ≤ max{λT (x), λT (y)},

λI(x · y) ≥ λI(y) ≥ min{λI(x), λI(y)},

λF (x · y) ≤ λF (y) ≤ max{λF (x), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

The following example show that the converse of Theorem 4.4.20 is not

true.

Example 4.4.21 From Example 4.4.3, we have A = (A,Λ) is a neutrosophic

cubic UP-subalgebra of X. Since λI(1 · 2) = 0.2 < 0.6 = λI(2), we have A =

(A,Λ) is not a neutrosophic cubic near UP-filter of X.

Theorem 4.4.22 If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X

satisfying the following condition:

(∀x, y ∈ X)



x · y ̸= 0 ⇒



AT (x) ⪰ AT (y)

AI(x) ⪯ AI(y)

AF (x) ⪰ AF (y)

λT (x) ≤ λT (y)

λI(x) ≥ λI(y)

λF (x) ≤ λF (y)



, (4.4.13)

then A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X

satisfying the condition (4.4.13). By Proposition 4.4.2, we have A satisfies the
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conditions (4.4.3) and (4.4.4). Next, let x, y ∈ X.

Case 1: x · y = 0. Then

AT (x · y) = AT (0) ⪰ AT (y), AI(x · y) = AI(0) ⪯ AI(y),

AF (x · y) = AF (0) ⪰ AF (y), λT (x · y) = λT (0) ≤ λT (y),

λI(x · y) = λI(0) ≥ λI(y), λF (x · y) = λF (0) ≤ λF (y).

Case 2: x · y ̸= 0. Then

AT (x · y) ⪰ rmin{AT (x), AT (y)} = AT (y),

AI(x · y) ⪯ rmax{AI(x), AI(y)} = AI(y),

AF (x · y) ⪰ rmin{AF (x), AF (y)} = AF (y),

λT (x · y) ≤ max{λT (x), λT (y)} = λT (y),

λI(x · y) ≥ min{λI(x), λI(y)} = λI(y),

λF (x · y) ≤ max{λF (x), λF (y)} = λF (y).

Hence, A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Theorem 4.4.23 If A = (A,Λ) is a neutrosophic cubic near UP-filter of X

satisfying the following condition:

AT = AI = AF , λT = λI = λF , (4.4.14)

then A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic near UP-filter of X

satisfying the condition (4.4.14). Then A satisfies the conditions (4.4.3) and
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(4.4.4). Let x ∈ X. Then

AT (0) ⪰ AT (x) = AI(x) ⪰ AI(0) = AT (0)

AI(0) ⪯ AI(x) = AT (x) ⪯ AT (0) = AI(0)

AF (0) ⪰ AF (x) = AI(x) ⪰ AI(0) = AF (0)

λT (0) ≤ λT (x) = λI(x) ≤ λI(0) = λT (0)

λI(x) ≥ λI(x) = λT (x) ≥ λT (x) = λI(x)

λF (x) ≤ λF (x) = λI(x) ≤ λI(x) = λF (x)

Thus AT (0) = AT (x), AI(0) = AI(x), AF (0) = AF (x), λT (0) = λT (x), λI(x) =

λI(x), and λF (x) = λF (x), that is, A is constant. By Theorem 4.4.13, we have

A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Theorem 4.4.24 If A = (A,Λ) is a neutrosophic cubic UP-filter of X satisfying

the following condition:

(∀x, y, z ∈ X)



AT (y · (x · z)) = AT (x · (y · z))

AI(y · (x · z)) = AI(x · (y · z))

AF (y · (x · z)) = AF (x · (y · z))

λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))


, (4.4.15)

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-filter of X satisfying

the condition (4.4.15). Then A satisfies the conditions (4.4.3) and (4.4.4). Next,
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let x, y, z ∈ X. Then

AT (x · z) ⪰ rmin{AT (y · (x · z)), AT (y)}

= rmin{AT (x · (y · z)), AT (y)},

AI(x · z) ⪯ rmax{AI(y · (x · z)), AI(y)}

= rmax{AI(x · (y · z)), AI(y)},

AF (x · z) ⪰ rmin{AF (y · (x · z)), AF (y)}

= rmin{AF (x · (y · z)), AF (y)},

λT (x · z) ≤ max{λT (y · (x · z)), λT (y)}

= max{λT (x · (y · z)), λT (y)},

λI(x · z) ≥ min{λI(y · (x · z)), λI(y)}

= min{λI(x · (y · z)), λI(y)},

λF (x · z) ≤ max{λF (y · (x · z)), λF (y)}

= max{λF (x · (y · z)), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Theorem 4.4.25 If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (z) ⪰ rmin{AT (x), AT (y)}

AI(z) ⪯ rmax{AI(x), AI(y)}

AF (z) ⪰ rmin{AF (x), AF (y)}

λT (z) ≤ max{λT (x), λT (y)}

λI(z) ≥ min{λI(x), λI(y)}

λF (z) ≤ max{λF (x), λF (y)}



, (4.4.16)

then A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.
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Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (4.4.16).

Let x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≥ x · y. It

follows from (4.4.16) that

AT (x · y) ⪰ rmin{AT (x), AT (y)}, AI(x · y) ⪯ rmax{AI(x), AI(y)},

AF (x · y) ⪰ rmin{AF (x), AF (y)}, λT (x · y) ≤ max{λT (x), λT (y)},

λI(x · y) ≥ min{λI(x), λI(y)}, λF (x · y) ≤ max{λF (x), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

Theorem 4.4.26 If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (y) ⪰ rmin{AT (z), AT (x)}

AI(y) ⪯ rmax{AI(z), AI(x)}

AF (y) ⪰ rmin{AF (z), AF (x)}

λT (y) ≤ max{λT (z), λT (x)}

λI(y) ≥ min{λI(z), λI(x)}

λF (y) ≤ max{λF (z), λF (x)}



, (4.4.17)

then A = (A,Λ) is a neutrosophic cubic UP-filter of X.

Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (4.4.17).

Let x ∈ X. By (UP-3), we have x · (x · 0) = 0, that is, x ≤ x · 0. It follows from

(4.4.17) that

AT (0) ⪰ rmin{AT (x), AT (x)} = AT (x),

AI(0) ⪯ rmax{AI(x), AI(x)} = AI(x),

AF (0) ⪰ rmin{AF (x), AF (x)} = AF (x),

λT (0) ≤ max{λT (x), λT (x)} = λT (x),



 

 

 
129

λI(0) ≥ min{λI(x), λI(x)} = λI(x),

λF (0) ≤ max{λF (x), λF (x)} = λF (x).

Next, let x, y ∈ X. By (3.0.1), we have (x · y) · (x · y) = 0, that is, x · y ≥ x · y.

It follows from (4.4.17) that

AT (y) ⪰ rmin{AT (x · y), AT (x)}, AI(y) ⪯ rmax{AI(x · y), AI(x)},

AF (y) ⪰ rmin{AF (x · y), AF (x)}, λT (y) ≤ max{λT (x · y), λT (x)},

λI(y) ≥ min{λI(x · y), λI(x)}, λF (y) ≤ max{λF (x · y), λF (x)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-filter of X.

Theorem 4.4.27 If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀a, x, y, z ∈ X)



a ≤ x · (y · z) ⇒



AT (x · z) ⪰ rmin{AT (a), AT (y)}

AI(x · z) ⪯ rmax{AI(a), AI(y)}

AF (x · z) ⪰ rmin{AF (a), AF (y)}

λT (x · z) ≤ max{λT (a), λT (y)}

λI(x · z) ≥ min{λI(a), λI(y)}

λF (x · z) ≤ max{λF (a), λF (y)}



,

(4.4.18)

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (4.4.18).

Let x ∈ X. By (UP-3), we have x · (0 · (x · 0)) = 0, that is, x ≤ 0 · (x · 0). It

follows from (4.4.18) that

AT (0) = AT (0 · 0) ⪰ rmin{AT (x), AT (x)} = AT (x), ((UP-2))

AI(0) = AI(0 · 0) ⪯ rmax{AI(x), AI(x)} = AI(x), ((UP-2))
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AF (0) = AF (0 · 0) ⪰ rmin{AF (x), AF (x)} = AF (x), ((UP-2))

λT (0) = λT (0 · 0) ≤ max{λT (x), λT (x)} = λT (x), ((UP-2))

λI(0) = λI(0 · 0) ≥ min{λI(x), λI(x)} = λI(x), ((UP-2))

λF (0) = λF (0 · 0) ≤ max{λF (x), λF (x)} = λF (x). ((UP-2))

Next, let x, y, z ∈ X. By (3.0.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,

x · (y · z) ≥ x · (y · z). It follows from (4.4.18) that

AT (x · z) ⪰ rmin{AT (x · (y · z)), AT (y)},

AI(x · z) ⪯ rmax{AI(x · (y · z)), AI(y)},

AF (x · z) ⪰ rmin{AF (x · (y · z)), AF (y)},

λT (x · z) ≤ max{λT (x · (y · z)), λT (y)},

λI(x · z) ≥ min{λI(x · (y · z)), λI(y)},

λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Theorem 4.4.28 A NCS A = (A,Λ) in X satisfies the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (z) ⪰ AT (y)

AI(z) ⪯ AI(y)

AF (z) ⪰ AF (y)

λT (z) ≤ λT (y)

λI(z) ≥ λI(y)

λF (z) ≤ λF (y)



(4.4.19)

if and only if A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.
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Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (4.4.19).

