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ABSTRACT

Many real world problems in applied sciences, engineering and economics can be reformulated
as the convex minimization problem of the sum of two objective functions. In order to solve this problem,
the forward-backward splitting algorithm has been used for the convergence analysis. However, in
general, the Lipschitz continuity condition on the gradient of functions is usually assumed which is not an
easy task in computation. Moreover, this assumption leads to the slow convergence of algorithms. The
main objective of this thesis is to improve and develop new splitting algorithms for solving convex
minimization problem. First, strong convergence theorems of the sequences generated by the forward-
backward algorithms using hybrid projection method and shrinking projection method are proved in Hilbert
spaces. Second, strong convergence theorems of the sequence generated by the forward-backward
algorithm using viscosity approximation method are proved in Hilbert spaces. The stepsizes studied in this
thesis are defined by two different kinds of linesearches. The main advantage of our algorithms is that the
Lipschitz constants of the gradient of functions do not require in computation. Finally, numerical
experiments are given to show the efficiency of the proposed methods in signal recovery. Numerical

results show that the proposed algorithms have a better convergence rate than other related algorithms.
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CHAPTER 1

INTRODUCTION

Many real world problems in applied sciences, engineering and economics
can be reformulated as the optimization problem (OP). An OP refers to the gen-
eral problem of minimizing (or maximizing) objective function that are typically
not differentiable at their minimizers. More generally, optimization includes find-
ing best available values of some objective function given a defined domain, in-
cluding a variety of different types of objective functions and different types of

domains.

To solve minimization problems, researchers may use algorithm that ter-
minate in finite number of steps, or iterative methods that converge to a solution,
or heuristics that may provide approximate solutions to problem, one of the most
important techniques in handling ill - posed problems and inverse problems. The
Tikhonov regularization and proximal point methods are widely used to deal
with one maximal monotone operator. The proximal point algorithm (PPA) ini-
tiated by Martinet in 1970 and subsequently studied by Rockafellar in 1976 is
often referred. However, since the PPA does not necessarily converges strongly,
many researchers have conducted worthwhile work on modifying the PPA so that
the strong convergence is guaranteed, for examples, the relaxed proximal point
algorithm (RPPA) and the contraction proximal point algorithm (CPPA). The
splitting methods play a central role in the analysis and the numerical solution
of such problems. The Forward-Backward and Douglas-Rachford splitting algo-
rithms are classical methods for computing those reliable solutions. Due to its
applications, there have been several modifications and generalizations of these
methods suggested and invented independently for solving the problem in many

different contexts. This tool plays an important role in the analysis and the



numerical solution of convex optimization problems. The main concept of the
proximal mapping technique is obtained by splitting in that the functions are
used individually so as to yield an easily implementable algorithm, for example,
the proximal point algorithm (Martinet, Rockafellar) is used to find a minimizer
of a convex function, the forward-backward algorithm is used to find a minimizer
of the sum of two convex functions and so on. One of the main advantages of
these algorithms is that they can be used, without computation on the projection
which is not an easy task in general, to minimize nondifferentiable objectives, such
as those commonly encountered in sparse approximation and compressed sens-
ing, or in hard-constrained problems as well as involving high-dimensional data.
There have recently been many researchers extensively studied and developed
this technique based on the proximity operators such as Wang (2000), Nakajo
and Takahashi (2003), Combettes and Wajs (2005). However, many proximal
point method usually assumed that the gradient is Lipschitz continuous and the
step size is bounded below and less than some constants related to the Lipschitz
constant, which is some how not known in practice. For this reason, it is our

purpose to study and develop new algorithm for solving minimization problems.

Over the past few years, Bello Cruz and Nghia (2016) studied and de-
veloped proximal mapping technique for solving minimization problems by the
proximal gradient algorithm using new linesearch technique for solving the con-
vex minimization problem in Hilbert spaces. The main advantage of the proposed
method is that the Lipschitz condition on the gradient of functions is dropped
in computing. As reviewed, it is therefore the main objective in this research
to develop and modify the numerical algorithms by using the proximal map-
ping technique and the linesearch rules for solving minimization problems and
to establish some convergence theorems which admit less stringent and/or more
constructive requirements on solving minimization problems. The main results

established in this research can improve and generalize the corresponding results



in this area and, of course, can be applied to solve major problems existed in
science, engineering, economics and other related branches. Finally, to give some
applications of minimization problem including its numerical experiments. The
main results can improve and extend the corresponding results in this area and,

can be applied to solve major problems existed in science.



