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ABSTRACT 

   Many real world problems in applied sciences, engineering and economics can be reformulated 

as the convex minimization problem of the sum of two objective functions. In order to solve this problem, 

the forward-backward splitting algorithm has been used for the convergence analysis. However, in 

general, the Lipschitz continuity condition on the gradient of functions is usually assumed which is not an 

easy task in computation. Moreover, this assumption leads to the slow convergence of algorithms. The 

main objective of this thesis is to improve and develop new splitting algorithms for solving convex 

minimization problem. First, strong convergence theorems of the sequences generated by the forward-

backward algorithms using hybrid projection method and shrinking projection method are proved in Hilbert 

spaces. Second, strong convergence theorems of the sequence generated by the forward-backward 

algorithm using viscosity approximation method are proved in Hilbert spaces. The stepsizes studied in this 

thesis are defined by two different kinds of linesearches. The main advantage of our algorithms is that the 

Lipschitz constants of the gradient of functions do not require in computation. Finally, numerical 

experiments are given to show the efficiency of the proposed methods in signal recovery. Numerical 

results show that the proposed algorithms have a better convergence rate than other related algorithms. 
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CHAPTER I

INTRODUCTION

Many real world problems in applied sciences, engineering and economics

can be reformulated as the optimization problem (OP). An OP refers to the gen-

eral problem of minimizing (or maximizing) objective function that are typically

not differentiable at their minimizers. More generally, optimization includes find-

ing best available values of some objective function given a defined domain, in-

cluding a variety of different types of objective functions and different types of

domains.

To solve minimization problems, researchers may use algorithm that ter-

minate in finite number of steps, or iterative methods that converge to a solution,

or heuristics that may provide approximate solutions to problem, one of the most

important techniques in handling ill - posed problems and inverse problems. The

Tikhonov regularization and proximal point methods are widely used to deal

with one maximal monotone operator. The proximal point algorithm (PPA) ini-

tiated by Martinet in 1970 and subsequently studied by Rockafellar in 1976 is

often referred. However, since the PPA does not necessarily converges strongly,

many researchers have conducted worthwhile work on modifying the PPA so that

the strong convergence is guaranteed, for examples, the relaxed proximal point

algorithm (RPPA) and the contraction proximal point algorithm (CPPA). The

splitting methods play a central role in the analysis and the numerical solution

of such problems. The Forward-Backward and Douglas-Rachford splitting algo-

rithms are classical methods for computing those reliable solutions. Due to its

applications, there have been several modifications and generalizations of these

methods suggested and invented independently for solving the problem in many

different contexts. This tool plays an important role in the analysis and the
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numerical solution of convex optimization problems. The main concept of the

proximal mapping technique is obtained by splitting in that the functions are

used individually so as to yield an easily implementable algorithm, for example,

the proximal point algorithm (Martinet, Rockafellar) is used to find a minimizer

of a convex function, the forward-backward algorithm is used to find a minimizer

of the sum of two convex functions and so on. One of the main advantages of

these algorithms is that they can be used, without computation on the projection

which is not an easy task in general, to minimize nondifferentiable objectives, such

as those commonly encountered in sparse approximation and compressed sens-

ing, or in hard-constrained problems as well as involving high-dimensional data.

There have recently been many researchers extensively studied and developed

this technique based on the proximity operators such as Wang (2000), Nakajo

and Takahashi (2003), Combettes and Wajs (2005). However, many proximal

point method usually assumed that the gradient is Lipschitz continuous and the

step size is bounded below and less than some constants related to the Lipschitz

constant, which is some how not known in practice. For this reason, it is our

purpose to study and develop new algorithm for solving minimization problems.

Over the past few years, Bello Cruz and Nghia (2016) studied and de-

veloped proximal mapping technique for solving minimization problems by the

proximal gradient algorithm using new linesearch technique for solving the con-

vex minimization problem in Hilbert spaces. The main advantage of the proposed

method is that the Lipschitz condition on the gradient of functions is dropped

in computing. As reviewed, it is therefore the main objective in this research

to develop and modify the numerical algorithms by using the proximal map-

ping technique and the linesearch rules for solving minimization problems and

to establish some convergence theorems which admit less stringent and/or more

constructive requirements on solving minimization problems. The main results

established in this research can improve and generalize the corresponding results
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in this area and, of course, can be applied to solve major problems existed in

science, engineering, economics and other related branches. Finally, to give some

applications of minimization problem including its numerical experiments. The

main results can improve and extend the corresponding results in this area and,

can be applied to solve major problems existed in science.



 

 

 

CHAPTER II

REVIEW OF RELATED LITERATURE

AND RESEARCH

In this work, we study in solving the convex minimization problem which

is modeled as the following form:

min
x∈H

f(x) + g(x), (2.1.1)

where H is a real Hilbert space with the inner product ⟨·, ·⟩, the induced norm

∥ · ∥ and f, g : H → R∪ {+∞} are two proper, lower-semicontinuous and convex

functions in which f is Fréchet differentiable on an open set containing the domain

of g. The solution set of problem (2.1.1) will be denoted by S∗. It is known that

(2.1.1) relates to the following fixed point equation:

x = proxβg(x− β∇f(x)) (2.1.2)

where β is a positive real number and proxg is the proximal operator of g. Using

this fixed point equation, one can define the following classical forward-backward

algorithm:

xk+1 = proxβkg︸ ︷︷ ︸
backward step

(xk − βk∇f(xk))︸ ︷︷ ︸
forward step

, (2.1.3)

where βk is a suitable stepsize. This method includes, in particular, the proximal

point algorithm [12, 21, 24, 27] and the gradient method [11, 30, 32]. Due to

its wide applications, there have been modifications of (2.1.3) invented in the

literature (see [6, 7, 10, 16, 17, 26]).

In 2003, Nakajo and Takahashi [23] introduced the following hybrid pro-

jection method and prove its strong convergence for finding a fixed point of a
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nonexpansive mapping T . Let C be a nonempty closed convex subset of a real

Hilbert spaces H. They investigated the sequence (xk) generated by: x0 ∈ C and



yk = αkx
k + (1− αk)Tx

k,

Ck = {z ∈ C : ∥yk − z∥ ≤ ∥xk − z∥},

Qk = {z ∈ C : ⟨z − xk, x0 − xk⟩ ≤ 0},

xk+1 = PCk∩Qk
(x0),

(2.1.4)

for every k ∈ N ∪ {0}, where (αk) ⊂ [0, a] for some a ∈ [0, 1). They proved that

(xk) converges strongly to a fixed point of T . Furthermore, Takahashi et al. [28]

proposed the shrinking projection method which is defined by: x0 ∈ C, C1 = C,

x1 = PC1(x
0) and


yk = αkx

k + (1− αk)Tx
k,

Ck+1 = {z ∈ Ck : ∥yk − z∥ ≤ ∥xk − z∥},

xk+1 = PCk+1
(x0),

(2.1.5)

where 0 ≤ αk < a < 1 for all k ∈ N. It was proved that the sequence (xk)

generated by (2.1.5) converges strongly to a fixed point of a nonexpansive mapping

T .

In 2000, Moudafi [22] introduced the viscosity approximation method for

fixed point problem of nonexpansive mappings. To this end they associate to the

initial problem, namely

fine x ∈ C such that x = T (x),
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where T is strongly nonexpansive, the following approximate well - posed problem

find xk ∈ C such that xk =
1

1 + εk
T (xk) +

εk
1 + εk

h(xk),

where {εk} is a sequence of positive real numbers having to go to zero and h :

X → C is a contraction. When suppose
+∞∑
k=1

εk = +∞ and lim
k→∞
| 1
εk
− 1

εk−1

| = 0.

Then, for all x0, the sequence {xk} converges strongly to a fixed point of T . It is

well known that this method establishes strong convergence.

In 2012, Lin and Takahashi [18] introduced the following modification:

Algorithm 2.1.1 :

Initialization Step. Take x0 ∈ H

Iterative Step. Give xk and set

xk+1 = akh(x
k) + (1− ak)proxαkg

(xk − αk∇f(xk)),

where h : H → H is a ρ−contraction for some ρ ∈ [0, 1), i.e. ∥h(x) − h(y)∥ ≤

ρ∥x − y∥ for all x, y ∈ H and ∇f is a ν−inverse strongly monotone with the

following conditions:

lim
n→∞

ak = 0,
∞∑
k=1

ak =∞,
∞∑
k=1

|ak − ak+1| <∞;

∞∑
k=1

|αk − αk+1| <∞, 0 < b ≤ αk ≤ 2ν

Stop Criteria. If xk+1 = xk, then stop.

Recently, Wang and Wang [31] proposed the following forward-backward

splitting method:

Algorithm 2.1.2 Let arbitrary initial guess x1 ∈ H, and generates xk+1 accord-
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ing to the recursion process,

xk+1 = akF (x
k) + bkx

k + ckproxβkg
(xk − βk∇f(xk)), (2.1.6)

where (ak) ⊂ (0, 1), (bk) ⊂ (−2, 1), (ck) ⊂ (0, 2) and ak + bk + ck = 1, and

F : H → H is a contraction.

Theorem 2.1.3 Let (βk) be a sequence in (0, 2
L
). Suppose that the following

conditions are satisfied:

(i) lim
k→∞

ak = 0,
∞∑
k=1

ak =∞;

(ii) lim
k→∞

ak
ck

= 0;

(iii) lim sup
k→∞

ck <
4
L

2
L
+ lim sup

k→∞
βk

;

(iv) 0 < lim inf
k→∞

βk ≤ lim sup
k→∞

βk <
2

L
.

Then the sequence (xk) generated by (2.1.6) converges strongly to a minimizer of

f + g.

The forward-backward method based on iteration (2.1.3) has been stud-

ied by many authors: see e.g. [5, 7, 8, 10, 16, 19, 20, 25, 29]. However, it should

be noted that the stepsize βk usually depends on the Lipschitz assumption on the

gradient of a function f . This leads to the difficulty since the Lipschitz constants

are often unknown in general.

Recently Cruz and Nghia [3] investigated the forward-backward method

using linesearch that eliminates the undesired Lipschitz assumption on the gradi-

ent of f and proved the weak convergence of sequences generated by the proposed

algorithm to optimal solution as follows:
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Linesearch 2.1.4 Given x, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2
).