Let x, y ∈ X. By (UP-3) and (3.0.1), we have x · 0 = 0, that is, x ≤ 0 = y · y. It

follows from (4.4.19) that

AT (x) ⪰ AT (y), AI(x) ⪯ AI(y), AF (x) ⪰ AF (y),

λT (x) ≤ λT (y), λI(x) ≥ λI(y), λF (x) ≤ λF (y).

Similarly,

AT (y) ⪰ AT (x), AI(y) ⪯ AI(x), AF (y) ⪰ AF (x),

λT (y) ≤ λT (x), λI(y) ≥ λI(x), λF (y) ≤ λF (x).

Then

AT (x) = AT (y), AI(x) = AI(y), AF (x) = AF (y),

λT (x) = λT (y), λI(x) = λI(y), λF (x) = λF (y).

Thus A is constant. By Theorem 4.4.13, we have A = (A,Λ) is a neutrosophic

cubic strong UP-ideal of X.

Then, we have the diagram of generalization of NCSs in UP-algebras as

shown in Figure 4.4.
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Figure 4.4: Neutrosophic cubic sets in UP-algebras

From the definitions of the NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in Section 4.2 and the IVNS

AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in Section 4.3, we will define the NCS A G[[ã, b̃, c̃], [α, β, γ]].

For any fixed numbers α+, α−, β+, β−, γ+, γ− ∈ [0, 1] such that α+ >

α−, β+ > β−, γ+ > γ−, for any fixed interval numbers ã+, ã−, b̃+, b̃−, c̃+, c̃− ∈

[[0, 1]] such that ã+ ≻ ã−, b̃+ ≻ b̃−, c̃+ ≻ c̃−, and a nonempty subset G of X, we

define the NCS A G[[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], [α

−,β+,γ−

α+,β−,γ+ ]] = (AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], GΛ[α

−,β+,γ−

α+,β−,γ+ ]) in X.

Combining Theorems 4.4.12, 4.2.29 - 4.2.33, and 4.1.31 - 4.1.35, we have

the following corollary.

Corollary 4.4.29 A NCS A G[[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], [α

−,β+,γ−

α+,β−,γ+ ]] in X is a neutrosophic cubic

UP-subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-

filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if

and only if a nonempty subset G of X is a UP-subalgebra (resp., near UP-filter,
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UP-filter, UP-ideal, strong UP-ideal) of X.

Next, we discuss the relationships among neutrosophic cubic UP-sub-

algebras (resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters,

neutrosophic cubic UP-ideals, neutrosophic cubic strong UP-ideals) of UP-algebras

and their level subsets.

Combining Theorems 4.4.12, 4.2.34 - 4.2.37, and 4.3.37 - 4.3.40, we have

the following corollary.

Corollary 4.4.30 A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra

(resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutro-

sophic cubic UP-ideal) of X if and only if for all [sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ] ∈

[[0, 1]] and tT , tI , tF ∈ [0, 1], the sets U(AT ; [sT1 , sT2 ]), L(AI ; [sI1 , sI2 ]),

U(AF ; [sF1 , sF2 ]), L(λT ; tT ), U(λI ; tI), and L(λF ; tF ) are either empty or UP-sub-

algebras (resp., near UP-filter, UP-filter, UP-ideal) of X.

Combining Theorems 4.4.12, 4.1.47, and 4.3.41, we have the following

corollary.

Corollary 4.4.31 A NCS A = (A,Λ) in X is a neutrosophic cubic strong

UP-ideal of X if and only if the sets E(AT ;AT (0)), E(AI ;AI(0)), E(AF ;AF (0)),

E(λT , λT (0)), E(λI , λI(0)), and E(λF , λF (0)) are strong UP-ideals of X.

4.5 Homomorphism of neutrosophic cubic sets in UP-algebras

In this section, the image and inverse image of neutrosophic cubic set

are defined and some results are studied.

Definition 4.5.1 Let f be mapping from a nonempty set X into a nonempty

set Y and A = (AT,I,F , λT,I,F ) be a NCS in X. Then the image of A under f is
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defined as a NCS f(A ) = (f(A)T,I,F , f(λ)T,I,F ) in Y , where

f(A)T (y) =

 rsupx∈f−1(y){AT (x)} if f−1(y) ̸= ∅,

[0, 0] otherwise,
(4.5.1)

f(A)I(y) =

 rinfx∈f−1(y){AI(x)} if f−1(y) ̸= ∅,

[1, 1] otherwise,
(4.5.2)

f(A)F (y) =

 rsupx∈f−1(y){AF (x)} if f−1(y) ̸= ∅,

[0, 0] otherwise,
(4.5.3)

f(λ)T (y) =

 infx∈f−1(y){λT (x)} if f−1(y) ̸= ∅,

1 otherwise,
(4.5.4)

f(λ)I(y) =

 supx∈f−1(y){λI(x)} if f−1(y) ̸= ∅,

0 otherwise,
(4.5.5)

f(λ)F (y) =

 infx∈f−1(y){λF (x)} if f−1(y) ̸= ∅,

1 otherwise.
(4.5.6)

Example 4.5.2 Let X = {0X , 1X , 2X} be a UP-algebra with a fixed element 0X

and a binary operation · defined by the following Cayley table:

· 0X 1X 2X

0X 0X 1X 2X

1X 0X 0X 1X

2X 0X 0X 0X

and let Y = {0Y , 1Y , 2Y } be a UP-algebra with a fixed element 0Y and a binary



 

 

 
135

operation ∗ defined by the following Cayley table:

∗ 0Y 1Y 2Y

0Y 0Y 1Y 2Y

1Y 0Y 0Y 2Y

2Y 0Y 0Y 0Y

We define a mapping f : X → Y as follows:

f(0X) = 0Y , f(1X) = 1Y , and f(2X) = 1Y .

We define a NCS A = (AT,I,F , λT,I,F ) in X with the tabular representation as

follows:

X A(x) Λ(x)

0X ([0.4, 0.7], [0.5, 0.7], [0.2, 0.4]) (0.1, 0.3, 0.4)

1X ([0.1, 0.2], [0.1, 0.5], [0.4, 0.5]) (0.3, 0.8, 0.4)

2X ([0.8, 0.9], [0.7, 0.8], [0.1, 0.6]) (0.1, 0.5, 0.7)

Then f(A ) = (f(A)T,I,F , f(λ)T,I,F ) in Y with the tabular representation as fol-

lows:

Y A(x) Λ(x)

0Y ([0.4, 0.7], [0.5, 0.7], [0.2, 0.4]) (0.1, 0.3, 0.4)

1Y ([0.8, 0.9], [0.1, 0.5], [0.4, 0.6]) (0.1, 0.8, 0.4)

2Y ([0, 0], [1, 1], [0, 0]) (1, 0, 1)

Hence, f(A ) = (f(A)T,I,F , f(λ)T,I,F ) is a NCS in Y .

Definition 4.5.3 Let f be mapping from a nonempty set X into a nonempty

set Y and A = (AT,I,F , λT,I,F ) be a NCS in Y . Then the inverse image of A is

defined as a NCS f−1(A ) = (f−1(A)T,I,F , f
−1(λ)T,I,F ) in X, where

(∀x ∈ X)(f−1(A)T,I,F (x) = AT,I,F (f(x))), (4.5.7)
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(∀x ∈ X)(f−1(λ)T,I,F (x) = λT,I,F (f(x))). (4.5.8)

Example 4.5.4 In Example 4.5.2, we have (X, ·, 0X) and (Y, ∗, 0Y ) are UP-

algebras. We define a mapping f : X → Y as follows:

f(0X) = 0Y , f(1X) = 1Y , and f(2X) = 1Y .

We define a NCS A = (AT,I,F , λT,I,F ) in Y with the tabular representation as

follows:

Y A(x) Λ(x)

0Y ([0.3, 0.7], [0.3, 0.5], [0.1, 0.4]) (0.5, 0.4, 0.7)

1Y ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)

2Y ([0.5, 0.9], [0.3, 0.5], [0.5, 0.8]) (0.3, 0.5, 0.4)

Then f−1(A ) = (f−1(A)T,I,F , f
−1(λ)T,I,F ) in X with the tabular representation

as follows:

X A(x) Λ(x)

0X ([0.3, 0.7], [0.3, 0.5], [0.1, 0.4]) (0.5, 0.4, 0.7)

1X ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)

2X ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)

Hence, f−1(A ) = (f−1(A)T,I,F , f
−1(λ)T,I,F ) is a NCS in X.