CHAPTER II

REVIEW OF RELATED LITERATURE
AND RESEARCH

In this work, we study in solving the convex minimization problem which
is modeled as the following form:

min f(z) + g(v), (2.1.1)

where H is a real Hilbert space with the inner product (-, ), the induced norm
| -1 and f,g: H— RU{+o0} are two proper, lower-semicontinuous and convex
functions in which f is Fréchet differentiable on an open set containing the domain
of g. The solution set of problem (Z) will be denoted by S.. It is known that

(21) relates to the following fixed point equation:

x = proxg,(z — BV f(z)) (2.1.2)

where 3 is a positive real number and prox, is the proximal operator of g. Using

this fixed point equation, one can define the following classical forward-backward

algorithm:
= proxg, (@* = B V(")) (2.1.3)
SN—— N~
backward step forward step

where ) is a suitable stepsize. This method includes, in particular, the proximal
point algorithm [12, 21, 24, 27] and the gradient method [I1, B0, B2]. Due to
its wide applications, there have been modifications of (Z133) invented in the

literature (see [B, [, [0, 06, 17, 26]).

In 2003, Nakajo and Takahashi [23] introduced the following hybrid pro-

jection method and prove its strong convergence for finding a fixed point of a



nonexpansive mapping 7. Let C' be a nonempty closed convex subset of a real

Hilbert spaces H.

for every k € NU

They investigated the sequence (z*) generated by: 2° € C and

)
y* = gt + (1 — ap)T2",

Cr={2€C:|ly* —z|| <|la* — 2|},
(2.1.4)
Qr=1{2€C:(z—aF 20— 2F) <0},

zhtl = PCkﬂQk (xO)’

\

{0}, where (aj) C [0, a] for some a € [0,1). They proved that

(2%) converges strongly to a fixed point of T. Furthermore, Takahashi et al. [28]

proposed the shrinking projection method which is defined by: 2° € C, C, = C,

r! = Pg,(2Y) and

(

\

where 0 < a <

y* =zt + (1 — ap)T2*,
Cht1 = {Z eCy: ||yk — Z|| < ||xk — ,z||}7 (2.1.5)

gttt = Pck+l($0)7

a < 1 for all k € N. It was proved that the sequence (z*)

generated by (E-I5) converges strongly to a fixed point of a nonexpansive mapping

T.

In 2000, Moudafi [22] introduced the viscosity approximation method for

fixed point problem of nonexpansive mappings. To this end they associate to the

initial problem, namely

fine z € C such that z = T'(z),



where T is strongly nonexpansive, the following approximate well - posed problem

find z* € C such that 2* =

T(mk) +

14+ ¢ 14+ ¢

where {g,} is a sequence of positive real numbers having to go to zero and h :

400
1 1
X — (' is a contraction. When suppose g e = +oo and lim |[— — —| = 0.
- k—oo € €k

Then, for all xg, the sequence {x*} converges strongly to a fixed point of T It is

well known that this method establishes strong convergence.
In 2012, Lin and Takahashi [I8] introduced the following modification:

Algorithm 2.1.1 :
Initialization Step. Take 2° € H

Iterative Step. Give x* and set
" = qph(2®) + (1 - ak)proxakg(xk — o,V f(2h)),

where h : H — H is a p—-contraction for some p € [0,1), i.e. ||h(x) — h(y)|| <
pllx — yl|| for all x,y € H and V[ is a v—inverse strongly monotone with the

following conditions:

oo oo
lim a; = 0, E ap = o0, E lag — ap1| < o0;
n—oo

k=1 k=1

o0
Z|ak—ak+1|<oo, 0<b<a, <2
k=1

Stop Criteria. If zFT!' = 2%, then stop.