Input. Set β = σ and J(x, β) := proxβg(x− β∇f(x)) with x ∈ domg.

While β∥∇f(J(x, β))−∇f(x)∥ > δ∥J(x, β)− x∥

do β = θβ.

End While

Output. β.

It was proved that Linesearch 2.1.4 is well - defined, i.e., this linesearch

stops after finitely many steps. So it can be considered the following algorithm:

Algorithm 2.1.5 :

Initialization Step. Take x0 ∈ domg, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2
)

Iterative Step. Give xk and set

xk+1 = proxβkg
(xk − βk∇f(xk)),

with βk := Linesearch 2.1.4 (xk, σ, θ, δ).

Stop Criteria. If xk+1 = xk, then stop.

It was shown that the sequence generated by Algorithm 2.1.5 converges

weakly to minimizers of f +g. Moreover, if the gradient of f is globally Lipschitz

continuous on domg with a constant L > 0, then αk ≥ min{σ, δθ/L} for all k ∈ N.

However, their algorithms have only weak convergence in real Hilbert spaces. As

pointed out, for example, by Bauschke and Combettes [2], the weak convergence

of an iterative scheme is an unsatisfactory property in an infinite dimensional

setting. Moreover, it is our academic interests to analyze the strong convergence

using the linesearch technique.

In this research, inspired by Cruz and Nghia [3], we introduce new al-
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gorithm, based on Algorithm 2.1.5, hybrid projection method (2.1.4), shrinking

projection method (2.1.5) and Algorithm 2.1.5, using the viscosity approximation

method. We then prove the strong convergence theorems of the proposed meth-

ods. We also suggest a new linesearch which is different from Linesearch 2.1.4.

Combining this linesearch and the forward-backward method, we also prove its

strong convergence in Hilbert spaces. Finally, some numerical experiments, in

signal recovery, are provided to show the efficiency and the implementation of

our algorithms. The report shows that our algorithms can be applied to solve the

compressed sensing in the frequency domain. Moreover, it is discovered that the

forward-backward algorithm using new linesearch has a better convergence than

others in comparison. The main advantage is that our schemes do not require the

information of the Lipschitz constant of the gradient of functions which makes

the proposed algorithm more practical for computing.



 

 

 

CHAPTER III

PRELIMINARIES

3.1 Fundamentals

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Definition 3.1.1 (Metric space) Let X be a nonempty set and d : X ×X →

[0,∞) be a function. Then d is called a metric on X if the following properties

hold:

1. d(x, y) ≥ 0 for all x, y ∈ X;

2. d(x, y) = 0 if and only if x = y for all x, y ∈ X;

3. d(x, y) = d(y, x) for all x, y ∈ X;

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The value of metric d at (x, y), we write d(x, y), is called distance between x and

y, and the ordered pair (X, d) is called a metric space.

Example 3.1.2 In real line R, define

d(x, y) = |x− y| (3.1.1)

for all x, y ∈ R. Then (R, d) is a metric space.

Example 3.1.3 In euclidean plane R2, define

d(x, y) =
√
(ξ1 − η1)2 + (ξ2 − η2)2 (3.1.2)

where x = (ξ1, ξ2), y = (η1, η2) ∈ R2. Then (R2, d) is a metric space.
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Example 3.1.4 In euclidean space Rk, define

d(x, y) =
√
(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ...+ (ξk − ηk)2 (3.1.3)

where x = (ξ1, ξ2, ξ3, ..., ξk), y = (η1, η2, η3, ..., ηk) ∈ Rk. Then (Rk, d) is a metric

space.

Example 3.1.5 Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

x = (ξ1, ξ2, ...)

such that |ξj| ≤ cx for all j = 1, 2, ... and cx is a real number which may depend

on x, but does not depend on j and define

d(x, y) = sup
j∈N
|ξj − ηj| (3.1.4)

where y = (ηj) ∈ X and N = 1, 2, .... Then (X, d) is a metric space.

Definition 3.1.6 (Open and Closed sets) Let (X, d) be a metric space. A

subset U ⊆ X is open if for every x ∈ X there exists r > 0 such that B(x, r) ⊆ U .

A set U is closed if its complement, X \ U , is open.

Definition 3.1.7 (Convergent sequence) A sequence (xk) in a metric space

X is said to be convergent to x ∈ R if for each ϵ > 0 there exists N ∈ N such

that d(xk, x) < ε for all k > N . In this case, we write xk → x.

Definition 3.1.8 (Cauchy sequence) A sequence (xk) in a metric space X is

said to be Cauchy if for each ϵ > 0 there exists N ∈ N such that d(xj, xk) < ϵ

for all j, k > N .

Theorem 3.1.9 Let M be a nonempty subset of a metric space X. Then M is

closed if and only if there exists a sequence {xk} ⊆ M and xk → x implies that
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x ∈M .

Definition 3.1.10 (Bounded sequence) A sequence (xk) in X is bounded if

there exists M > 0 such that ∥xk∥ ≤M for all k ∈ N.

Definition 3.1.11 (Nonexpansive mapping) Let (X, d) be a metric space.

Then a map T : X → X is said to be nonexpansive if

d(T (x), T (y)) ≤ d(x, y)

for all x, y ∈ X.

Definition 3.1.12 (Contractive mapping) Let (X, d) be a metric space. Then

a map T : X → X is said to be contractive if there exists k ∈ [0, 1) such that

d(T (x), T (y)) ≤ kd(x, y)

for all x, y ∈ X.

Definition 3.1.13 (Fixed point) Let X be a nonempty set and T : X → X.

We say that x ∈ X is a fixed point of T if

T (x) = x (3.1.5)

and denote by Fix(T ) the set of all fixed points of T .

Theorem 3.1.14 (The Banach contraction principle)Let X be a complete

metric space and let T be a contraction of X into itself. Then T has a unique

fixed point.

Definition 3.1.15 (Vector space) A vector space or linear space X over the

field K (R or C) is a set X together with an internal binary operation (+) called

addition and a scalar multiplication carrying (α, x) in K×X to αx in X satisfying
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the following statements for all x, y, z ∈ X and α, β ∈ K:

1. x+ y = y + x;

2. (x+ y) + z = x+ (y + z);

3. there exists an element 0 ∈ X call the zero vector of X such that

x+ 0 = x for all x ∈ X;

4. for every element x ∈ X, there exists an element −x ∈ X called the

additive inverse or the negative of x such that x+ (−x) = 0;

5. α(x+ y) = αx+ αy;

6. (α + β)x = αx+ βy;

7. (αβ)x = α(βx);

8. 1 · x = x.

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.16 In euclidean space Rk, define

x+ y = (ξ1 + η1, ξ2 + η2, ξ3 + η3, ..., ξk + ηk)

αx = (αξ1, αξ2, αξ3, ..., αξk)

where x = (ξ1, ξ2, ξ3, ..., ξk), y = (η1, η2, η3, ..., ηk) ∈ Rk and α ∈ R. Then, space

Rk is a real vector space.

Definition 3.1.17 (Convex set) Let C be a subset of a linear space X. Then C

is said to be convex if (1− λ)x+ λy ∈ C for all x, y ∈ C and all scalar λ ∈ [0, 1].

Example 3.1.18 1. Every subspace of vector space is convex.

2. B(x; r) = {x : ∥x∥ ≤ r} is convex.

3. [0, 1]K = [1, 0]× [1, 0]× ...× [1, 0] is convex in Rk.

Proposition 3.1.19 Let C be a subset of a linear space X. Then C is convex if

and only if λ1x1+λ2x2+ ...+λkxk ∈ C for any finite set {x1, x2, ..., xk} ⊆ C and

scalars λi ≥ 0 with λ1 + λ2 + ...+ λk = 1.
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Definition 3.1.20 (Convex function) Let X be a linear space and f : X →

(−∞,∞] be a function. Then f is said to be convex if f(λx + (1 − λ)y) ≤

λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ [0, 1].

Definition 3.1.21 (Proper function) Let function f : X → (−∞,∞]. Then

f is said to be proper if there exists x ∈ X with f(x) <∞.

Example 3.1.22 1. f(x) = |x|p where p ≥ 1 is a convex function in R.

2. f(x) = x3 − x2 is a convex function in [1
3
,∞).

3. f(x) = x log x is a convex function in R+.

Definition 3.1.23 (Normed space) Let X be a norm linear space over field K

(R or C) and ∥ · ∥ : X → R+ be a function. Then ∥ · ∥ is said to be a norm if the

following properties hold:

1. ∥x∥ ≥ 0, and ∥x∥ = 0⇔ x = 0;

2. ∥αx∥ = |α|∥x∥ for all x ∈ X and α ∈ K;

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The ordered pair (X, ∥ · ∥) is called a normed space.

Example 3.1.24 Rk is a normed space with the following norms:

∥x∥1 =
k∑

i=1

|xi| for all x = (x1, x2, .., xk) ∈ Rk;

∥x∥p =
( k∑

i=1

|xi|p
)1/p

for all x = (x1, x2, .., xk) ∈ Rk and p ∈ (1,∞);

∥x∥∞ = max
1≤i≤k

|xi| for all x = (x1, x2, .., xk) ∈ Rk.

Example 3.1.25 Let X = l1, the linear space whose elements consist of all

absolutely convergent sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l1 = {x : x = (x1, x2, ..., xi, ...) and
∞∑
i=1

|xi| <∞}.

Then l1 is a normed space with the norm defined by ∥x∥1 =
∑∞

i=1 |xi|.
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Example 3.1.26 Let X = lp (1 < p < ∞) be the linear space whose elements

consist of all p-summable sequences (x1, x2, ..., xi, ...) of scalars (R or C),

lp = {x : x = (x1, x2, ..., xi, ...) and
∞∑
i=1

|xi|p <∞}.

Then lp is a normed space with the norm defined by ∥x∥p = (
∑∞

i=1 |xi|p)1/p.

Example 3.1.27 Let X = l∞, the linear space whose elements consist of all

bounded sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l∞ = {x : x = (x1, x2, ..., xi, ...) and {xi}∞i=1 is bounded}.

Then l∞ is a normed space with the norm defined by ∥x∥∞ = supi∈N |xi|.

Definition 3.1.28 (Completeness) The space X is said to be complete if every

Cauchy sequence in X converges.