Definition 4.5.5 A NCS A = (AT,I,F , λT,I,F ) in X is said to be order preserving

if

(∀x, y ∈ X)

x ≤ y ⇒

 AT (x) ⪯ AT (y), AI(x) ⪰ AI(y), AF (x) ⪯ AF (y),

λT (x) ≥ λT (y), λI(x) ≤ λI(y), λF (x) ≥ λF (y)

 .

(4.5.9)

Lemma 4.5.6 Every neutrosophic cubic UP-filter (resp., neutrosophic cubic UP-

ideal, neutrosophic cubic strong UP-ideal) of X is order preserving.
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Proof. Assume that A = (AT,I,F , λT,I,F ) is a neutrosophic cubic UP-filter of X.

Let x, y ∈ X be such that x ≤ y in X. Then x · y = 0. Thus

AT (y) ⪰ rmin{AT (x · y), AT (x)} ((4.4.7))

= rmin{AT (0), AT (x)}

= AT (x), ((4.4.3),(2.0.23))

AI(y) ⪯ rmax{AI(x · y), AI(x)} ((4.4.7))

= rmin{AI(0), AI(x)}

= AI(x), ((4.4.3),(2.0.24))

AF (y) ⪰ rmin{AF (x · y), AF (x)} ((4.4.7))

= rmin{AF (0), AF (x)}

= AF (x), ((4.4.3),(2.0.23))

λT (y) ≤ max{λT (x · y), λT (x)} ((4.4.8))

= max{λT (0), λT (x)}

= λT (x), ((4.4.4))

λI(y) ≥ min{λI(x · y), λI(x)} ((4.4.8))

= min{λI(0), λI(x)}

= λI(x), ((4.4.4))

λF (y) ≤ max{λF (x · y), λF (x)} ((4.4.8))

= max{λF (0), λF (x)}

= λF (x). ((4.4.4))

Hence, A is order preserving.

Theorem 4.5.7 Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras, f : X → Y be a

UP-homomorphism, and A = (AT,I,F , λT,I,F ) be a NCS in Y . Then the following

statements hold:
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(1) If A is a neutrosophic cubic UP-subalgebra of Y , then the inverse image

f−1(A ) of A under f is a neutrosophic cubic UP-subalgebra of X.

(2) If A is a neutrosophic cubic near UP-filter of Y which is order preserving,

then the inverse image f−1(A ) of A under f is a neutrosophic cubic near

UP-filter of X.

(3) If A is a neutrosophic cubic UP-filter of Y , then the inverse image f−1(A )

of A under f is a neutrosophic cubic UP-filter of X.

(4) If A is a neutrosophic cubic UP-ideal of Y , then the inverse image f−1(A )

of A under f is a neutrosophic cubic UP-ideal of X.

(5) If A is a neutrosophic cubic strong UP-ideal of Y , then the inverse image

f−1(A ) of A under f is a neutrosophic cubic strong UP-ideal of X.

Proof. (1) Assume that A is a neutrosophic cubic UP-subalgebra of Y . Then for

all x, y ∈ X,

f−1(A)T (x · y) = AT (f(x · y)) ((4.5.7))

= AT (f(x) ∗ f(y))

⪰ rmin{AT (f(x)), AT (f(y))} ((4.4.1))

= rmin{f−1(A)T (x), f
−1(A)T (y)}, ((4.5.7))

f−1(A)I(x · y) = AI(f(x · y)) ((4.5.7))

= AI(f(x) ∗ f(y))

⪯ rmax{AI(f(x)), AI(f(y))} ((4.4.1))

= rmax{f−1(A)I(x), f
−1(A)I(y)}, ((4.5.7))

f−1(A)F (x · y) = AF (f(x · y)) ((4.5.7))

= AF (f(x) ∗ f(y))

⪰ rmin{AF (f(x)), AF (f(y))} ((4.4.1))
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= rmin{f−1(A)F (x), f
−1(A)F (y)}, ((4.5.7))

f−1(λ)T (x · y) = λT (f(x · y)) ((4.5.8))

= λT (f(x) ∗ f(y))

≤ max{λT (f(x)), λT (f(y))} ((4.4.2))

= max{f−1(λ)T (x), f
−1(λ)T (y)}, ((4.5.8))

f−1(λ)I(x · y) = λI(f(x · y)) ((4.5.8))

= λI(f(x) ∗ f(y))

≥ min{λI(f(x)), λI(f(y))} ((4.4.2))

= min{f−1(λ)I(x), f
−1(λ)I(y)}, ((4.5.8))

f−1(λ)F (x · y) = λF (f(x · y)) ((4.5.8))

= λF (f(x) ∗ f(y))

≤ max{λF (f(x)), λF (f(y))} ((4.4.2))

= max{f−1(λ)F (x), f
−1(λ)F (y)}. ((4.5.8))

Hence, f−1(A ) is a neutrosophic cubic UP-subalgebra of X.

(2) Assume that A is a neutrosophic cubic near UP-filter of Y which is

order preserving. By Theorem 3.0.8 (2) and (UP-3), we have for all x ∈ X,

f−1(A)T (0X) = AT (f(0X)) ⪰ AT (f(x)) = f−1(A)T (x),

f−1(A)I(0X) = AI(f(0X)) ⪯ AI(f(x)) = f−1(A)I(x),

f−1(A)F (0X) = AF (f(0X)) ⪰ AF (f(x)) = f−1(A)F (x),

f−1(λ)T (0X) = λT (f(0X)) ≤ λT (f(x)) = f−1(λ)T (x),

f−1(λ)I(0X) = λI(f(0X)) ≥ λI(f(x)) = f−1(λ)I(x),

f−1(λ)F (0X) = λF (f(0X)) ≤ λF (f(x)) = f−1(λ)F (x).



 

 

 
140

Let x, y ∈ X. Then

f−1(A)T (x · y) = AT (f(x · y)) ((4.5.7))

= AT (f(x) ∗ f(y))

⪰ AT (f(y)) ((4.4.5))

= f−1(A)T (y), ((4.5.7))

f−1(A)I(x · y) = AI(f(x · y)) ((4.5.7))

= AI(f(x) ∗ f(y))

⪯ AI(f(y)) ((4.4.5))

= f−1(A)I(y), ((4.5.7))

f−1(A)F (x · y) = AF (f(x · y)) ((4.5.7))

= AF (f(x) ∗ f(y))

⪰ AF (f(y)) ((4.4.5))

= f−1(A)F (y), ((4.5.7))

f−1(λ)T (x · y) = λT (f(x · y)) ((4.5.8))

= λT (f(x) ∗ f(y))

≤ λT (f(y)) ((4.4.6))

= f−1(λ)T (y), ((4.5.8))

f−1(λ)I(x · y) = λI(f(x · y)) ((4.5.8))

= λI(f(x) ∗ f(y))

≥ λI(f(y)) ((4.4.6))

= f−1(λ)I(y), ((4.5.8))

f−1(λ)F (x · y) = λF (f(x · y)) ((4.5.8))

= λF (f(x) ∗ f(y))

≤ λF (f(y)) ((4.4.6))
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= f−1(λ)F (y). ((4.5.8))

Hence, f−1(A ) is a neutrosophic cubic near UP-filter of X.

(3) Assume that A is a neutrosophic cubic UP-filter of Y . Then A is a

neutrosophic cubic near UP-filter of Y . By Lemma 4.5.6 and the proof of (2), we

have f−1(A ) satisfies the conditions (4.4.3) and (4.4.4). Let x, y ∈ X. Then

f−1(A)T (y) = AT (f(y)) ((4.5.7))

⪰ rmin{AT (f(x) ∗ f(y)), AT (f(x))} ((4.4.7))

= rmin{AT (f(x · y)), AT (f(x))}

= rmin{f−1(A)T (x · y), f−1(A)T (x)}, ((4.5.7))

f−1(A)I(y) = AI(f(y)) ((4.5.7))

⪯ rmax{AI(f(x) ∗ f(y)), AI(f(x))} ((4.4.7))

= rmax{AI(f(x · y)), AI(f(x))}

= rmax{f−1(A)I(x · y), f−1(A)I(x)}, ((4.5.7))

f−1(A)F (y) = AF (f(y)) ((4.5.7))

⪰ rmin{AF (f(x) ∗ f(y)), AF (f(x))} ((4.4.7))

= rmin{AF (f(x · y)), AF (f(x))}

= rmin{f−1(A)F (x · y), f−1(A)F (x)}, ((4.5.7))

f−1(λ)T (y) = λT (f(y)) ((4.5.8))

≤ max{λT (f(x) ∗ f(y)), λT (f(x))} ((4.4.8))

= max{λT (f(x · y)), λT (f(x))}

= max{f−1(λ)T (x · y), f−1(λ)T (x)}, ((4.5.8))

f−1(λ)I(y) = λI(f(y)) ((4.5.8))

≥ min{λI(f(x) ∗ f(y)), λI(f(x))} ((4.4.8))
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= min{λI(f(x · y)), λI(f(x))}

= min{f−1(λ)I(x · y), f−1(λ)I(x)}, ((4.5.8))

f−1(λ)F (y) = λF (f(y)) ((4.5.8))

≤ max{λF (f(x) ∗ f(y)), λF (f(x))} ((4.4.8))

= max{λF (f(x · y)), λF (f(x))}

= max{f−1(λ)F (x · y), f−1(λ)F (x)}. ((4.5.8))

Hence, f−1(A ) is a neutrosophic cubic UP-filter of X.