Recently, Wang and Wang [31] proposed the following forward-backward

splitting method:

1

Algorithm 2.1.2 Let arbitrary initial guess v* € H, and generates 2%+ accord-



ing to the recursion process,

2* T = ap F(2%) + bpa® + c;§p1"0><ﬁkg(x’C — BV f(z*)), (2.1.6)
where (ax) C (0,1), (bx) C (—=2,1), (cx) C (0,2) and ap + by + ¢, = 1, and
F: H — H 1is a contraction.

Theorem 2.1.3 Let (5x) be a sequence in (0, %) Suppose that the following

conditions are satisfied:

o
(i) lim ag =0, 5 ag = 00;
k—o0
k=1
a

(i) lim —= =0;
k—o0 Cp
4
iii) limsup ¢ < L :
() k—00 2 + limsup S’
k—oc0

2
(iv) 0 < liminf By < limsup By < —.
k—o0 k—o0 L
Then the sequence (z¥) generated by (ZI8) converges strongly to a minimizer of

f+g.

The forward-backward method based on iteration (ZZ1=3) has been stud-
ied by many authors: see e.g. [B, [, 8, [0, 06, 19, 20, 25, 29]. However, it should
be noted that the stepsize i usually depends on the Lipschitz assumption on the
gradient of a function f. This leads to the difficulty since the Lipschitz constants

are often unknown in general.

Recently Cruz and Nghia [B] investigated the forward-backward method
using linesearch that eliminates the undesired Lipschitz assumption on the gradi-
ent of f and proved the weak convergence of sequences generated by the proposed

algorithm to optimal solution as follows:



Linesearch 2.1.4 Given z, 0 >0, § € (0,1) and 6 € (0, 3).
Input. Set 3 =0 and J(x, ) := proxg, (v — BV f(x)) with x € domg.
While S|V f(J(x, 5)) = Vf(x)l| > 6[|J(z, 5) — =]

do = 0p.
End Whale
Output. (.

It was proved that Linesearch 2214 is well - defined, i.e., this linesearch

stops after finitely many steps. So it can be considered the following algorithm:

Algorithm 2.1.5 :
Initialization Step. Take 1° € domg, o >0, § € (0,1) and é € (0, 3)

Iterative Step. Give z* and set

gkt = proxﬁkg(a:k - Bka(xk)),

with By, := Linesearch (2%, 0,0,6).

Stop Criteria. If 2"t = 2, then stop.

It was shown that the sequence generated by Algorithm P13 converges
weakly to minimizers of f+ g. Moreover, if the gradient of f is globally Lipschitz
continuous on domg with a constant L > 0, then oy, > min{o, 06/L} for all k € N.
However, their algorithms have only weak convergence in real Hilbert spaces. As
pointed out, for example, by Bauschke and Combettes [2], the weak convergence
of an iterative scheme is an unsatisfactory property in an infinite dimensional
setting. Moreover, it is our academic interests to analyze the strong convergence

using the linesearch technique.

In this research, inspired by Cruz and Nghia [B], we introduce new al-



gorithm, based on Algorithm T4, hybrid projection method (214), shrinking
projection method (Z1H) and Algorithm PZT3, using the viscosity approximation
method. We then prove the strong convergence theorems of the proposed meth-
ods. We also suggest a new linesearch which is different from Linesearch ZZT74.
Combining this linesearch and the forward-backward method, we also prove its
strong convergence in Hilbert spaces. Finally, some numerical experiments, in
signal recovery, are provided to show the efficiency and the implementation of
our algorithms. The report shows that our algorithms can be applied to solve the
compressed sensing in the frequency domain. Moreover, it is discovered that the
forward-backward algorithm using new linesearch has a better convergence than
others in comparison. The main advantage is that our schemes do not require the
information of the Lipschitz constant of the gradient of functions which makes

the proposed algorithm more practical for computing.



CHAPTER I11

PRELIMINARIES

3.1 Fundamentals
In this section, we provide some basic concepts, definitions and lemmas
which will be used in the sequel.