Example 3.1.29 The Euclidean space Rk is complete with

d(x, y) =
√
(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ...+ (ξk − ηk)2 (3.1.6)

where x = (ξ1, ξ2, ξ3, ..., ξk), y = (η1, η2, η3, ..., ηk) ∈ Rk.

Example 3.1.30 The sequence space l∞ is complete.

Example 3.1.31 The sequence space lp is complete.

Definition 3.1.32 (Inner product space) An inner product space is a vector

space X with an inner product defined on X. Here, an inner product on X is

a mapping of X × X into the scalar field K of X; that is, with every pair of

vectors x and y there is associated a scalar which is written by ⟨x, y⟩ and called

the inner product of x and y, such that for all vectors x, y, z and scalars α we

have
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(IP1) ⟨x, x⟩ ≥ 0;

(IP2) ⟨x, x⟩ = 0⇔ x = 0;

(IP3) ⟨αx, y⟩ = α⟨x, y⟩;

(IP4) ⟨x, y⟩ = ⟨y, x⟩;

(IP5) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨z, y⟩.

Example 3.1.33 The function ⟨·, ·⟩ : Rk × Rk → R defined by

⟨x, y⟩ =
k∑

i=1

xiyi for all x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈ Rk (3.1.7)

is an inner product on Rk. In this case Rk with this inner product is called real

Euclidean k-space.

Example 3.1.34 Let Ck be the set of k-tuples of complex numbers. Then the

function ⟨·, ·⟩ : Rk × Rk → R defined by

⟨x, y⟩ =
k∑

i=1

xiyi for all x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈ Ck (3.1.8)

is an inner product on Ck. In this case Ck with this inner product is called

complex Euclidean k-space.

Example 3.1.35 Let l2 be the set of all sequences of complex numbers

(a1, a2, . . . , ai, . . .) with
∑∞

i=1 |ai|2 < ∞. Then the function ⟨·, ·⟩ : l2 × l2 → C

defined by

⟨x, y⟩ =
∞∑
i=1

xiyi for all x = {xi}∞i=1, y = {yi}∞i=1 ∈ l2 (3.1.9)

is an inner product on l2.

Definition 3.1.36 (Hilbert space) An inner product space which is complete

with respect to the induced norm is called a Hilbert space.
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Example 3.1.37 The Euclidean space Rk is a Hilbert space with inner product

defined by

⟨x, y⟩ = x1y1 + x2y2 + ...+ xkyk

where x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈ Rk.

Example 3.1.38 The space l2 is a Hilbert space with inner product defined by

⟨x, y⟩ =
∞∑
j=1

xjyj,

where x, y ∈ l2.

Proposition 3.1.39 (The Cauchy-Schwarz inequality) Let X be an inner

product space. Then the following holds:

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩ for all x, y ∈ X, (3.1.10)

i.e.,

|⟨x, y⟩| ≤ ∥x∥∥y∥ for all x, y ∈ X. (3.1.11)

Definition 3.1.40 (Bounded linear operator) LetX and Y be normed spaces

and T : X → Y be a linear operator. The operator T is said to be bounded if

there is a real number c > 0 such that for all x ∈ X,

∥Tx∥ ≤ c∥x∥. (3.1.12)

Definition 3.1.41 (Level set of convex function) Let f : H → R be a convex

function with the domain H. Then, for any λ ∈ R, the set

Vλ = {x ∈ H|f(x) ≤ λ} (3.1.13)

Definition 3.1.42 A sequence (xk) in a Hilbert space H is said to converge
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weakly to a point x in H if

⟨xk, y⟩ → ⟨x, y⟩ (3.1.14)

for all y ∈ H and denote that xk ⇀ x.

Definition 3.1.43 (Contraction mapping) Let H be a real Hilbert space and

C be a nonempty subset of H. Then a map F : C → C is said to be contraction

if there exists k ∈ [0, 1) such that

∥F (x)− F (y)∥ ≤ k∥x− y∥,

for all x, y ∈ C.

Definition 3.1.44 (Nonexpansive mapping) Let H be a real Hilbert space

and C be a nonempty subset of H. A mapping T : C → C is said to be

nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥,∀x, y ∈ C.

A mapping T : C → C is said to be firmly nonexpansive if, for all x, y ∈ C,

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2. (3.1.15)

The operator I − PC is also firmly nonexpansive, where I denotes the identity

operator, i.e., for any x, y ∈ H,

⟨(I − PC)x− (I − PC)y, x− y⟩ ≥ ∥(I − PC)x− (I − PC)y∥2. (3.1.16)

In a real Hilbert space, we know that for any point x ∈ H, there exists a unique

point PCx ∈ C such that

∥x− PCx∥ ≤ ∥x− y∥,∀y ∈ C.
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Here PC is called the metric projection of H onto C. We know that PC is a

nonexpansive mapping of H onto C. It is also known that PC satisfies

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2, (3.1.17)

for all x, y ∈ H. Furthermore, PCx is characterized by the property

⟨x− PCx, PCx− y⟩ ≥ 0, (3.1.18)

for all y ∈ C. Moreover, we know that

∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2, ∀x, y ∈ H. (3.1.19)

We also know that all Hilbert space has the Kadec-Klee property, that is, (xk)

converges weakly to x and ∥xk∥ → ∥x∥ imply xk converges strongly to x.

Lemma 3.1.45 [13] Assume (sk) is a sequence of nonnegative real numbers such

that

sk+1 ≤ (1− ωk)s
k + ωkχk, k ≥ 1 (3.1.20)

and

sk+1 ≤ sk − ψk + φk, (3.1.21)

where (ωk) is a sequence in (0, 1), (ψk) is a sequence of nonnegative real numbers

and (χk), (φk) are real sequences such that

(1)
∞∑
k=1

ωk =∞,

(2) lim
k→∞

φk = 0,

(3) lim
n→∞

ψkn = 0 implies lim sup
n→∞

χkn ≤ 0 for any subsequence of real

numbers (kn) of (k).

Then lim
k→∞

sk = 0.

Definition 3.1.46 Let H be a real Hilbert space and let f : H → R, function f
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is said to be lower semi-continuous at x if xk → x, then

f(x) ≤ lim inf
k→∞

f(xk).

Definition 3.1.47 Let f : Rn → R ∪ {+∞} be a closed proper convex function,

The proximal operator proxf : Rn → Rn of f is defined by

proxf (v) = argmin
x

(f(x) + (1/2)∥x− v∥22),

and the proximal operator of the scalar function αf , where α > 0, which can be

expressed as

proxαf (v) = argmin
x

(f(x) + (1/2α)∥x− v∥22),

then proxαf is call the proximal operator of f with parameter α.

Definition 3.1.48 Let H be a real Hilbert space and let h : H → R ∪ {+∞} be

a proper, lower semicontinuous (l.s.c.), and convex function. The subdifferential

of h at x is defined by

∂h(x) = {v ∈ H : ⟨v, y − x⟩+ h(x) ≤ h(y), y ∈ H}.

Example 3.1.49 The real line R, f : R→ R by f(x) = |x|. The subdifferential,

∂f(x) =


−1 if x > 0,

[−1, 1] if x = 0,

1 if x < 0.

(3.1.22)

Proof. For x ∈ R, we have that

z ∈ ∂f(x)⇔ |y| − |x| ≥ z(y − x) ∀y ∈ R. (3.1.23)
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We consider the three cases of x > 0, x < 0 and x = 0. Let x > 0. If y > x,

then we have from (3.1.23) that y − x ≥ z(y − x) and hence 1 ≥ z. For y with

0 < y < x, we have from (3.1.23) that y − x ≥ z(y − x) and hence 1 ≤ z. So, we

have z = 1. Let x < 0. As in the proof of x > 0, we have z = −1. In the case of

x = 0, we have from (3.1.23) that |y| ≥ zy. If y > 0, then we have y ≥ zy and

hence 1 ≥ z. If y < 0, then we have −y ≥ zy and hence −1 ≤ z. So, we have

−1 ≤ z ≤ 1. Then, we have (3.1.22)

Recall that an element g ∈ H is said to be a subgradient of f : H → R

at x if

f(z) ≥ f(x) + ⟨g, z − x⟩, ∀z ∈ H.

Fact 3.1.50 [[2], Proposition 17.2] Let h : H → R ∪ {+∞} be a proper, lower-

semicontinuous and convex function. Then, for x ∈ domh and y ∈ H, the follow-

ing hold:

(1) f ′(x; y) exists and

f ′(x; y) = inf
α∈R+∪(∞)

f(x+ αy)− f(x)
α

.

(2) h′(x; y − x) + h(x) ≤ h(y).

Lemma 3.1.51 [4] The subdifferential operator ∂h is maximal monotone. More-

over, the graph of ∂h, Gph(∂h) = {(x, v) ∈ H × H : v ∈ ∂h(x)} is demiclosed,

i.e., if the sequence (xk, vk) ⊂ Gph(∂h) satisfies that (xk)k∈N converges weakly to

x and (vk)k∈N converges strongly to v, then (x, v) ∈ Gph(∂h).

Let us recall the proximal operator proxg : H → domg with proxg(z) =

(I+∂g)−1(z), z ∈ H. Here I denotes the identity operator. It is well - known that

the proximal operator is single - valued with full domain. It is also known that

z − proxαg(z)

α
∈ ∂g(proxαg(z)) for all z ∈ H, α > 0. (3.1.24)



 

 

 

CHAPTER IV

MAIN RESULTS

4.1 Hybrid forward-backward algorithms using linesearch rule for

minimization problem

In this section, we propose the forward-backward splitting algorithm

using the projection algorithm and prove the strong convergence theorem.

Following [3], we assume that two below conditions hold:

(A1) f, g : H → R ∪ {+∞} are two proper, lower-semicontinuous and convex

functions with domg ⊆ domf and domg is nonempty, closed and convex.

(A2) The function f is Fréchet differentiable on an open set containing domg.

The gradient ∇f is uniformly continuous on any bounded subset of domg and

maps any bounded subset of domg to a bounded set in H.

Algorithm 4.1.1 (step 0) Choose x0 ∈ domg, take δ ∈ (0, 1
2
), σ > 0 and θ ∈

(0, 1).