(4) Assume that A is a neutrosophic cubic UP-ideal of Y . Then A is a

neutrosophic cubic UP-filter of Y . By the proof of (3), we have f−1(A ) satisfies

the conditions (4.4.3) and (4.4.4). Let x, y, z ∈ X. Then

f−1(A)T (x · z) = AT (f(x · z)) ((4.5.7))

= AT (f(x) ∗ f(z))

⪰ rmin{AT (f(x) ∗ (f(y) ∗ f(z))), AT (f(y))} ((4.4.9))

= rmin{AT (f(x) ∗ (f(y · z))), AT (f(y))}

= rmin{AT (f(x · (y · z))), AT (f(y))}

= rmin{f−1(A)T (x · (y · z)), f−1(A)T (y)}, ((4.5.7))

f−1(A)I(x · z) = AI(f(x · z)) ((4.5.7))

= AI(f(x) ∗ f(z))

⪯ rmax{AI(f(x) ∗ (f(y) ∗ f(z))), AI(f(y))} ((4.4.9))

= rmax{AI(f(x) ∗ (f(y · z))), AI(f(y))}

= rmax{AI(f(x · (y · z))), AI(f(y))}

= rmax{f−1(A)I(x · (y · z)), f−1(A)I(y)}, ((4.5.7))

f−1(A)F (x · z) = AF (f(x · z)) ((4.5.7))
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= AF (f(x) ∗ f(z))

⪰ rmin{AF (f(x) ∗ (f(y) ∗ f(z))), AF (f(y))} ((4.4.9))

= rmin{AF (f(x) ∗ (f(y · z))), AF (f(y))}

= rmin{AF (f(x · (y · z))), AF (f(y))}

= rmin{f−1(A)F (x · (y · z)), f−1(A)F (y)}, ((4.5.7))

f−1(λ)T (x · z) = λT (f(x · z)) ((4.5.8))

= λT (f(x) ∗ f(z))

≤ max{λT (f(x) ∗ (f(y) ∗ f(z))), λT (f(y))} ((4.4.10))

= max{λT (f(x) ∗ (f(y · z))), λT (f(y))}

= max{λT (f(x · (y · z))), λT (f(y))}

= max{f−1(λ)T (x · (y · z)), f−1(λ)T (y)}, ((4.5.8))

f−1(λ)I(x · z) = λI(f(x · z)) ((4.5.8))

= λI(f(x) ∗ f(z))

≥ min{λI(f(x) ∗ (f(y) ∗ f(z))), λI(f(y))} ((4.4.10))

= min{λI(f(x) ∗ (f(y · z))), λI(f(y))}

= min{λI(f(x · (y · z))), λI(f(y))}

= min{f−1(λ)I(x · (y · z)), f−1(λ)I(y)}, ((4.5.8))

f−1(λ)F (x · z) = λF (f(x · z)) ((4.5.8))

= λF (f(x) ∗ f(z))

≤ max{λF (f(x) ∗ (f(y) ∗ f(z))), λF (f(y))} ((4.4.10))

= max{λF (f(x) ∗ (f(y · z))), λF (f(y))}

= max{λF (f(x · (y · z))), λF (f(y))}

= max{f−1(λ)F (x · (y · z)), f−1(λ)F (y)}. ((4.5.8))

Hence, f−1(A ) is a neutrosophic cubic UP-ideal of X.
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(5) Assume that A is a neutrosophic cubic strong UP-ideal of Y . Then

A is a neutrosophic cubic UP-ideal of Y . By the proof of (4), we have f−1(A )

satisfies the conditions (4.4.3) and (4.4.4). Let x, y, z ∈ X. Then

f−1(A)T (x) = AT (f(x)) ((4.5.7))

⪰ rmin{AT ((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), AT (f(y))} ((4.4.11))

= rmin{AT (f(z · y) ∗ f(z · x)), AT (f(y))}

= rmin{AT (f((z · y) · (z · x))), AT (f(y))}

= rmin{f−1(A)T ((z · y) · (z · x)), f−1(A)T (y)}, ((4.5.7))

f−1(A)I(x) = AI(f(x)) ((4.5.7))

⪯ rmax{AI((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), AI(f(y))} ((4.4.11))

= rmax{AI(f(z · y) ∗ f(z · x)), AI(f(y))}

= rmax{AI(f((z · y) · (z · x))), AI(f(y))}

= rmax{f−1(A)I((z · y) · (z · x)), f−1(A)I(y)}, ((4.5.7))

f−1(A)F (x) = AF (f(x)) ((4.5.7))

⪰ rmin{AF ((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), AF (f(y))} ((4.4.11))

= rmin{AF (f(z · y) ∗ f(z · x)), AF (f(y))}

= rmin{AF (f((z · y) · (z · x))), AF (f(y))}

= rmin{f−1(A)F ((z · y) · (z · x)), f−1(A)F (y)}, ((4.5.7))

f−1(λ)T (x) = λT (f(x)) ((4.5.8))

≤ max{λT ((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), λT (f(y))} ((4.4.12))

= max{λT (f(z · y) ∗ f(z · x)), λT (f(y))}

= max{λT (f((z · y) · (z · x))), λT (f(y))}

= max{f−1(λ)T ((z · y) · (z · x)), f−1(λ)T (y)}, ((4.5.8))

f−1(λ)I(x) = λI(f(x)) ((4.5.8))

≥ min{λI((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), λI(f(y))} ((4.4.12))
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= min{λI(f(z · y) ∗ f(z · x)), λI(f(y))}

= min{λI(f((z · y) · (z · x))), λI(f(y))}

= min{f−1(λ)I((z · y) · (z · x)), f−1(λ)I(y)}, ((4.5.8))

f−1(λ)F (x) = λF (f(x)) ((4.5.8))

≤ max{λF ((f(z) ∗ f(y)) ∗ (f(z) ∗ f(x))), λF (f(y))} ((4.4.12))

= max{λF (f(z · y) ∗ f(z · x)), λF (f(y))}

= max{λF (f((z · y) · (z · x))), λF (f(y))}

= max{f−1(λ)F ((z · y) · (z · x)), f−1(λ)F (y)}. ((4.5.8))

Hence, f−1(A ) is a neutrosophic cubic strong UP-ideal of X.

Definition 4.5.8 A NCS A = (AT,I,F , λT,I,F ) in X has NCS-property if for

any nonempty subset S of X, there exist elements αT,I,F , βT,I,F ∈ S (instead of

αT , αI , αF , βT , βI , βF ∈ S) such that

AT (αT ) = rsups∈S{AT (s)},

AI(αI) = rinfs∈S{AI(s)},

AF (αF ) = rsups∈S{AF (s)},

λT (βT ) = infs∈S{λT (s)},

λI(βI) = sups∈S{λI(s)}, and

λF (βF ) = infs∈S{λF (s)}.

Definition 4.5.9 Let X and Y be any two nonempty sets and let f : X → Y be

any function. A NCS A = (AT,I,F , λT,I,F ) in X is said to be f -invariant if

(∀x, y ∈ X)(f(x) = f(y) ⇒ AT,I,F (x) = AT,I,F (y), λT,I,F (x) = λT,I,F (y)).

(4.5.10)

Lemma 4.5.10 Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras and let f : X → Y
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be a UP-epimorphism. Let A = (AT,I,F , λT,I,F ) be an f -invariant NCS in X with

NCS-property. For any x, y ∈ Y , there exist elements αT,I,F , γT,I,F ∈ f−1(x) and

βT,I,F , ϕT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ y) = AT (αT · βT ), f(A)I(x ∗ y) = AI(αI · βI),

f(A)F (x ∗ y) = AF (αF · βF ),

f(λ)T (x ∗ y) = λT (γT · ϕT ), f(λ)I(x ∗ y) = λI(γI · ϕI),

f(λ)F (x ∗ y) = λF (γF · ϕF ).