Definition 3.1.1 (Metric space) Let X be a nonempty set and d : X x X —

[0,00) be a function. Then d is called a metric on X if the following properties

hold:
1. d(z,y) > 0 for all z,y € X;
2. d(xz,y) =0 if and only if z =y for all z,y € X;
3. d(z,y) = d(y,z) for all z,y € X;
4. d(z,y) < d(z,z) +d(z,y) for all z,y,z € X.

The value of metric d at (x,y), we write d(z,y), is called distance between x and

y, and the ordered pair (X, d) is called a metric space.

Example 3.1.2 In real line R, define

d(z,y) = |z —y| (3.1.1)

for all z,y € R. Then (R, d) is a metric space.

Example 3.1.3 In euclidean plane R?, define

d(z,y) = V(& —m)? + (& — m)? (3.1.2)

where = = (£1,&),y = (71,72) € R% Then (R?, d) is a metric space.
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Example 3.1.4 In euclidean space R¥, define

d(z,y) = V(& —m)2+ (& —m)>+ (& —m3)> + .. + (& — )2 (3.1.3)

where x = (617627§3a 7£k)’y = (771777277737 77776) € Rk Then (Rkvd) is a metric

space.

Example 3.1.5 Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

T = (617527 )

such that |§;| < ¢, for all j =1,2,... and ¢, is a real number which may depend

on x, but does not depend on j and define

d(z,y) = sup |§; — nj] (3.1.4)
jEN

where y = (n;) € X and N=1,2,.... Then (X, d) is a metric space.

Definition 3.1.6 (Open and Closed sets) Let (X,d) be a metric space. A
subset U C X is open if for every z € X there exists r > 0 such that B(x,r) C U.

A set U is closed if its complement, X \ U, is open.

Definition 3.1.7 (Convergent sequence) A sequence (z¥) in a metric space
X is said to be convergent to x € R if for each ¢ > 0 there exists N € N such

that d(z*,z) < ¢ for all k > N. In this case, we write z* — =.

Definition 3.1.8 (Cauchy sequence) A sequence (2*) in a metric space X is
said to be Cauchy if for each € > 0 there exists N € N such that d(z7,2%) < ¢

for all j,k > N.

Theorem 3.1.9 Let M be a nonempty subset of a metric space X. Then M is

closed if and only if there exists a sequence {x*} C M and z* — x implies that
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xz € M.

Definition 3.1.10 (Bounded sequence) A sequence (z*) in X is bounded if
there exists M > 0 such that ||z*|| < M for all k € N.

Definition 3.1.11 (Nonexpansive mapping) Let (X,d) be a metric space.

Then a map T : X — X is said to be nonexpansive if

d(T(x),T(y)) < d(x,y)

for all z,y € X.

Definition 3.1.12 (Contractive mapping) Let (X, d) be a metric space. Then

amap T : X — X is said to be contractive if there exists k € [0,1) such that

d(T'(z),T(y)) < kd(z,y)

for all z,y € X.
Definition 3.1.13 (Fixed point) Let X be a nonempty set and 7 : X — X.
We say that x € X is a fixed point of T if

T(x)==x (3.1.5)

and denote by Fiz(T) the set of all fixed points of T

Theorem 3.1.14 (The Banach contraction principle)Let X be a complete
metric space and let T be a contraction of X into itself. Then T has a unique

fixed point.

Definition 3.1.15 (Vector space) A vector space or linear space X over the
field K (R or C) is a set X together with an internal binary operation (+4) called

addition and a scalar multiplication carrying (o, z) in Kx X to az in X satisfying



13

the following statements for all z,y,z € X and «, 5 € K:
l.ze+y=y+ux;
2. (x+y)+z=a+ (y+ 2);
3. there exists an element 0 € X call the zero vector of X such that
r+ 0=z forall z € X;
4. for every element x € X, there exists an element —z € X called the
additive inverse or the negative of x such that x + (—x) = 0;
a(z +y) = ar + ay;
(a+ B)r = ax + By;
(aB)z = a(fx);

l-z=ux.

S

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.16 In euclidean space R*, define

r+y = (&G +m,&+n,&+n0s, .8 + k)

ar = (a&1,as,as, ..., aly)

where x = (517527537"'7§k)7y = (7717772,7737---7%) € Rk and a € R. Thena space

R is a real vector space.