(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(proxαkg
(xk − αk∇f(xk)))−∇f(xk)∥

≤ δ∥proxαkg
(xk − αk∇f(xk))− xk∥. (4.1.1)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (4.1.2)

(step 3) Compute

Ck = {x∗ ∈ domg : ∥yk − x∗∥ ≤ ∥xk − x∗∥}
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and

Qk = {x∗ ∈ domg : ⟨x∗ − xk, x0 − xk⟩ ≤ 0}. (4.1.3)

(step 4) Compute

xk+1 = PCk∩Qk
(x0). (4.1.4)

(step 5) Set k ← k + 1, and go to (step 1).

Denote S∗ by the solution set of (2.1.1) and assume that S∗ is nonempty.

Theorem 4.1.2 Let H be a real Hilbert space. Assume that there exists α > 0

such that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 4.1.1

converges strongly to x̄ = PS∗(x
0).

Proof. We divide our proof into four steps.

Step 1 Show that (xk)
∞
k=0 is well - defined and S∗ ⊂ Ck ∩ Qk, ∀k ≥ 0. For each

x ∈ domg, we see that

∥yk − x∥ ≤ ∥xk − x∥ ↔ ∥yk∥2 − 2⟨x, yk⟩ ≤ ∥xk∥2 − 2⟨x, xk⟩

↔ 2⟨x, xk − yk⟩ ≤ ∥xk∥2 − ∥yk∥2

↔ ⟨x, xk − yk⟩ ≤ 1

2
[∥xk∥2 − ∥yk∥2]. (4.1.5)

Therefore Ck is closed and convex for all k ≥ 0. Moreover, it is easy to

see that Qk is closed and convex for all k ≥ 0. Therefore, Ck ∩Qk is closed and

convex for all k ≥ 0. Using (3.1.24) and (4.1.2), we observe that

xk − yk

αk

−∇f(xk) =
xk − proxαkg

(xk − αk∇f(xk))
αk

−∇f(xk) ∈ ∂g(yk).
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The convexity of g gives

g(x)− g(yk) ≥ ⟨x
k − yk

αk

−∇f(xk), x− yk⟩,∀x ∈ domg. (4.1.6)

The convexity of f also implies

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩, ∀x ∈ domf, y ∈ domg. (4.1.7)

From (4.1.6) and (4.1.7) with any x ∈ domg ⊆ domf and y = xk ∈ domg, we

have

(f + g)(x) ≥ f(xk) + g(yk) + ⟨x
k − yk

αk

−∇f(xk), x− yk⟩+ ⟨∇f(xk), x− xk⟩

= f(xk) + g(yk) + ⟨∇f(yk), yk − xk⟩

+
1

αk

⟨xk − yk, x− yk⟩+ ⟨∇f(xk)−∇f(yk), yk − xk⟩

≥ f(xk) + g(yk) + ⟨∇f(yk), yk − xk⟩

+
1

αk

⟨xk − yk, x− yk⟩ − ∥∇f(xk)−∇f(yk)∥∥yk − xk∥

≥ f(xk) + g(yk) +
1

αk

⟨xk − yk, x− yk⟩ − δ

αk

∥xk − yk∥2

+⟨∇f(yk), yk − xk⟩,

where the last inequality follows from the linesearch (4.1.1). Hence we obtain

⟨xk − yk, yk − x⟩

≥ αk[f(x
k) + g(yk)− (f + g)(x) + ⟨∇f(yk), yk − xk⟩]

−δ∥xk − yk∥2.

Replacing x = xk and y = yk in (4.1.7), we have f(xk)−f(yk) ≥ ⟨∇f(yk), xk−yk⟩.
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So, we get

⟨xk − yk, yk − x⟩ ≥ αk[(f + g)(yk)− (f + g)(x)]− δ∥xk − yk∥2.

Since 2⟨xk−yk, yk−x⟩ = ∥xk−x∥2−∥xk−yk∥2−∥yk−x∥2, by (4.1.8), it follows

that

∥yk − x∥2

≤ ∥xk − x∥2 − 2αk[(f + g)(yk)− (f + g)(x)]− (1− 2δ)∥xk − yk∥2.(4.1.8)

Let x∗ ∈ S∗ and set x = x∗ in (4.1.8). Hence we have

∥yk − x∗∥ ≤ ∥xk − x∗∥. (4.1.9)

Thus x∗ ∈ Ck,∀k ≥ 0. Therefore, S∗ ⊂ Ck, ∀k ≥ 0. For k = 0, we have that

x0 ∈ domg and Q0 = domg and hence S∗ ⊂ C0 ∩ Q0. Assume that xn is given

and S∗ ⊂ Cn ∩ Qn for some n ∈ {0, 1, 2, ...}. Since S∗ is nonempty, Cn ∩ Qn is

nonempty, closed and convex. So there exists a unique element xn+1 ∈ Cn ∩ Qn

such that xn+1 = PCn∩Qn(x
0). This gives

⟨x∗ − xn+1, x0 − xn+1⟩ ≤ 0, ∀x∗ ∈ Cn ∩Qn. (4.1.10)

Since S∗ ⊂ Cn ∩Qn, in particular, we obtain

⟨x∗ − xn+1, x0 − xn+1⟩ ≤ 0, ∀x∗ ∈ S∗. (4.1.11)

This implies that S∗ ⊂ Qn+1. By induction we conclude that, S∗ ⊂ Ck∩Qk,∀k ≥

0 and thus (xk)∞k=0 is well - defined.



 

 

 
26

Step 2 Show that (xk)∞k=0 is bounded. From (4.1.3), we see that

⟨x∗ − xk, x0 − xk⟩ ≤ 0, ∀x∗ ∈ Qk.

This implies that xk = PQk
(x0). Then we have

∥xk − x0∥ ≤ ∥x0 − x∗∥,∀x∗ ∈ Qk.

Since S∗ ⊂ Qk, it follows that

∥xk − x0∥ ≤ ∥x0 − x∗∥,∀x∗ ∈ S∗. (4.1.12)

In particular, since xk+1 ∈ Qk,

∥xk − x0∥ ≤ ∥xk+1 − x0∥. (4.1.13)

By (4.1.12) and (4.1.13), we obtain lim
k→∞
∥xk − x0∥ exists. Hence (xk)∞k=0 is

bounded.

Step 3 Show that lim
k→∞
∥xk+1 − xk∥ = 0. By (3.1.19) and the fact that xk =

PQk
(x0), we see that

∥xk+1 − xk∥2 ≤ ∥xk+1 − x0∥2 − ∥xk − x0∥2.

Since lim
k→∞
∥xk − x0∥ exists, it follows that lim

k→∞
∥xk+1 − xk∥ = 0.

Step 4 Show that lim
k→∞

xk = x̄, where x̄ = PS∗(x
0). From (4.1.3), xk+1 ∈ Ck and

Step 3, we see that

∥yk − xk+1∥ ≤ ∥xk − xk+1∥ → 0, k →∞.
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Hence we obtain

∥yk − xk∥ ≤ ∥yk − xk+1∥+ ∥xk+1 − xk∥

→ 0, k →∞. (4.1.14)

Since (xk)∞k=0 is bounded, the set of its weak accumulation point is nonempty.

Take any weak accumulation point ω of (xk). So there is a subsequence (xkn)∞n=0

of (xk)∞k=0 weakly converging to ω. We get from (4.1.14) and assumption (A2)

that

lim
n→∞

∥∇f(ykn)−∇f(xkn)∥ = 0. (4.1.15)

Since ykn = proxαkng
(xkn − αkn∇f(xkn)), it follows from (3.1.24) that

xkn − αkn∇f(xkn)− ykn
αkn

∈ ∂g(ykn)

which implies that

xkn − ykn
αkn

+∇f(ykn)−∇f(xkn) ∈ ∇f(ykn) + ∂g(ykn) ⊆ ∂(f + g)(ykn). (4.1.16)

From (4.1.14), (4.1.15) and (4.1.16), we conclude that ω ∈ S∗ by Lemma 3.1.51.

If x̄ = PS∗(x
0), it then follows from (4.1.12), the fact that ω ∈ S∗ and the lower

semicontinuity of the norm that,

∥x0 − x̄∥ ≤ ∥x0 − ω∥

≤ lim inf
n→∞

∥x0 − xkn∥

≤ lim sup
n→∞

∥x0 − xkn∥

≤ ∥x0 − x̄∥. (4.1.17)

Hence we obtain lim
n→∞

∥xkn − x0∥ = ∥x0 − ω∥ = ∥x0 − x̄∥. This yields xkn → ω =
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x̄, n→∞. It follows that (xk) converges weakly to x̄. So we have

∥x0 − x̄∥ ≤ lim inf
n→∞

∥x0 − xk∥

≤ lim sup
n→∞

∥x0 − xk∥

≤ ∥x0 − x̄∥. (4.1.18)

This shows that lim
n→∞

∥xk−x0∥ = ∥x0− x̄∥. From xk ⇀ x̄, we also have xk−x0 ⇀

x̄−x0. Since H satisfies the Kadec-Klee property, it follows that xk−x0 → x̄−x0.

Therefore xk → x̄ as k →∞. This completes the proof.

Next, we introduce another version of the forward-backward algorithm

based on the shrinking projection method.

Algorithm 4.1.3 (step 0) Set C0 = domg, choose x0 ∈ domg, take δ ∈ (0, 1
2
),

σ > 0 and θ ∈ (0, 1).

(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(yk)−∇f(xk)∥ ≤ δ∥yk − xk∥. (4.1.19)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (4.1.20)

(step 3) Compute

Ck+1 = {x∗ ∈ Ck : ∥yk − x∗∥ ≤ ∥xk − x∗∥}. (4.1.21)

(step 4) Compute

xk+1 = PCk+1
(x0). (4.1.22)

(step 5) Set k ← k + 1, and go to (step 1).

Theorem 4.1.4 Let H be a real Hilbert space. Assume that there exists α > 0
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such that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 4.1.3

converges strongly to x̄ = PS∗(x
0).

Proof. We divide our proof into five steps.

Step 1 Show that PCk+1
(x0) is well - defined and S∗ ⊆ Ck+1, ∀k ≥ 0. Similar to

Step 1 in Theorem 4.1.2, we can show that Ck+1 is closed and convex, ∀k ≥ 0.