Proof. Let x, y ∈ Y . Since f is surjective, we have f−1(x), f−1(y), and f−1(x · y)

are nonempty subsets of X. Since A has NCS-property, there exist elements

αT,I,F , γT,I,F ∈ f−1(x), βT,I,F , ϕT,I,F ∈ f−1(y), and aT,I,F , bT,I,F ∈ f−1(x ∗ y) such

that

f(A)T (x) = rsups∈f−1(x){AT (s)} = AT (αT ),

f(A)I(x) = rinfs∈f−1(x){AI(s)} = AI(αI),

f(A)F (x) = rsups∈f−1(x){AF (s)} = AF (αF ),

f(λ)T (x) = infs∈f−1(x){λT (s)} = λT (γT ),

f(λ)I(x) = sups∈f−1(x){λI(s)} = λI(γI),

f(λ)F (x) = infs∈f−1(x){λF (s)} = λF (γF ),

f(A)T (y) = rsups∈f−1(y){AT (s)} = AT (βT ),

f(A)I(y) = rinfs∈f−1(y){AI(s)} = AI(βI),

f(A)F (y) = rsups∈f−1(y){AF (s)} = AF (βF ),



 

 

 
147

f(λ)T (y) = infs∈f−1(y){λT (s)} = λT (ϕT ),

f(λ)I(y) = sups∈f−1(y){λI(s)} = λI(ϕI),

f(λ)F (y) = infs∈f−1(y){λF (s)} = λF (ϕF ),

and

f(A)T (x ∗ y) = rsups∈f−1(x∗y){AT (s)} = AT (aT ),

f(A)I(x ∗ y) = rinfs∈f−1(x∗y){AI(s)} = AI(aI),

f(A)F (x ∗ y) = rsups∈f−1(x∗y){AF (s)} = AF (aF ),

f(λ)T (x ∗ y) = infs∈f−1(x∗y){λT (s)} = λT (bT ),

f(λ)I(x ∗ y) = sups∈f−1(x∗y){λI(s)} = λI(bI),

f(λ)F (x ∗ y) = infs∈f−1(x∗y){λF (s)} = λF (bF ).

Since

f(aT ) = x ∗ y = f(αT ) ∗ f(βT ) = f(αT · βT ),

f(aI) = x ∗ y = f(αI) ∗ f(βI) = f(αI · βI),

f(aF ) = x ∗ y = f(αF ) ∗ f(βF ) = f(αF · βF ),

f(bT ) = x ∗ y = f(γT ) ∗ f(ϕT ) = f(γT · ϕT ),

f(bI) = x ∗ y = f(γI) ∗ f(ϕI) = f(γI · ϕI),

f(bF ) = x ∗ y = f(γF ) ∗ f(ϕF ) = f(γF · ϕF ),

and A is f -invariant, we have

f(A)T (x ∗ y) = AT (aT ) = AT (αT · βT ),

f(A)I(x ∗ y) = AI(aI) = AI(αI · βI),

f(A)F (x ∗ y) = AF (aF ) = AF (αF · βF ),
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f(λ)T (x ∗ y) = λT (bT ) = λT (γT · ϕT )

f(λ)I(x ∗ y) = λI(bI) = λI(γI · ϕI)

f(λ)F (x ∗ y) = λF (bTF ) = λF (γF · ϕF ).

Theorem 4.5.11 Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras, f : X → Y be a

UP-epimorphism, and A = (AT,I,F , λT,I,F ) be a NCS in X. Then the following

statements hold:

(1) If A is an f -invariant neutrosophic cubic UP-subalgebra of X with NCS-

property, then the image f(A ) of A under f is a neutrosophic cubic UP-

subalgebra of Y .

(2) If A is an f -invariant neutrosophic cubic near UP-filter of X with NCS-

property, then the image f(A ) of A under f is a neutrosophic cubic near

UP-filter of Y .

(3) If A is an f -invariant neutrosophic cubic UP-filter of X with NCS-property,

then the image f(A ) of A under f is a neutrosophic cubic UP-filter of Y .

(4) If A is an f -invariant neutrosophic cubic UP-ideal of X with NCS-property,

then the image f(A ) of A under f is a neutrosophic cubic UP-ideal of Y .

(5) If A is an f -invariant neutrosophic cubic strong UP-ideal of X with NCS-

property, then the image f(A ) of A under f is a neutrosophic cubic strong

UP-ideal of Y .

Proof. (1) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic

UP-subalgebra of X with NCS-property. Let x, y ∈ Y . Since f is surjective, we

have f−1(x), f−1(y), and f−1(x ∗ y) are nonempty. By Lemma 4.5.10, there exist
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elements αT,I,F , γT,I,F ∈ f−1(x) and βT,I,F , ϕT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ y) = AT (αT · βT ), f(A)I(x ∗ y) = AI(αI · βI),

f(A)F (x ∗ y) = AF (αF · βF ),

f(λ)T (x ∗ y) = λT (γT · ϕT ), f(λ)I(x ∗ y) = λI(γI · ϕI),

f(λ)F (x ∗ y) = λF (γF · ϕF ).

Then

f(A)T (x ∗ y) = AT (αT · βT )

⪰ rmin{AT (αT ), AT (βT )} ((4.4.1))

= rmin{f(A)T (x), f(A)T (y)},

f(A)I(x ∗ y) = AI(αI · βI)

⪯ rmax{AI(αI), AI(βI)} ((4.4.1))

= rmax{f(A)I(x), f(A)I(y)},

f(A)F (x ∗ y) = AF (αF · βF )

⪰ rmin{AF (αF ), AF (βF )} ((4.4.1))

= rmin{f(A)F (x), f(A)F (y)},

f(λ)T (x ∗ y) = λT (γT · ϕT )

≤ max{λT (γT ), λT (ϕT )} ((4.4.2))

= max{f(λ)T (x), f(λ)T (y)},

f(λ)I(x ∗ y) = λI(γI · ϕI)
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≥ min{λI(γI), λI(ϕI)} ((4.4.2))

= min{f(λ)I(x), f(λ)I(y)},

f(λ)F (x ∗ y) = λF (γF · ϕF )

≤ max{λF (γF ), λF (ϕF )} ((4.4.2))

= max{f(λ)F (x), f(λ)F (y)}.

Hence, f(A ) is a neutrosophic cubic UP-subalgebra of Y .

(2) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic

near UP-filter of X with NCS-property. By Theorem 3.0.8 (1), we have 0X ∈

f−1(0Y ) and so f−1(0Y ) ̸= ∅. Thus



f(A)T (0Y ) = rsups∈f−1(0Y ){AT (s)} ⪰ AT (0X)

f(A)I(0Y ) = rinfs∈f−1(0Y ){AI(s)} ⪯ AI(0X)

f(A)F (0Y ) = rsups∈f−1(0Y ){AF (s)} ⪰ AF (0X)

f(λ)T (0Y ) = infs∈f−1(0Y ){λT (s)} ≤ λT (0X)

f(λ)I(0Y ) = sups∈f−1(0Y ){λI(s)} ≥ λI(0X)

f(λ)F (0Y ) = infs∈f−1(0Y ){λF (s)} ≤ λF (0X)


. (4.5.11)

Let y ∈ Y . Since f is surjective, we have f−1(y) ̸= ∅. By (4.4.3) and (4.4.4), we

haveAT (0X) ⪰ AT (s), AI(0X) ⪯ AI(s), AF (0X) ⪰ AF (s), λT (0X) ≤ λT (s), λI(0X)

≥ λI(s), λF (0X) ≤ λF (s) for all s ∈ f−1(y). Then AT (0X) is an upper bound of

{AT (s)}s∈f−1(y), AI(0X) is a lower bound of {AI(s)}s∈f−1(y), AF (0X) is an upper

bound of {AF (s)}s∈f−1(y), λT (0X) is a lower bound of {λT (s)}s∈f−1(y), λI(0X) is an

upper bound of {λI(s)}s∈f−1(y), and λF (0X) is a lower bound of {λF (s)}s∈f−1(y).

By (4.5.11), we have

f(A)T (0Y ) ⪰ AT (0X) ⪰ rsups∈f−1(y){AT (s)} = f(A)T (y),

f(A)I(0Y ) ⪯ AI(0X) ⪯ rinfs∈f−1(y){AI(s)} = f(A)I(y),
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f(A)F (0Y ) ⪰ AF (0X) ⪰ rsups∈f−1(y){AF (s)} = f(A)F (y),

f(λ)T (0Y ) ≤ λT (0X) ≤ infs∈f−1(y){λT (s)} = f(λ)T (y),

f(λ)I(0Y ) ≥ λI(0X) ≥ sups∈f−1(y){λI(s)} = f(λ)I(y),

f(λ)F (0Y ) ≤ λF (0X) ≤ infs∈f−1(y){λF (s)} = f(λ)F (y).

Let x, y ∈ Y . By Lemma 4.5.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x) and

βT,I,F , ϕT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ y) = AT (αT · βT ), f(A)I(x ∗ y) = AI(αI · βI),

f(A)F (x ∗ y) = AF (αF · βF ),

f(λ)T (x ∗ y) = λT (γT · ϕT ), f(λ)I(x ∗ y) = λI(γI · ϕI),

f(λ)F (x ∗ y) = λF (γF · ϕF ).

Then

f(A)T (x ∗ y) = AT (αT · βT )

⪰ AT (βT ) ((4.4.5))

= f(A)T (y),

f(A)I(x ∗ y) = AT (αI · βI)

⪯ AI(βI) ((4.4.5))

= f(A)I(y),

f(A)F (x ∗ y) = AF (αF · βF )
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⪰ AF (βF ) ((4.4.5))

= f(A)F (y),

f(λ)T (x ∗ y) = λT (γT · ϕT )

≤ λT (ϕT ) ((4.4.6))

= f(λ)T (y),

f(λ)I(x ∗ y) = λI(γI · ϕI)

≥ λI(ϕI) ((4.4.6))

= f(λ)I(y),

f(λ)F (x ∗ y) = λF (γF · ϕF )

≤ λF (ϕF ) ((4.4.6))

= f(λ)F (y).