Definition 3.1.17 (Convex set) Let C' be a subset of a linear space X. Then C'

is said to be convex if (1 — Az + Ay € C for all z,y € C and all scalar A € [0, 1].

Example 3.1.18 1. Every subspace of vector space is convex.

2. B(z;r) = {x : ||z]| < r} is convex.

3. [0,1]% =[1,0] x [1,0] x ... x [1,0] is convex in R*.
Proposition 3.1.19 Let C be a subset of a linear space X. Then C' is convez if
and only if \yx1+ Aaxo+ ...+ Mgy, € C for any finite set {x1,xo,...,xx} C C and
scalars A; > 0 with Ay + Ao+ ... + A\ = 1.
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Definition 3.1.20 (Convex function) Let X be a linear space and f : X —
(—00, 00| be a function. Then f is said to be convez if f(Ax + (1 — N)y) <
Af(x)+ (1= X\)f(y) for all z,y € X and \ € [0, 1].

Definition 3.1.21 (Proper function) Let function f : X — (—o0,00]. Then
f is said to be proper if there exists z € X with f(z) < occ.

Example 3.1.22 1. f(x) = |z|P where p > 1 is a convex function in R.

1

2. f(x) = 2* — 2% is a convex function in [3, 00).

3. f(x) = zlogz is a convex function in RT.

Definition 3.1.23 (Normed space) Let X be a norm linear space over field K
(Ror C)and || -] : X — R" be a function. Then || - || is said to be a norm if the
following properties hold:
L. ||z]| > 0, and ||z|| = 0 < x = 0;
2. |lazx| = |a||z|| for all z € X and a € K;
3. Mz +yll < llzll + [lyl| for all 2,y € X.
The ordered pair (X, || - ||) is called a normed space.
Example 3.1.24 R* is a normed space with the following norms:
k
x|, = Z |lz;| for all x = (x1, 1y, ..,23) € RF;
i=1

k Y
x|, = <Z |xi|p> “for all z = (z1, 23, ..,25) € R¥ and p € (1, 00);
i=1

[2]|e = max |z;| for all z = (z1,,,..,2;) € RE.

Example 3.1.25 Let X = [, the linear space whose elements consist of all

absolutely convergent sequences (z1, Za, ..., T;, ...) of scalars (R or C),
h=A{z:2=(x1,29,..,2..) and Z |z;| < oo}
i=1

Then [y is a normed space with the norm defined by ||z|; = > o0y |2l
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Example 3.1.26 Let X = [, (1 < p < 0o) be the linear space whose elements

consist of all p-summable sequences (z1, xa, ..., T;, ...) of scalars (R or C),
l,={z:2=(21,22,...,2;...) and Z |z;|P < oo}
i=1

Then I, is a normed space with the norm defined by ||z, = (357, |=:[?) /7.
Example 3.1.27 Let X = [, the linear space whose elements consist of all
bounded sequences (1, xa, ..., x;, ...) of scalars (R or C),

lo ={z: 2 = (21,29, ...,2;,...) and {x;};2, is bounded}.

Then [ is a normed space with the norm defined by ||z|/c = sup;cy |24

Definition 3.1.28 (Completeness) The space X is said to be complete if every

Cauchy sequence in X converges.

Example 3.1.29 The Euclidean space R¥ is complete with

d(z,y) = V(€ —m)2 + (Ea — )2 + (& — m3)2 + ... + (& — M) (3.1.6)

where z = <€17£27£37 >§k)7y = (771777277]37 ;TIk) S Rk

Example 3.1.30 The sequence space [, is complete.
Example 3.1.31 The sequence space [, is complete.

Definition 3.1.32 (Inner product space) An inner product space is a vector
space X with an inner product defined on X. Here, an inner product on X is
a mapping of X x X into the scalar field K of X; that is, with every pair of
vectors x and y there is associated a scalar which is written by (z,y) and called
the inner product of x and y, such that for all vectors x, y, z and scalars a we

have
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(IP1) (z,x) > 0;

(IP2) (z,2) =0 < z = 0;

(IP3) (az,y) = alz,y);

(IP4) (z,y) = (v, 2);

(IP5) (x +y,2) = (x,2) + (2,y).