Also, we can show that

∥xk − x0∥ ≤ ∥x0 − x∗∥,∀x∗ ∈ Ck.

Thus, if x∗ ∈ S∗, then we have x∗ ∈ Ck+1. So S∗ ⊆ Ck+1 and PCk+1
(x0) is well -

defined.

Step 2 Show that lim
k→∞
∥xk − x0∥ exists. From xk = PCk

x0, Ck+1 ⊂ Ck and

xk+1 ∈ Ck, ∀k ≥ 1, we get

∥xk − x0∥ ≤ ∥xk+1 − x0∥, ∀k ≥ 0.

On the other hand, since S∗ ⊂ Ck, we obtain

∥xk − x0∥ ≤ ∥x∗ − x0∥,∀x∗ ∈ S∗.

It follows that the sequence (xk) is bounded and nondecreasing. Therefore,

lim
k→∞
∥xk − x0∥ exists.

Step 3 Show that xk → x̄ as k →∞. For l > k, by the definition of Ck, we see

that xl = PCl
(x0) ∈ Cl ⊂ Ck. So we obtain

∥xl − xk∥2 ≤ ∥xl − x0∥2 − ∥xk − x0∥2.

From Step 2, we have (xk)∞k=0 is a Cauchy sequence. Hence, xk → x̄ as k → ∞.



 

 

 
30

Step 4 Show that x̄ ∈ S∗. From Step 3, we see that

lim
k→∞
∥xk+1 − xk∥ = 0.

Since xk+1 ∈ Ck+1 ⊂ Ck, we have

∥yk − xk+1∥ ≤ ∥xk − xk+1∥ → 0, k →∞.

It follows that

∥yk − xk∥ ≤ ∥yk − xk+1∥+ ∥xk+1 − xk∥

→ 0, k →∞. (4.1.23)

We get from (4.1.23) and assumption (A2) that

lim
k→∞
∥∇f(yk)−∇f(xk)∥ = 0. (4.1.24)

Since yk = proxαkg
(xk − αk∇f(xk)), it follows from (3.1.24) that

xk − αk∇f(xk)− yk

αk

∈ ∂g(yk)

which implies that

xk − yk

αk

+∇f(yk)−∇f(xk) ∈ ∇f(yk) + ∂g(yk) ⊆ ∂(f + g)(yk). (4.1.25)

From (4.1.23), (4.1.24) and (4.1.25), we have x̄ ∈ S∗. by Lemma 3.1.51

Step 5 Show that x̄ = PS∗(x
0). Since xk = PCk

(x0) and S∗ ⊂ Ck, we obtain

⟨x0 − xk, xk − x∗⟩ ≥ 0, ∀x∗ ∈ S∗. (4.1.26)
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By taking the limit in (4.1.26), we obtain

⟨x0 − x̄, x̄− x∗⟩ ≥ 0, ∀x∗ ∈ S∗. (4.1.27)

This shows that x̄ = PS∗(x
0). We thus complete the proof.

4.2 Strong convergence of the forward-backward splitting algorithms

via linesearches

Algorithm 4.2.1 Let F : domg → domg be a contraction. Let σ > 0, θ ∈ (0, 1)

and δ ∈ (0, 1
2
), take x0 ∈ domg and

yk = proxαkg
(xk − αk∇f(xk)) (4.2.1)

where αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(yk)−∇f(xk)∥ ≤ δ∥yk − xk∥. (4.2.2)

Construct xk+1 by

xk+1 = akF (x
k) + (1− ak)yk. (4.2.3)

Lemma 4.2.2 [3] The linesearch (4.2.2) stops after finitely many steps.

Theorem 4.2.3 Let (xk)k∈N and (αk) be sequences generated by Algorithm 4.2.1.

Suppose that there exists α > 0 such that αk ≥ α for all k ∈ N and (ak) ⊂ (0, 1)

such that

lim
k→∞

ak = 0 and
∞∑
k=1

ak =∞,

then the sequence (xk)k∈N converges strongly to a point x∗ = PS∗F (x∗).
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Proof. Using (3.1.24) and (4.2.1), we see that

xk − yk

αk

−∇f(xk) =
xk − proxαkg

(xk − αk∇f(xk))
αk

−∇f(xk) ∈ ∂g(yk).

From the convexity of g, we have

g(x)− g(yk) ≥ ⟨x
k − yk

αk

−∇f(xk), x− yk⟩,∀x ∈ domg. (4.2.4)

Also the convexity of f implies

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩, ∀x ∈ domf, y ∈ domg. (4.2.5)

Combining (4.2.4) and (4.2.5) with any x ∈ domg ⊆ domf and y = xk ∈ domg,

we obtain

g(x)− g(yk) + f(x)− f(xk)

≥ ⟨x
k − yk

αk

−∇f(xk), x− yk⟩+ ⟨∇f(xk), x− xk⟩

=
1

αk

⟨xk − yk, x− yk⟩+ ⟨∇f(xk)−∇f(yk), yk − xk⟩

+⟨∇f(yk), yk − xk⟩

≥ 1

αk

⟨xk − yk, x− yk⟩ − ∥∇f(xk)−∇f(yk)∥∥yk − xk∥

+⟨∇f(yk), yk − xk⟩

≥ 1

αk

⟨xk − yk, x− yk⟩ − δ

αk

∥xk − yk∥2 + ⟨∇f(yk), yk − xk⟩,

where the last inequality follows from (4.2.2). It then follows that

⟨xk − yk, yk − x⟩

≥ αk[f(x
k) + g(yk)− (f + g)(x) + ⟨∇f(yk), yk − xk⟩]

−δ∥xk − yk∥2.
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Replacing x = xk and y = yk in (4.2.5), we have f(xk)−f(yk) ≥ ⟨∇f(yk), xk−yk⟩.

We obtain

⟨xk − yk, yk − x⟩ ≥ αk[(f + g)(yk)− (f + g)(x)]− δ∥xk − yk∥2. (4.2.6)

Using 2⟨xk − yk, yk − x⟩ = ∥xk − x∥2 − ∥xk − yk∥2 − ∥yk − x∥2, we get by (4.2.6)

that

∥yk−x∥2 ≤ ∥xk−x∥2−(1−2δ)∥xk−yk∥2−2αk[(f+g)(y
k)−(f+g)(x)]. (4.2.7)

Let x∗ = PSF (x∗). Then we have, by (4.2.7)

∥yk − x∗∥2 ≤ ∥xk − x∗∥2 − (1− 2δ)∥xk − yk∥2. (4.2.8)

Now, we will show that (xk)k∈N is bounded. Using (4.2.8), we get

∥xk+1 − x∗∥ = ∥akF (xk) + (1− ak)yk − x∗∥

≤ ak∥F (xk)− x∗∥+ (1− ak)∥yk − x∗∥

≤ ak∥F (xk)− x∗∥+ (1− ak)∥xk − x∗∥

≤ ak∥F (xk)− F (x∗)∥+ ak∥F (x∗)− x∗∥+ (1− ak)∥xk − x∗∥

≤ akc∥xk − x∗∥+ ak∥F (x∗)− x∗∥+ (1− ak)∥xk − x∗∥

= (1− ak(1− c))∥xk − x∗∥+ ak∥F (x∗)− x∗∥. (4.2.9)

By induction, we can show that (xk)k∈N is bounded. On the other hand, we see

that

∥xk+1 − x∗∥2 = ⟨xk+1 − x∗, xk+1 − x∗⟩

= ⟨ak(F (xk)− x∗) + (1− ak)(yk − x∗), xk+1 − x∗⟩

+(1− ak)⟨yk − x∗, xk+1 − x∗⟩
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≤ ak∥F (xk)− F (x∗)∥∥xk+1 − x∗∥+ ak⟨F (x∗)− x∗, xk+1 − x∗⟩

+(1− ak)∥yk − x∗∥∥xk+1 − x∗∥

≤ ak
2
(∥F (xk)− F (x∗)∥2 + ∥xk+1 − x∗∥2)

+ak⟨F (x∗)− x∗, xk+1 − x∗⟩

+
(1− ak)

2
(∥yk − x∗∥2 + ∥xk+1 − x∗∥2)

≤ akc

2
∥xk − x∗∥2 +

ak
2
∥xk+1 − x∗∥2

+ak⟨F (x∗)− x∗, xk+1 − x∗⟩

+
(1− ak)

2
(∥yk − x∗∥2 + ∥xk+1 − x∗∥2). (4.2.10)

Using (4.2.8) and (4.2.10), we then have

∥xk+1 − x∗∥2 ≤
akc

2
∥xk − x∗∥2 +

ak
2
∥xk+1 − x∗∥2 + ak⟨F (x∗)− x∗, xk+1 − x∗⟩

+
(1− ak)

2
(∥xk − x∗∥2 − (1− 2δ)∥xk − yk∥2 + ∥xk+1 − x∗∥2).

It follows that

∥xk+1 − x∗∥2 ≤ (1− ak(1− c))∥xk − x∗∥2 − (1− 2δ)(1− ak)∥xk − yk∥2

+2ak⟨F (x∗)− x∗, xk+1 − x∗⟩. (4.2.11)

In order to use Lemma 3.1.45, we set

sk = ∥xk − x∗∥2

φk = 2ak⟨F (x∗)− x∗, xk+1 − x∗⟩

χk =
2

(1− c)
⟨F (x∗)− x∗, xk+1 − x∗⟩

ψk = (1− 2δ)(1− ak)∥xk − yk∥2

ωk = ak(1− c).
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So (4.2.11) reduces to the inequalities

sk+1 ≤ (1− ωk)s
k + ωkχk, k ≥ 1 (4.2.12)

sk+1 ≤ sk − ψk + φk. (4.2.13)

Let (kn) be a subsequence of (k) and suppose that lim
n→∞

ψkn = 0. Then we have

∥xkn − ykn∥ → 0 as n→∞. Also we obtain,

∥xkn+1 − ykn∥ = ∥aknF (xkn) + (1− akn)ykn − ykn∥

= akn∥F (xkn)− ykn∥

→ 0, as n→∞. (4.2.14)

Since (xkn)n∈N is bounded, the set of its weak accumulation points is nonempty.