Hence, f(A ) is a neutrosophic cubic near UP-filter of Y .

(3) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic

UP-filter of X with NCS-property. Then A is a neutrosophic cubic near UP-filter

ofX. By the proof of (2), we have f(A ) satisfies the conditions (4.4.3) and (4.4.4).

Let x, y ∈ Y . By Lemma 4.5.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x) and

βT,I,F , ϕT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ y) = AT (αT · βT ), f(A)I(x ∗ y) = AI(αI · βI),

f(A)F (x ∗ y) = AF (αF · βF ),

f(λ)T (x ∗ y) = λT (γT · ϕT ), f(λ)I(x ∗ y) = λI(γI · ϕI),
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f(λ)F (x ∗ y) = λF (γF · ϕF ).

Then

f(A)T (y) = AT (βT )

⪰ rmin{AT (αT · βT ), AT (αT )} ((4.4.7))

= rmin{f(A)T (x ∗ y), f(A)T (x)},

f(A)I(y) = AI(βI)

⪯ rmax{AI(αI · βI), AI(αI)} ((4.4.7))

= rmax{f(A)I(x ∗ y), f(A)I(x)},

f(A)F (y) = AF (βF )

⪰ rmin{AF (αF · βF ), AF (αF )} ((4.4.7))

= rmin{f(A)F (x ∗ y), f(A)F (x)},

f(λ)T (y) = λT (ϕT )

≤ max{λT (γT · ϕT ), λT (γT )} ((4.4.8))

= max{f(λ)T (x ∗ y), f(λ)T (x)},

f(λ)I(y) = λI(ϕI)

≥ min{λI(γI · ϕI), λI(γI)} ((4.4.8))

= min{f(λ)I(x ∗ y), f(λ)I(x)},

f(λ)F (y) = λF (ϕF )

≤ max{λF (γF · ϕF ), λF (γF )} ((4.4.8))

= max{f(λ)F (x ∗ y), f(λ)F (x)}.

Hence, f(A ) is a neutrosophic cubic UP-filter of Y .

(4) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic

UP-ideal of X with NCS-property. Then A is a neutrosophic cubic UP-filter of
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X. By the proof of (3), we have f(A ) satisfies the conditions (4.4.3) and (4.4.4).

Let x, y, z ∈ Y . By Lemma 4.5.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x),

βT,I,F , ϕT,I,F ∈ f−1(y) and ψT,I,F , ωT,I,F ∈ f−1(z) such that

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ z) = AT (αT · ψT ), f(A)I(x ∗ z) = AI(αI · ψI),

f(A)F (x ∗ z) = AF (αF · ψF ),

f(λ)T (x ∗ z) = λT (γT · ωT ), f(λ)I(x ∗ z) = λI(γI · ωI),

f(λ)F (x ∗ z) = λF (γF · ωF ),

f(A)T (x ∗ (y ∗ z)) = AT (αT · (βT · ψT )), f(A)I(x ∗ (y ∗ z)) = AI(αI · (βI · ψI)),

f(A)F (x ∗ (y ∗ z)) = AF (αF · (βF · ψF )),

f(λ)T (x ∗ (y ∗ z)) = λT (γT · (ϕT · ωT )), f(λ)I(x ∗ (y ∗ z)) = λI(γI · (ϕI · ωI)),

f(λ)F (x ∗ (y ∗ z)) = λF (γF · (ϕF · ωF )).

Then

f(A)T (x ∗ z) = AT (αT · ψT )

⪰ rmin{AT (αT · (βT · ψT )), AT (βT )} ((4.4.9))

= rmin{f(A)T (x ∗ (y ∗ z)), f(A)T (y)},

f(A)I(x ∗ z) = AI(αI · ψI)

⪯ rmax{AI(αI · (βI · ψI)), AI(βI)} ((4.4.9))

= rmax{f(A)I(x ∗ (y ∗ z)), f(A)I(y)},

f(A)F (x ∗ z) = AF (αF · ψF )

⪰ rmin{AF (αF · (βF · ψF )), AF (βF )} ((4.4.9))

= rmin{f(A)F (x ∗ (y ∗ z)), f(A)F (y)},
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f(λ)T (x ∗ z) = λT (γT · ωT )

≤ max{λT (γT · (ϕT · ωT )), λT (ϕT )} ((4.4.10))

= max{f(λ)T (x ∗ (y ∗ z)), f(λ)T (y)},

f(λ)I(x ∗ z) = λI(γI · ωI)

≥ min{λI(γI · (ϕI · ωI)), λI(ϕI)} ((4.4.10))

= min{f(λ)I(x ∗ (y ∗ z)), f(λ)I(y)},

f(λ)F (x ∗ z) = λF (γF · ωF )

≤ max{λF (γF · (ϕF · ωF )), λF (ϕF )} ((4.4.10))

= max{f(λ)F (x ∗ (y ∗ z)), f(λ)F (y)}.

Hence, f(A ) is a neutrosophic cubic UP-ideal of Y .

(5) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic

strong UP-ideal of X with NCS-property. Then A is a neutrosophic cubic UP-

ideal of X. By the proof of (4), we have f(A ) satisfies the conditions (4.4.3) and

(4.4.4). Let x, y, z ∈ Y . By Lemma 4.5.10, there exist elements αT,I,F , γT,I,F ∈

f−1(x), βT,I,F , ϕT,I,F ∈ f−1(y) and ψT,I,F , ωT,I,F ∈ f−1(z) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T ((z ∗ y) ∗ (z ∗ x)) = AT ((ψT · βT ) · (ψT · αT )),

f(A)I((z ∗ y) ∗ (z ∗ x)) = AI((ψI · βI) · (ψI · αI)),

f(A)F ((z ∗ y) ∗ (z ∗ x)) = AF ((ψF · βF ) · (ψF · αF )),

f(λ)T ((z ∗ y) ∗ (z ∗ x)) = λT ((ωT · ϕT ) · (ωT · γT )),

f(λ)I((z ∗ y) ∗ (z ∗ x)) = λI((ωI · ϕI) · (ωI · γI)),
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f(λ)F ((z ∗ y) ∗ (z ∗ x)) = λF ((ωF · ϕF ) · (ωF · γF )).

Then

f(A)T (x) = AT (αT )

⪰ rmin{AT ((ψT · βT ) · (ψT · αT )), AT (βT )} ((4.4.11))

= rmin{f(A)T ((z ∗ y) ∗ (z ∗ x)), f(A)T (y)},

f(A)I(x) = AI(αI)

⪯ rmax{AI((ψI · βI) · (ψI · αI)), AI(βI)} ((4.4.11))

= rmax{f(A)I((z ∗ y) ∗ (z ∗ x)), f(A)I(y)},

f(A)F (x) = AF (αF )

⪰ rmin{AF ((ψF · βF ) · (ψF · αF )), AF (βF )} ((4.4.11))

= rmin{f(A)F ((z ∗ y) ∗ (z ∗ x)), f(A)F (y)},

f(λ)T (x) = λT (γT )

≤ max{λT ((ωT · ϕT ) · (ωT · γT )), λT (ϕT )} ((4.4.12))

= max{f(λ)T ((z ∗ y) ∗ (z ∗ x)), f(λ)T (y)},

f(λ)I(x) = λI(γI)

≥ min{λI((ωI · ϕI) · (ωI · γI)), λI(ϕI)} ((4.4.12))

= min{f(λ)I((z ∗ y) ∗ (z ∗ x)), f(λ)I(y)},

f(λ)F (x) = λF (γF )

≤ max{λF ((ωF · ϕF ) · (ωF · γF )), λF (ϕF )} ((4.4.12))

= max{f(λ)F ((z ∗ y) ∗ (z ∗ x)), f(λ)F (y)}.

Hence, f(A ) is a neutrosophic cubic strong UP-ideal of Y .



 

 

 

CHAPTER V

CONCLUSIONS

From the study, we get the following results.

1. Every neutrosophic UP-subalgebra of X satisfies the conditions (4.1.4),

(4.1.5), and (4.1.6).

2. A NS Λ in X is constant if and only if it is a neutrosophic strong UP-ideal

of X.

3. If Λ is a neutrosophic UP-subalgebra ofX satisfying the following condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


λT (x) ≥ λT (y)

λI(x) ≤ λI(y)

λF (x) ≥ λF (y)

 ,

then Λ is a neutrosophic near UP-filter of X.

4. If Λ is a neutrosophic near UP-filter of X satisfying the following condition:

λT = λI = λF ,

then Λ is a neutrosophic strong UP-ideal of X.

5. If Λ is a neutrosophic UP-filter of X satisfying the following condition:

(∀x, y, z ∈ X)


λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))

 ,

then Λ is a neutrosophic UP-ideal of X.
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6. If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≥ min{λT (x), λT (y)}

λI(z) ≤ max{λI(x), λI(y)}

λF (z) ≥ min{λF (x), λF (y)}

 ,

then Λ is a neutrosophic UP-subalgebra of X.