Example 3.1.33 The function (-, -) : R¥ x R* — R defined by

k
(x,y) = leyl for all @ = (21,22, ..., k), Y = (Y1, Y2, -, yx) €R*  (3.1.7)

=1

is an inner product on R¥. In this case R* with this inner product is called real

Euclidean k-space.

Example 3.1.34 Let C* be the set of k-tuples of complex numbers. Then the
function (-, -) : R¥ x R* — R defined by

k
(x,y) = in@ for all z = (21, %2, ..., T1), ¥ = (Y1, Y2, -, Yx) € C¥ (3.1.8)

i=1

is an inner product on C*. In this case C* with this inner product is called

complex Fuclidean k-space.

Example 3.1.35 Let [; be the set of all sequences of complex numbers

(a1, a9, ..., a;...) with >°° ]a;|> < co. Then the function (-,-) : Iy x I, = C
defined by
(x,y) = Z%E for all x = {z;}2, y = {w:}2, € lo (3.1.9)
i=1

is an inner product on [s.

Definition 3.1.36 (Hilbert space) An inner product space which is complete

with respect to the induced norm is called a Hilbert space.
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Example 3.1.37 The Euclidean space R” is a Hilbert space with inner product
defined by
(x,y) = z'y' + 2%y + ..+ 2FyF
1,2

where z = (21,22, ..., 2%), y = (y', 9%, ..., y*) € RE.

Example 3.1.38 The space [y is a Hilbert space with inner product defined by

<CC, y) = Z x]y_]a
A

where z,y € ls.

Proposition 3.1.39 (The Cauchy-Schwarz inequality) Let X be an inner

product space. Then the following holds:
[z, y)* < (2, 2)(y, ) for allz,y € X, (3.1.10)

1.e.,

[z, 9)] < ll=lllyll for allz,y € X. (3.1.11)

Definition 3.1.40 (Bounded linear operator) Let X and Y be normed spaces
and T : X — Y be a linear operator. The operator 1" is said to be bounded if

there is a real number ¢ > 0 such that for all x € X,
Tz < ellz||. (3.1.12)

Definition 3.1.41 (Level set of convex function) Let f : H — R be a convex

function with the domain H. Then, for any A € R, the set
W={ze H|f(zx) <A} (3.1.13)

Definition 3.1.42 A sequence (z*) in a Hilbert space H is said to converge
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weakly to a point z in H if
(@*,y) — (z,y) (3.1.14)

for all y € H and denote that 2% — x.

Definition 3.1.43 (Contraction mapping) Let H be a real Hilbert space and
C be a nonempty subset of H. Then a map F': C' — (' is said to be contraction

if there exists k € [0, 1) such that

1E(z) = F(y)|| < Kllz =yl

for all z,y € C.

Definition 3.1.44 (Nonexpansive mapping) Let H be a real Hilbert space
and C' be a nonempty subset of H. A mapping 7' : C — (' is said to be

nonexpansive if

[Tz =Tyl < [lz - yl|,Vz,y € C.

A mapping T : C' — (' is said to be firmly nonexpansive if, for all x,y € C,

(x —y, Tz — Ty) > | Tz — Ty|>. (3.1.15)

The operator I — Pg is also firmly nonexpansive, where I denotes the identity

operator, i.e., for any x,y € H,

((I = Po)u — (I = Pe)y,x —y) > |(I = Po)z — (I — Po)yll*. (3.1.16)

In a real Hilbert space, we know that for any point x € H, there exists a unique

point Pox € C such that

lo = Pex| < [l =y, vy € C.
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Here Pg is called the metric projection of H onto C'. We know that P is a

nonexpansive mapping of H onto C'. It is also known that P satisfies
(x —y, Pox — Poy) > ||Pox — Peyll?, (3.1.17)
for all x,y € H. Furthermore, Pox is characterized by the property
(z — Pow, Pox — y) 2 0, (3.1.18)
for all y € C. Moreover, we know that
ly — Pex||> + ||z — Poz||® < ||z — y||?, Va,y € H. (3.1.19)

We also know that all Hilbert space has the Kadec-Klee property, that is, (z*)

converges weakly to x and ||z*| — ||z| imply z* converges strongly to z.