Take any weak accumulation point x̄ of (xkn)n∈N. So there is a subsequence

(xkni )i∈N of (xkn)n∈N weakly converging to x̄. We get from Assumption (A2) that

lim
i→∞
∥∇f(ykni )−∇f(xkni )∥ = 0. (4.2.15)

Since ykni = proxαkni
g(x

kni − αkni
∇f(xkni )), it follows from (3.1.24) that

xkni − αkni
∇f(xkni )− ykni

αkni

∈ ∂g(ykni ) (4.2.16)

which implies that

xkni − ykni

αkni

+∇f(ykni )−∇f(xkni ) ∈ ∇f(ykni ) + ∂g(ykni )

⊆ ∂(f + g)(ykni ). (4.2.17)

Passing i → ∞, by Lemma 3.1.51 and since ∥xkni − ykni∥ → 0, we have x̄ ∈ S∗.
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It follows that

lim sup
n→∞

⟨F (x∗)− x∗, xkn − x∗⟩ = lim
i→∞
⟨F (x∗)− x∗, xkni − x∗⟩

= ⟨F (x∗)− x∗, x̄− x∗⟩ ≤ 0.

We see that

∥xkn+1 − xkn∥ ≤ ∥xkn+1 − ykn∥+ ∥ykn − xkn∥

→ 0 as n→∞. (4.2.18)

From (4.2.18), we have

lim sup
n→∞

⟨F (x∗)− x∗, xkn+1 − x∗⟩ ≤ 0. (4.2.19)

Hence we get lim sup
n→∞

χkn ≤ 0. Using Lemma 3.1.45, we conclude that the sequence

(xk) converges strongly to x∗ = PS∗F (x∗).

We next introduce a new linesearch which is different from the previous

linesearches.

Linesearch 4.2.4 Given x ∈ domg, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2
).

For i = 0, 1, 2, ... , set

L(x, i) = proxσθig(x− σθi∇f(x))

and

S(x, i) = proxσθig(L(x, i)− σθi∇f(L(x, i))).
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If

2σθimax{∥∇f(S(x, i))−∇f(L(x, i))∥, ∥∇f(L(x, i))−∇f(x)∥}

≤ δ(∥S(x, i)− L(x, i)∥+ ∥L(x, i)− x∥) (4.2.20)

then γ = σθi

Else i = i+ 1.

We next show that Linesearch 4.2.4 is well - defined.

Lemma 4.2.5 The Linesearch 4.2.4 stops after finitely many steps.

Proof. If x ∈ S∗, then x = proxσg(x−σ∇f(x)) = L(x, 0). It follows that S(x, 0) =

x and the linesearch stops with zero step and hence γ = σ. If x /∈ S∗, then

2σθimax{∥∇f(S(x, i))−∇f(L(x, i))∥, ∥∇f(L(x, i))−∇f(x)∥}

> δ(∥S(x, i)− L(x, i)∥+ ∥L(x, i)− x∥). (4.2.21)

So, we have as i→∞, ∥S(x, i)− L(x, i)∥ → 0 and ∥L(x, i)− x∥ → 0. By (A2),

we see that ∥∇f(S(x, i))−∇f(L(x, i))∥ → 0 and ∥∇f(L(x, i))−∇f(x)∥ → 0 as

i→∞. So, by (4.2.21), we have ∥x−L(x,i)∥
σθi

→ 0 as i→∞. Using (3.1.24), we have

x− σθi∇f(x)− L(x, i)
σθi

∈ ∂g(L(x, i)).

Hence x−L(x,i)
σθi

∈ ∂g(L(x, i)) +∇f(x). So, as i→∞, we have 0 ∈ ∂g(x) +∇f(x)

by Lemma 3.1.51. Thus x ∈ S∗ which is a contradiction. This completes the

proof.

Using this linesearch, we propose the following algorithm:
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Algorithm 4.2.6 Let F : domg → domg be a contraction. Let σ > 0, θ ∈ (0, 1)

and δ ∈ (0, 1
2
), take x0 ∈ domg and

yk = proxγkg(x
k − γk∇f(xk)), (4.2.22)

where γk = σθmk and mk is the smallest nonnegative integer such that

2γk max{∥∇f(proxγkg(y
k − γk∇f(yk)))−∇f(yk)∥, ∥∇f(xk)−∇f(yk)∥}

≤ δ(∥proxγkg(y
k − γk∇f(yk))− yk∥+ ∥xk − yk∥). (4.2.23)

Construct xk+1 by

xk+1 = akF (x
k) + (1− ak)proxγkg(y

k − γk∇f(yk)). (4.2.24)

Theorem 4.2.7 Let (xk)k∈N and (γk) be sequences generated by Algorithm 4.2.6.

Suppose that there exists γ > 0 such that γk ≥ γ for all k ∈ N and (ak) ⊂ (0, 1)

such that

lim
k→∞

ak = 0 and
∞∑
k=1

ak =∞,

then the sequence (xk)k∈N converges strongly to a point x∗ = PS∗F (x∗).

Proof. We set

zk = proxγkg(y
k − γk∇f(yk)). (4.2.25)

Using (3.1.24) and (4.2.22), we see that

xk − yk

γk
−∇f(xk) =

xk − proxγkg(x
k − αk∇f(xk))
γk

−∇f(xk) ∈ ∂g(yk).

By the convexity of g, it follows that

g(x)− g(yk) ≥ ⟨x
k − yk

γk
−∇f(xk), x− yk⟩, ∀x ∈ domg. (4.2.26)
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Also, from (3.1.24) and (4.2.25), we have

yk − zk

γk
−∇f(yk) =

yk − proxγkg(y
k − γk∇f(yk))
γk

−∇f(yk) ∈ ∂g(zk).

By the convexity of g, we also have

g(x)− g(zk) ≥ ⟨y
k − zk

γk
−∇f(yk), x− zk⟩,∀x ∈ domg. (4.2.27)

We see that

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩, ∀x ∈ domf, y ∈ domg. (4.2.28)

For any x ∈ domg ⊆ domf and y = xk in (4.2.28), we get

f(x)− f(xk) ≥ ⟨∇f(xk), x− xk⟩. (4.2.29)

Also if y = yk in (4.2.28), then we get

f(x)− f(yk) ≥ ⟨∇f(yk), x− yk⟩. (4.2.30)

So from (4.2.26), (4.2.27), (4.2.29) and (4.2.30), we have

g(x)− g(yk) + g(x)− g(zk) + f(x)− f(xk) + f(x)− f(yk)

≥ ⟨x
k − yk

γk
−∇f(xk), x− yk⟩+ ⟨y

k − zk

γk
−∇f(yk), x− zk⟩

+⟨∇f(xk), x− xk⟩+ ⟨∇f(yk), x− yk⟩

=
1

γk
⟨xk − yk, x− yk⟩+ ⟨∇f(xk), yk − x⟩+ 1

γk
⟨yk − zk, x− zk⟩

+⟨∇f(yk), zk − x⟩+ ⟨∇f(xk), x− xk⟩+ ⟨∇f(yk), x− yk⟩

=
1

γk
[⟨xk − yk, x− yk⟩+ ⟨yk − zk, x− zk⟩] + ⟨∇f(xk), yk − xk⟩

+⟨f(yk), zk − yk⟩
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=
1

γk
[⟨xk − yk, x− yk⟩+ ⟨yk − zk, x− zk⟩] + ⟨∇f(xk)−∇f(yk), yk − xk⟩

+⟨∇f(yk), yk − xk⟩+ ⟨∇f(yk)−∇f(zk), zk − yk⟩+ ⟨∇f(zk), zk − yk⟩

≥ 1

γk
[⟨xk − yk, x− yk⟩+ ⟨yk − zk, x− zk⟩]− ∥∇f(xk)−∇f(yk)∥∥yk − xk∥

+⟨∇f(yk), yk − xk⟩ − ∥∇f(yk)−∇f(zk)∥∥zk − yk∥

+⟨∇f(zk), zk − yk⟩. (4.2.31)

Using (4.2.28), we obtain

g(x)− g(yk) + g(x)− g(zk) + f(x)− f(xk) + f(x)− f(yk)

≥ 1

γk
[⟨xk − yk, x− yk⟩+ ⟨yk − zk, x− zk⟩]− ∥∇f(xk)−∇f(yk)∥∥yk − xk∥

+f(yk)− f(xk)− ∥∇f(yk)−∇f(zk)∥∥zk − yk∥+ f(zk)− f(yk). (4.2.32)

So we have

1

γk
[⟨xk − yk, yk − x⟩+ ⟨yk − zk, zk − x⟩]

≥ (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)− ∥∇f(xk)

−∇f(yk)∥∥yk − xk∥ − ∥∇f(yk)−∇f(zk)∥∥zk − yk∥. (4.2.33)

Using (4.2.23), we obtain

1

γk
[⟨xk − yk, yk − x⟩+ ⟨yk − zk, zk − x⟩]

≥ (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)

− δ

2γk
(∥zk − yk∥+ ∥xk − yk∥)∥yk − xk∥

− δ

2γk
(∥zk − yk∥+ ∥xk − yk∥)∥zk − yk∥

= (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)

− δ

2γk
(∥zk − yk∥∥yk − xk∥+ ∥yk − xk∥2)

− δ

2γk
(∥zk − yk∥2 + ∥xk − yk∥∥zk − yk∥)
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= (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)− δ

2γk
∥yk − xk∥2

− δ

2γk
∥zk − yk∥2 − δ

γk
∥xk − yk∥∥zk − yk∥

≥ (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)− δ

2γk
∥yk − xk∥2

− δ

2γk
∥zk − yk∥2 − δ

2γk
∥xk − yk∥2 − δ

2γk
∥zk − yk∥2

= (f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)− δ

γk
∥yk − xk∥2

− δ

γk
∥zk − yk∥2. (4.2.34)

We know that

2⟨xk − yk, yk − x⟩ = ∥xk − x∥2 − ∥xk − yk∥2 − ∥yk − x∥2

and

2⟨yk − zk, zk − x⟩ = ∥yk − x∥2 − ∥yk − zk∥2 − ∥zk − x∥2.