7. If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (y) ≥ min{λT (z), λT (x)}

λI(y) ≤ max{λI(z), λI(x)}

λF (y) ≥ min{λF (z), λF (x)}

 ,

then Λ is a neutrosophic UP-filter of X.

8. If Λ is a NS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


λT (x · z) ≥ min{λT (a), λT (y)}

λI(x · z) ≤ max{λI(a), λI(y)}

λF (x · z) ≥ min{λF (a), λF (y)}

 ,

then Λ is a neutrosophic UP-ideal of X.

9. A NS Λ in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≥ λT (y)

λI(z) ≤ λI(y)

λF (z) ≥ λF (y)


if and only if Λ is a neutrosophic strong UP-ideal of X.
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10. If the constant 0 ofX is in a nonempty subsetG ofX, then a NS ΛG[α
+,β−,γ+

α−,β+,γ− ]

in X satisfies the conditions (4.1.4), (4.1.5), and (4.1.6).

11. If a NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X satisfies the condition (4.1.4) (resp., (4.1.5),

(4.1.6)), then the constant 0 of X is in G.

12. A NS ΛG[α
+,β−,γ+

α−,β+,γ− ] in X is a neutrosophic UP-subalgebra (resp., neutro-

sophic near UP-filter, neutrosophic UP-filter, neutrosophic UP-ideal, neu-

trosophic strong UP-ideal) of X if and only if a nonempty subset G of X is a

UP-subalgebra (resp., near UP-filter, UP-filter, UP-ideal, strong UP-ideal)

of X.

13. A NS Λ in X is a neutrosophic UP-subalgebra (resp., neutrosophic near

UP-filter, neutrosophic UP-filter, neutrosophic UP-ideal) of X if and only

if for all α, β, γ ∈ [0, 1], the sets U(λT ;α), L(λI ; β), and U(λF ; γ) are either

empty or UP-subalgebras (resp., near UP-filter, UP-filter, UP-ideal) of X.

14. A NS Λ in X is a neutrosophic strong UP-ideal of X if and only if the sets

E(λT ;λT (0)), E(λI ;λI(0)), and E(λF ;λF (0)) are strong UP-ideals of X.

15. Every special neutrosophic UP-subalgebra of X satisfies the conditions

(4.2.4), (4.2.5), and (4.2.6).

16. A NS Λ in X is a neutrosophic UP-subalgebra (resp., neutrosophic near UP-

filter, neutrosophic UP-filter, neutrosophic UP-ideal, neutrosophic strong

UP-ideal) of X if and only if Λ is a special neutrosophic UP-subalgebra

(resp., special neutrosophic near UP-filter, special neutrosophic UP-filter,

special neutrosophic UP-ideal, special neutrosophic strong UP-ideal) of X.

17. A NS Λ in X is constant if and only if it is a special neutrosophic strong

UP-ideal of X.
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18. If Λ is a special neutrosophic UP-subalgebra of X satisfying the following

condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


λT (x) ≤ λT (y)

λI(x) ≥ λI(y)

λF (x) ≤ λF (y)

 ,

then Λ is a special neutrosophic near UP-filter of X.

19. If Λ is a special neutrosophic near UP-filter of X satisfying the following

condition:

λT = λI = λF ,

then Λ is a special neutrosophic strong UP-ideal of X.

20. If Λ is a special neutrosophic UP-filter of X satisfying the following condi-

tion:

(∀x, y, z ∈ X)


λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))

 ,

then Λ is a special neutrosophic UP-ideal of X.

21. If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≤ max{λT (x), λT (y)}

λI(z) ≥ min{λI(x), λI(y)}

λF (z) ≤ max{λF (x), λF (y)}

 ,

then Λ is a special neutrosophic UP-subalgebra of X.
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22. If Λ is a NS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (y) ≤ max{λT (z), λT (x)}

λI(y) ≥ min{λI(z), λI(x)}

λF (y) ≤ max{λF (z), λF (x)}

 ,

then Λ is a special neutrosophic UP-filter of X.

23. If Λ is a NS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


λT (x · z) ≤ max{λT (a), λT (y)}

λI(x · z) ≥ min{λI(a), λI(y)}

λF (x · z) ≤ max{λF (a), λF (y)}

 ,

then Λ is a special neutrosophic UP-ideal of X.

24. A NS Λ in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


λT (z) ≤ λT (y)

λI(z) ≥ λI(y)

λF (z) ≤ λF (y)


if and only if Λ is a special neutrosophic near UP-filter of X.

25. Let α+, α−, β+, β−, γ+, γ− ∈ [0, 1]. Then the following statements hold:

(1) ΛG[α
+,β−,γ+

α−,β+,γ− ] = GΛ[1−α+,1−β−,1−γ+

1−α−,1−β+,1−γ− ], and

(2) GΛ[α
−,β+,γ−

α+,β−,γ+ ] = ΛG[1−α−,1−β+,1−γ−

1−α+,1−β−,1−γ+ ].

26. If the constant 0 ofX is in a nonempty subsetG ofX, then a NS GΛ[α
−,β+,γ−

α+,β−,γ+ ]

in X satisfies the conditions (4.2.4), (4.2.5), and (4.2.6).
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27. If a NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X satisfies the condition (4.2.4) (resp., (4.2.5),

(4.2.6)), then the constant 0 of X is in G.

28. A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic UP-subalgebra (resp.,

special neutrosophic near UP-filter, special neutrosophic UP-filter, special

neutrosophic UP-ideal, special neutrosophic strong UP-ideal) of X if and

only if a nonempty subset G of X is a UP-subalgebra (resp., near UP-filter,

UP-filter, UP-ideal, strong UP-ideal) of X.

29. A NS Λ in X is a special neutrosophic UP-subalgebra (resp., special neutro-

sophic near UP-filter, special neutrosophic UP-filter, special neutrosophic

UP-ideal) ofX if and only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ; β),

and L(λF ; γ) are either empty or UP-subalgebras (resp., near UP-filter, UP-

filter, UP-ideal) of X.

30. If A is an interval-valued neutrosophic UP-subalgebra of X, then

(∀x ∈ X)(AT (0) ⪰ AT (x)),

(∀x ∈ X)(AI(0) ⪯ AI(x)),

(∀x ∈ X)(AF (0) ⪰ AF (x)).

31. An IVNS A in X is constant if and only if it is an interval-valued neutro-

sophic strong UP-ideal of X.

32. If A is an interval-valued neutrosophic UP-subalgebra of X satisfying the

following condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


AT (x) ⪰ AT (y)

AI(x) ⪯ AI(y)

AF (x) ⪰ AF (y)

 ,
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then A is an interval-valued neutrosophic near UP-filter of X.

33. If A is an interval-valued neutrosophic near UP-filter of X satisfying the

following condition:

AT = AI = AF ,

then A is an interval-valued neutrosophic strong UP-ideal of X.

34. IfA is an interval-valued neutrosophic UP-filter ofX satisfying the following

condition:

(∀x, y, z ∈ X)


AT (y · (x · z)) = AT (x · (y · z))

AI(y · (x · z)) = AI(x · (y · z))

AF (y · (x · z)) = AF (x · (y · z))

 ,

then A is an interval-valued neutrosophic UP-ideal of X.

35. If A is an IVNS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (z) ⪰ rmin{AT (x), AT (y)}

AI(z) ⪯ rmax{AI(x), AI(y)}

AF (z) ⪰ rmin{AF (x), AF (y)}

 ,

then A is an interval-valued neutrosophic UP-subalgebra of X.

36. If A is an IVNS in X satisfying the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (y) ⪰ rmin{AT (z), AT (x)}

AI(y) ⪯ rmax{AI(z), AI(x)}

AF (y) ⪰ rmin{AF (z), AF (x)}

 ,

then A is an interval-valued neutrosophic UP-filter of X.
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37. If A is an IVNS in X satisfying the following condition:

(∀a, x, y, z ∈ X)

a ≤ x · (y · z) ⇒


AT (x · z) ⪰ rmin{AT (a), AT (y)}

AI(x · z) ⪯ rmax{AI(a), AI(y)}

AF (x · z) ⪰ rmin{AF (a), AF (y)}

 ,

then A is an interval-valued neutrosophic UP-ideal of X.

38. An IVNS A in X satisfies the following condition:

(∀x, y, z ∈ X)

z ≤ x · y ⇒


AT (z) ⪰ AT (y)

AI(z) ⪯ AI(y)

AF (z) ⪰ AF (y)


if and only if A is an interval-valued neutrosophic strong UP-ideal of X.

39. If the constant 0 of X is in a nonempty subset G of X, then the IVNS

AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the conditions (4.3.4), (4.3.5), and (4.3.6).

40. If the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the condition (4.3.4) (resp., (4.3.5),

(4.3.6)), then the constant 0 of X is in G.

41. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic UP-sub-

algebra (resp., interval-valued neutrosophic near UP-filter, interval-valued

neutrosophic UP-filter, interval-valued neutrosophic UP-ideal,

interval-valued neutrosophic strong UP-ideal) ofX if and only if a nonempty

subset G of X is a UP-subalgebra (resp., near UP-filters, UP-filters, UP-

ideals, strong UP-ideal) of X.

42. An IVNS A in X is an interval-valued neutrosophic UP-subalgebra (resp.,

interval-valued neutrosophic near UP-filter, interval-valued neutrosophic

UP-filter, interval-valued neutrosophic UP-ideal) of X if and only if for all
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ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are either empty

or UP-subalgebras (resp., near UP-filters, UP-filters, UP-ideals) of X.

43. An IVNS A in X is an interval-valued neutrosophic strong UP-ideal if

and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets E(AT ;AT (0)), E(AI ;AI(0)), and

E(AF ;AF (0)) are strong UP-ideals of X.

44. If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X, then

(∀x ∈ X)


AT (0) ⪰ AT (x)

AI(0) ⪯ AI(x)

AF (0) ⪰ AF (x)

 (P1)

and

(∀x ∈ X)


λT (0) ≤ λT (x)

λI(0) ≥ λI(x)

λF (0) ≤ λF (x)

 . (P2)

45. A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra (resp., neu-

trosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic

cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if and only if the

IVNS A is an interval-valued neutrosophic UP-subalgebra (resp., interval-

valued neutrosophic near UP-filter, interval-valued neutrosophic UP-filter,

interval-valued neutrosophic UP-ideal, interval-valued neutrosophic strong

UP-ideal) ofX and the NS Λ is a special neutrosophic UP-subalgebra (resp.,

special neutrosophic near UP-filter, special neutrosophic UP-filter, special

neutrosophic UP-ideal, special neutrosophic strong UP-ideal) of X.

46. A NCS A = (A,Λ) in X is constant if and only if it is a neutrosophic cubic

strong UP-ideal of X.
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47. If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X satisfying the

following condition:

(∀x, y ∈ X)



x · y ̸= 0 ⇒



AT (x) ⪰ AT (y)

AI(x) ⪯ AI(y)

AF (x) ⪰ AF (y)

λT (x) ≤ λT (y)

λI(x) ≥ λI(y)

λF (x) ≤ λF (y)



,

then A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

48. If A = (A,Λ) is a neutrosophic cubic near UP-filter of X satisfying the

following condition:

AT = AI = AF , λT = λI = λF ,

then A = (A,Λ) is a neutrosophic strong UP-ideal of X.

49. If A = (A,Λ) is a neutrosophic cubic UP-filter of X satisfying the following

condition:

(∀x, y, z ∈ X)



AT (y · (x · z)) = AT (x · (y · z))

AI(y · (x · z)) = AI(x · (y · z))

AF (y · (x · z)) = AF (x · (y · z))

λT (y · (x · z)) = λT (x · (y · z))

λI(y · (x · z)) = λI(x · (y · z))

λF (y · (x · z)) = λF (x · (y · z))


,

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.
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50. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (z) ⪰ rmin{AT (x), AT (y)}

AI(z) ⪯ rmax{AI(x), AI(y)}

AF (z) ⪰ rmin{AF (x), AF (y)}

λT (z) ≤ max{λT (x), λT (y)}

λI(z) ≥ min{λI(x), λI(y)}

λF (z) ≤ max{λF (x), λF (y)}



,

then A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

51. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (y) ⪰ rmin{AT (z), AT (x)}

AI(y) ⪯ rmax{AI(z), AI(x)}

AF (y) ⪰ rmin{AF (z), AF (x)}

λT (y) ≤ max{λT (z), λT (x)}

λI(y) ≥ min{λI(z), λI(x)}

λF (y) ≤ max{λF (z), λF (x)}



,

then A = (A,Λ) is a neutrosophic cubic UP-filter of X.
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52. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀a, x, y, z ∈ X)



a ≤ x · (y · z) ⇒



AT (x · z) ⪰ rmin{AT (a), AT (y)}

AI(x · z) ⪯ rmax{AI(a), AI(y)}

AF (x · z) ⪰ rmin{AF (a), AF (y)}

λT (x · z) ≤ max{λT (a), λT (y)}

λI(x · z) ≥ min{λI(a), λI(y)}

λF (x · z) ≤ max{λF (a), λF (y)}



,

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

53. A NCS A = (A,Λ) in X satisfies the following condition:

(∀x, y, z ∈ X)



z ≤ x · y ⇒



AT (z) ⪰ AT (y)

AI(z) ⪯ AI(y)

AF (z) ⪰ AF (y)

λT (z) ≤ λT (y)

λI(z) ≥ λI(y)

λF (z) ≤ λF (y)


if and only if A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

54. A NCS A G[[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], [α

−,β+,γ−

α+,β−,γ+ ]] in X is a neutrosophic cubic UP-subalgebra

(resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neu-

trosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if and

only if a nonempty subset G of X is a UP-subalgebra (resp., near UP-filter,

UP-filter, UP-ideal, strong UP-ideal) of X.

55. A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra (resp., neu-
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trosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic

cubic UP-ideal) of X if and only if for all [sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ] ∈

[[0, 1]] and tT , tI , tF ∈ [0, 1], the sets U(AT ; [sT1 , sT2 ]), L(AI ; [sI1 , sI2 ]),

U(AF ; [sF1 , sF2 ]), L(λT ; tT ), U(λI ; tI), and L(λF ; tF ) are either empty or UP-

subalgebras (resp., near UP-filter, UP-filter, UP-ideal) of X.

56. A NCS A = (A,Λ) inX is a neutrosophic cubic strong UP-ideal ofX if and

only if the sets E(AT ;AT (0)), E(AI ;AI(0)), E(AF ;AF (0)), E(λT , λT (0)),

E(λI , λI(0)), and E(λF , λF (0)) are strong UP-ideals of X.

57. Every neutrosophic cubic UP-filter (resp., neutrosophic cubic UP-ideal, neu-

trosophic cubic strong UP-ideal) of X is order preserving.

58. Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras, f : X → Y be a UP-homo-

morphism, and A = (AT,I,F , λT,I,F ) be a NCS in Y . Then the following

statements hold:

(1) If A is a neutrosophic cubic UP-subalgebra of Y , then the inverse

image f−1(A ) of A under f is a neutrosophic cubic UP-subalgebra of

X.

(2) If A is a neutrosophic cubic near UP-filter of Y which is order preserv-

ing, then the inverse image f−1(A ) of A under f is a neutrosophic

cubic near UP-filter of X.

(3) If A is a neutrosophic cubic UP-filter of Y , then the inverse image

f−1(A ) of A under f is a neutrosophic cubic UP-filter of X.

(4) If A is a neutrosophic cubic UP-ideal of Y , then the inverse image

f−1(A ) of A under f is a neutrosophic cubic UP-ideal of X.

(5) If A is a neutrosophic cubic strong UP-ideal of Y , then the inverse

image f−1(A ) of A under f is a neutrosophic cubic strong UP-ideal

of X.
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59. Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras and let f : X → Y be a UP-

epimorphism. Let A = (AT,I,F , λT,I,F ) be an f -invariant NCS in X with

NCS-property. For any x, y ∈ Y , there exist elements αT,I,F , γT,I,F ∈ f−1(x)

and βT,I,F , ϕT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (ϕT ), f(λ)I(y) = λI(ϕI), f(λ)F (y) = λF (ϕF ),

f(A)T (x ∗ y) = AT (αT · βT ), f(A)I(x ∗ y) = AI(αI · βI),

f(A)F (x ∗ y) = AF (αF · βF ),

f(λ)T (x ∗ y) = λT (γT · ϕT ), f(λ)I(x ∗ y) = λI(γI · ϕI),

f(λ)F (x ∗ y) = λF (γF · ϕF ).

60. Let (X, ·, 0X) and (Y, ∗, 0Y ) be UP-algebras, f : X → Y be a UP-epi-

morphism, and A = (AT,I,F , λT,I,F ) be a NCS in X. Then the following

statements hold:

(1) If A is an f -invariant neutrosophic cubic UP-subalgebra of X with

NCS-property, then the image f(A ) of A under f is a neutrosophic

cubic UP-subalgebra of Y .

(2) If A is an f -invariant neutrosophic cubic near UP-filter of X with

NCS-property, then the image f(A ) of A under f is a neutrosophic

cubic near UP-filter of Y .

(3) If A is an f -invariant neutrosophic cubic UP-filter of X with NCS-

property, then the image f(A ) of A under f is a neutrosophic cubic

UP-filter of Y .

(4) If A is an f -invariant neutrosophic cubic UP-ideal of X with NCS-
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property, then the image f(A ) of A under f is a neutrosophic cubic

UP-ideal of Y .

(5) If A is an f -invariant neutrosophic cubic strong UP-ideal of X with

NCS-property, then the image f(A ) of A under f is a neutrosophic

cubic strong UP-ideal of Y .
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