So we have

∥zk − x∥2

≤ ∥xk − x∥2 − ∥xk − yk∥2 − ∥yk − zk∥2 + 2δ∥yk − xk∥2 + 2δ∥zk − yk∥2

−2γk[(f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)]

= ∥xk − x∥2 − (1− 2δ)∥yk − xk∥2 − (1− 2δ)∥zk − yk∥2

−2γk[(f + g)(yk)− (f + g)(x) + (f + g)(zk)− (f + g)(x)]. (4.2.35)

Let x∗ = PS∗F (x∗). Then we have

∥zk − x∗∥2 ≤ ∥xk − x∗∥2 − (1− 2δ)(∥yk − xk∥2 + ∥zk − yk∥2). (4.2.36)

Now, we will show that (xk)k∈N is bounded. Similar to Theorem 4.2.3, we can
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show that

∥xk+1 − x∗∥ ≤ (1− ak(1− c))∥xk − x∗∥+ ak∥F (x∗)− x∗∥. (4.2.37)

By induction, we can show that (xk)k∈N is bounded. We also can show that

∥xk+1 − x∗∥2 ≤
akc

2
∥xk − x∗∥2 +

ak
2
∥xk+1 − x∗∥2 + ak⟨F (x∗)− x∗, xk+1 − x∗⟩

+
(1− ak)

2
(∥zk − x∗∥2 + ∥xk+1 − x∗∥2). (4.2.38)

Using (4.2.36) and (4.2.38), we then have

∥xk+1 − x∗∥2

≤ (1− ak(1− c))∥xk − x∗∥2 − (1− 2δ)(1− ak)(∥yk − xk∥2 + ∥zk − yk∥2)

+2ak⟨F (x∗)− x∗, xk+1 − x∗⟩. (4.2.39)

Applying Lemma 3.1.45, we set

sk = ∥xk − x∗∥2

φk = 2ak⟨F (x∗)− x∗, xk+1 − x∗⟩

χk =
2

(1− c)
⟨F (x∗)− x∗, xk+1 − x∗⟩

ψk = (1− 2δ)(1− ak)(∥yk − xk∥2 + ∥zk − yk∥2)

ωk = ak(1− c).

Let (kn) be a subsequence of (k) and suppose that lim
n→∞

ψkn = 0. Then we have

∥xkn − ykn∥ → 0 and ∥ykn − zkn∥ → 0 as n→∞. Also we obtain,

∥xkn+1 − zkn∥ = ∥aknF (xkn) + (1− akn)zkn − zkn∥

= akn∥F (xkn)− zkn∥ → 0, as n→∞.
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This shows that ∥xkn+1−xkn∥ → 0 as n→∞. Since (xkn)n∈N is bounded, the set

of its weak accumulation points is nonempty. Take any weak accumulation point

x̄ of (xkn)n∈N. So there is a subsequence (xkni )i∈N of (xkn)n∈N weakly converging

to x̄. From Assumption (A2), we get

lim
i→∞
∥∇f(ykni )−∇f(zkni )∥ = 0. (4.2.40)

Using ykni = proxγkni
g(x

kni − γkni
∇f(xkni )) and (3.1.24), we see that

ykni − zkni − γkni
∇f(ykni )

γkni

∈ ∂g(zkni ) (4.2.41)

which implies that

ykni − zkni

γkni

−∇f(ykni ) +∇f(zkni ) ∈ ∂g(zkni ) +∇f(zkni )

⊆ ∂(f + g)(zkni ). (4.2.42)

Hence x̄ ∈ S∗ by Lemma 3.1.51. So we obtain

lim sup
n→∞

⟨F (x∗)− x∗, xkn − x∗⟩ = lim
i→∞
⟨F (x∗)− x∗, xkni − x∗⟩

= ⟨F (x∗)− x∗, x̄− x∗⟩

≤ 0. (4.2.43)

It follows that

lim sup
n→∞

⟨F (x∗)− x∗, xkn+1 − x∗⟩ ≤ 0. (4.2.44)

Hence lim sup
n→∞

χkn ≤ 0. Then the sequence (xk)k∈N converges strongly to x∗ =

PS∗F (x∗) by Lemma 3.1.45. This completes the proof.

Proposition 4.2.8 Let (γk)k∈N be the sequence generated by Linesearch 4.2.4. If

the gradient of f is globally Lipschitz continuous on domg with constant L > 0,
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then σ ≥ γk ≥ min{σ, δθ/2L} for all k ∈ N.

Proof. Suppose that ∇f is globally Lipschitz continuous with constant L > 0. It

is obvious that γk ≤ σ. If γk < σ, define γ̄k := γk
θ
, ȳk := proxγ̄kg(x

k − γ̄k∇f(xk))

and z̄k := proxγ̄kg(ȳ
k − γ̄k∇f(ȳk)). It follows from the definition of Linesearch

4.2.4 that

2γ̄k max{∥∇f(z̄k)−∇f(ȳk)∥, ∥∇f(xk)−∇f(ȳk)∥}

> δ(∥z̄k − ȳk∥+ ∥xk − ȳk∥), (4.2.45)

which gives ∥z̄k− ȳk∥+ ∥xk− ȳk∥ ̸= 0 for all k ∈ N. By the Lipschitz assumption

on ∇f , we obtain

∥∇f(z̄k)−∇f(ȳk)∥ ≤ L∥z̄k − ȳk∥

and

∥∇f(xk)−∇f(ȳk)∥ ≤ L∥xk − ȳk∥.

This shows that

max{∥∇f(z̄k)−∇f(ȳk)∥, ∥∇f(xk)−∇f(ȳk)∥}

≤ ∥∇f(z̄k)−∇f(ȳk)∥+ ∥∇f(xk)−∇f(ȳk)∥

≤ L(∥z̄k − ȳk∥+ ∥xk − ȳk∥), ∀k ∈ N.

Combining the latter inequality with (4.2.45), we have 2γ̄kL > δ, i.e., γk >
δθ

2L
when γk < σ.

Remark 4.2.9 Since the second part of (A2) holds even if the gradient of f

is Lipschitz continuous, using Proposition 4.2.8, it follows that the stepsize γk

imposed on Theorem 4.2.7 is also satisfied.
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4.3 Numerical examples and applications

In this section, we present some numerical examples to the signal recov-

ery. We consider our first algorithm defined by projection method and provide a

comparison among Algorithm 2.1.2, Algorithm 2.1.4 and Algorithm 4.1.1. In this

case, we set Txk = proxαg(x
k − α∇f(xk)). It is known that T is a nonexpansive

mapping when α ∈ (0,
2

L
) and L is the Lipschitz constant of ∇f . Compressed

sensing can be modeled as the following underdeterminated linear equation sys-

tem:

y = Ax+ ϵ, (4.3.1)

where x ∈ RN is a vector with k nonzero components to be recovered, y ∈ RM

is the observed or measured data with noisy ϵ, and A : RN → RM(M < N) is a

bounded linear operator. It is known that to solve (4.3.1) can be seen as solving

the LASSO problem:

min
x∈RN

1

2
∥y − Ax∥22 + λ∥x∥1, (4.3.2)

where λ > 0. So we can apply our method for solving (4.3.2) in case f(x) =

1
2
∥y − Ax∥22 and g(x) = λ∥x∥1. It is noted that ∇f(x) = AT (Ax− y).

In our experiment, the sparse vector x ∈ RN is generated from uniform

distribution in the interval [-2,2] with k nonzero elements. The matrix A ∈ RM×N

is generated from a normal distribution with mean zero and invariance one. The

observation y is generated by with Gaussian noise white signal - to - noise ratio

SNR=40. The initial point x0 is picked randomly. The restoration accuracy is

measured by the mean squared error as follows:

MSE =
1

N
∥xk − x∗∥22 < 10−5,

where x∗ is an estimated signal of x.
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In what follows, let σ = 5, θ = 0.4, and δ = 0.4 in both Algorithm

2.1.4 and Algorithm 4.1.1 and let the step size αk in Algorithm 2.1.2 and Algo-

rithm 2.1.4 be 1
∥A∥2 . Let h(x) = x

5
be a contraction and choose ak = 1

100k
in all

algorithms. We denote by CPU the time using in CPU and Iter the number of

iterations. The numerical results are reported as follows:

Table 1: Computational results for solving the LASSO problem by Algorithm 4.1.1,

Algorithm 2.1.4 and Algorithm 2.1.1

m - sparse signal Method
N = 512, M = 256 N = 1024, M = 512

CPU Iter CPU Iter

m = 20 Algorithm 4.1.1 4.3612 673 35.2779 1258

Algorithm 2.1.4 41.5479 3645 265.4392 6851

Algorithm 2.1.1 9.7712 1742 65.0949 3249

m = 30 Algorithm 4.1.1 6.0680 793 32.7622 1335

Algorithm 2.1.4 56.6697 4370 282.0070 7265

Algorithm 2.1.1 13.0234 2109 64.8357 3457

m = 40 Algorithm 4.1.1 5.5765 790 35.2468 1391

Algorithm 2.1.4 57.1358 4495 324.6561 7639

Algorithm 2.1.1 14.2279 2175 71.0742 3649

m = 50 Algorithm 4.1.1 7.8385 1024 41.1793 1416

Algorithm 2.1.4 96.3842 5901 357.4149 7818

Algorithm 2.1.1 24.7290 2873 88.7461 3731

The data in Table 1 shows that, for a given tolerance, all algorithms can be used to

solve the LASSO problem in compressed sensing. To be more precise, Algorithm

4.1.1 with a linesearch take significantly less number of iterations and CPU time

compared to Algorithm 2.1.1 of [18] and Algorithm 2.1.4 of [3]. Next, we provide

some numerical experiments for two cases to illustrate the convergence behavior

of all algorithm in comparison.
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Figure 1: From top to bottom: original signal, observation data, recovered
signal by Algorithm 4.1.1, Algorithm 2.1.4 and Algorithm 2.1.1 with N = 512
and M = 256, respectively.

Figure 2: The MSE versus number of iterations in case N = 512, M = 256.
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Figure 3: From top to bottom: original signal, observation data, recovered
signal by Algorithm 4.1.1, Algorithm 2.1.4 and Algorithm 2.1.1 with N = 512
and M = 256, respectively.

Figure 4: The MSE versus number of iterations in case N = 512, M = 256.
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Next, we discuss our forward-backward algorithm defined by the shrink-

ing projection method. We provide a comparison among Algorithm 2.1.1, Algo-

rithm 2.1.5 and Algorithm 4.1.3. For convenience, we set all condition as in the

previous example.

Table 2: Computational results for solving the LASSO problem by Algorithm 4.1.3,

Algorithm 2.1.5 and Algorithm 2.1.1

m - sparse signal Method
N = 512, M = 256 N = 1024, M = 512

CPU Iter CPU Iter

m = 20 Algorithm 4.1.3 5.2158 660 40.9654 1247

Algorithm 2.1.5 29.0458 3548 183.4528 6789

Algorithm 2.1.1 5.8716 1696 46.3793 3222

m = 30 Algorithm 4.1.3 8.7975 865 45.0510 1369

Algorithm 2.1.5 42.1279 4820 236.4308 7648

Algorithm 2.1.1 9.8976 2325 62.7609 3645

m = 40 Algorithm 4.1.3 7.4329 926 42.7707 1365

Algorithm 2.1.5 53.7019 5079 224.0050 7551

Algorithm 2.1.1 12.2709 2461 54.1403 3608

m = 50 Algorithm 4.1.3 8.6868 1099 56.2084 1508

Algorithm 2.1.5 107.2563 6309 308.9143 8439

Algorithm 2.1.1 20.1471 3085 67.8876 4053

The data in Table 2 shows that, for a given tolerance, all algorithms can be

used to solve the LASSO problem in compressed sensing. To be more precise,

Algorithm 4.1.3 with a linesearch take significantly less number of iterations and

CPU time compared to Algorithm 2.1.1 of [18] and Algorithm 2.1.5 of [23].

We plot the original signal, observation data, recovered signal, the num-

ber of iterations versus MSE.
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Figure 5: From top to bottom: original signal, observation data, recovered
signal by Algorithm 4.1.3, Algorithm 2.1.5 and Algorithm 2.1.1 with N = 512
and M = 256, respectively.

Figure 6: The MSE versus number of iterations in case N = 512, M = 256.
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Figure 7: From top to bottom: original signal, observation data, recovered
signal by Algorithm 4.1.3, Algorithm 2.1.5 and Algorithm 2.1.1 with N = 512
and M = 256, respectively.

Figure 8: The MSE versus number of iterations in case N = 512, M = 256.
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Next, we provide a comparison among Algorithm 2.1.2, Algorithm 4.2.1

and Algorithm 4.2.6. In our experiment, the sparse vector x ∈ RN is generated

from uniform distribution in the interval [-2,2] with k nonzero elements. The

matrix A ∈ RM×N is generated from a normal distribution with mean zero and

invariance one. The observation y is generated by with Gaussian noise white

signal-to-noise ratio SNR=40. The initial point x0 is picked randomly. The

restoration accuracy is measured by the mean squared error as follows:

MSE =
1

N
∥xk − x∗∥2 < 10−5,

where x∗ is an estimated signal of x.

In what follows, let the step size βk in Algorithm 2.1.2 is 1
∥A∥2 and bk = 0

and let σ = 2, θ = 0.4, and δ = 0.4 in both Algorithm 4.2.1 and Algorithm 4.2.6.

Let F (x) = x
2
be a contraction and choose ak =

1
100k

in all algorithms. We denote

by CPU the time using in CPU and Iter the number of iterations. The numerical

results are reported as follows:



 

 

 
53

Table 3: Computational results for solving the LASSO problem by Algorithm 2.1.2,

Algorithm 4.2.1 and Algorithm 4.2.6

m - sparse signal Method
N = 512, M = 256 N = 1024, M = 512

CPU Iter CPU Iter

m = 10 Algorithm 2.1.2 0.8440 966 8.9773 2019

Algorithm 4.2.1 0.4650 338 3.0526 635

Algorithm 4.2.6 0.3661 180 2.7670 349

m = 15 Algorithm 2.1.2 1.1808 1071 8.3444 1895

Algorithm 4.2.1 0.5427 369 3.0859 601

Algorithm 4.2.6 0.4676 193 2.4348 324

m = 20 Algorithm 2.1.2 1.3669 1243 11.3604 2301

Algorithm 4.2.1 0.6102 426 3.4292 683

Algorithm 4.2.6 0.4997 224 2.8893 381

m = 30 Algorithm 2.1.2 2.8177 1753 14.5687 2587

Algorithm 4.2.1 0.8495 572 3.7913 762

Algorithm 4.2.6 0.7782 316 3.2678 462

The data in Table 1 shows that for a given tolerance, all algorithms can

be used to solve the LASSO problem in compressed sensing. To be more precise,

Algorithm 4.2.6 with a new linesearch take significantly less number of iterations

and CPU time compared to Algorithm 2.1.2 of [31] and Algorithm 4.2.1 with

Linesearch 2.1.4.

We next give some numerical experiments for two cases to illustrate the

convergence behavior of all algorithm in comparison. We plot the original sig-

nal, observation data, recovered signal, the number of iterations versus objective

function value and MSE.
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Figure 9: From top to bottom: original signal, observation data, recovered
signal by Algorithm 2.1.2, Algorithm 4.2.1 and Algorithm 4.2.6 with N = 512
and M = 256, respectively.

Figure 10: The objective function value versus number of iterations in case N =
512, M = 256.
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Figure 11: The MSE versus number of iterations in case N = 512, M = 256.

Figure 12: From top to bottom: original signal, observation data, recovered
signal by Algorithm 2.1.2, Algorithm 4.2.1 and Algorithm 4.2.6 with N = 1024
and M = 512, respectively.
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Figure 13: The objective function value versus number of iterations in case N =
1024, M = 512.

Figure 14: The MSE versus number of iterations in case N = 1024, M = 512.



 

 

 

CHAPTER V

CONCLUSIONS

From our study, we get the main results as the following:

Algorithm 5.3.1 (step 0) Choose x0 ∈ domg, take δ ∈ (0, 1
2
), σ > 0 and θ ∈

(0, 1).

(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(proxαkg
(xk − αk∇f(xk)))−∇f(xk)∥

≤ δ∥proxαkg
(xk − αk∇f(xk))− xk∥. (5.3.3)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (5.3.4)

(step 3) Compute

Ck = {x∗ ∈ domg : ∥yk − x∗∥ ≤ ∥xk − x∗∥}

and

Qk = {x∗ ∈ domg : ⟨x∗ − xk, x0 − xk⟩ ≤ 0}. (5.3.5)

(step 4) Compute

xk+1 = PCk∩Qk
(x0). (5.3.6)

(step 5) Set k ← k + 1, and go to (step 1).

Theorem 5.3.2 Let H be a real Hilbert space. Assume that there exists α > 0

such that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 4.1.1

converges strongly to x̄ = PS∗(x
0).

Algorithm 5.3.3 (step 0) Set C0 = domg, choose x0 ∈ domg, take δ ∈ (0, 1
2
),

σ > 0 and θ ∈ (0, 1).
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(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(yk)−∇f(xk)∥ ≤ δ∥yk − xk∥. (5.3.7)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (5.3.8)

(step 3) Compute

Ck+1 = {x∗ ∈ Ck : ∥yk − x∗∥ ≤ ∥xk − x∗∥}. (5.3.9)

(step 4) Compute

xk+1 = PCk+1
(x0). (5.3.10)

(step 5) Set k ← k + 1, and go to (step 1).

Theorem 5.3.4 Let H be a real Hilbert space. Assume that there exists α > 0

such that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 4.1.3

converges strongly to x̄ = PS∗(x
0).

Algorithm 5.3.5 Let F : domg → domg be a contraction. Let σ > 0, θ ∈ (0, 1)

and δ ∈ (0, 1
2
), take x0 ∈ domg and

yk = proxαkg
(xk − αk∇f(xk)) (5.3.11)

where αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(yk)−∇f(xk)∥ ≤ δ∥yk − xk∥. (5.3.12)

Construct xk+1 by

xk+1 = akF (x
k) + (1− ak)yk. (5.3.13)

Lemma 5.3.6 [3] The linesearch (4.2.2) stops after finitely many steps.
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Theorem 5.3.7 Let (xk)k∈N and (αk) be sequences generated by Algorithm 4.2.1.

Suppose that there exists α > 0 such that αk ≥ α for all k ∈ N and (ak) ⊂ (0, 1)

such that

lim
k→∞

ak = 0 and
∞∑
k=1

ak =∞,

then the sequence (xk)k∈N converges strongly to a point x∗ = PS∗F (x∗).

Linesearch 5.3.8 Given x ∈ domg, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2
).

For i = 0, 1, 2, ... , set

L(x, i) = proxσθig(x− σθi∇f(x))

and

S(x, i) = proxσθig(L(x, i)− σθi∇f(L(x, i))).

If

2σθimax{∥∇f(S(x, i))−∇f(L(x, i))∥, ∥∇f(L(x, i))−∇f(x)∥}

≤ δ(∥S(x, i)− L(x, i)∥+ ∥L(x, i)− x∥) (5.3.14)

then γ = σθi

Else i = i+ 1.

Linesearch 5.3.8 is well - defined.

Lemma 5.3.9 The Linesearch 5.3.8 stops after finitely many steps.

Using this linesearch, we propose the following algorithm:

Algorithm 5.3.10 Let F : domg → domg be a contraction. Let σ > 0, θ ∈ (0, 1)
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and δ ∈ (0, 1
2
), take x0 ∈ domg and

yk = proxγkg(x
k − γk∇f(xk)), (5.3.15)

where γk = σθmk and mk is the smallest nonnegative integer such that

2γk max{∥∇f(proxγkg(y
k − γk∇f(yk)))−∇f(yk)∥, ∥∇f(xk)−∇f(yk)∥}

≤ δ(∥proxγkg(y
k − γk∇f(yk))− yk∥+ ∥xk − yk∥). (5.3.16)

Construct xk+1 by

xk+1 = akF (x
k) + (1− ak)proxγkg(y

k − γk∇f(yk)). (5.3.17)

Theorem 5.3.11 Let (xk)k∈N and (γk) be sequences generated by Algorithm 4.2.6.

Suppose that there exists γ > 0 such that γk ≥ γ for all k ∈ N and (ak) ⊂ (0, 1)

such that

lim
k→∞

ak = 0 and
∞∑
k=1

ak =∞,

then the sequence (xk)k∈N converges strongly to a point x∗ = PS∗F (x∗).
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