Lemma 3.1.45 [13] Assume (s¥) is a sequence of nonnegative real numbers such
that
sPT < (1 — wr)s® + wexn, k> 1 (3.1.20)

and

sPT < s — 4 o, (3.1.21)

where (wg) is a sequence in (0,1), () is a sequence of nonnegative real numbers

and (xx), (¢x) are real sequences such that
o0

(1) Zwk = 00,
k=1
k—o0
(8) lim vy, = 0 implies limsup xi, < 0 for any subsequence of real
n—oo n—00
numbers (k) of (k).

Then lim s* = 0.
k—o0

Definition 3.1.46 Let H be a real Hilbert space and let f : H — R, function f
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is said to be lower semi-continuous at z if ¥ — x, then

f(z) < lilzri}inff(xk).

Definition 3.1.47 Let f : R” — R U {400} be a closed proper convex function,

The proximal operator prox, : R" — R" of f is defined by

prox;(v) = argmin(f(z) + (1/2) = — v[[3),

and the proximal operator of the scalar function af, where o > 0, which can be

expressed as

pros,,;(v) = argmin(f(2) + (1/20)]}z — o]},
then prox,; is call the proximal operator of f with parameter a.

Definition 3.1.48 Let H be a real Hilbert space and let h: H — R U {+o0} be
a proper, lower semicontinuous (l.s.c.), and convex function. The subdifferential

of h at x is defined by
Oh(x) ={v e H: (v,y —x)+ h(zx) <h(y),y € H}.

Example 3.1.49 The real line R, f : R — R by f(z) = |z|. The subdifferential,

(

-1 if x>0,
of(@) =q[-1,1] ifz=0, (3.1.22)
1 if x <O.

\

Proof. For x € R, we have that

z€0f(z) < |yl — || > 2(y — ) Vy € R. (3.1.23)
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We consider the three cases of x > 0, z < 0 and x = 0. Let x > 0. If y > x,
then we have from (B1T23) that y — x > 2(y — x) and hence 1 > 2. For y with
0 < y < z, we have from (B1=23) that y — z > 2(y — x) and hence 1 < z. So, we
have z = 1. Let x < 0. As in the proof of x > 0, we have z = —1. In the case of
x = 0, we have from (BT=23) that |y| > zy. If y > 0, then we have y > zy and
hence 1 > 2. If y < 0, then we have —y > zy and hence —1 < z. So, we have

—1 <z < 1. Then, we have (B1-22) O

Recall that an element g € H is said to be a subgradient of f: H - R
at x if

f(z) > f(z)+ (9,2 — z), Vz € H.

Fact 3.1.50 //2], Proposition 17.2] Let h : H — R U {400} be a proper, lower-
semicontinuous and conver function. Then, for x € domh and y € H, the follow-
ing hold:

(1) f'(x;y) exists and

P (R ()

a€RTU(c0) (0]

(2) W(x;y — ) + h(x) < h(y).
Lemma 3.1.51 [4] The subdifferential operator Oh is mazimal monotone. More-
over, the graph of Oh, Gph(0h) = {(z,v) € H x H : v € Oh(x)} is demiclosed,
i.e., if the sequence (z*,v*) C Gph(Oh) satisfies that (z*)ren converges weakly to

x and (v¥)ren converges strongly to v, then (z,v) € Gph(Oh).

Let us recall the proximal operator prox, : H — domg with prox,(z) =
(I+0g)~%(2),z € H. Here I denotes the identity operator. It is well - known that

the proximal operator is single - valued with full domain. It is also known that

Loxag(z) € 0g(prox,,(z)) for all z € H, o > 0. (3.1.24)



CHAPTER IV

MAIN RESULTS

4.1 Hybrid forward-backward algorithms using linesearch rule for

minimization problem

In this section, we propose the forward-backward splitting algorithm

using the projection algorithm and prove the strong convergence theorem.

Following [3], we assume that two below conditions hold:
(A1) f,9 : H - RU {400} are two proper, lower-semicontinuous and convex
functions with domg C dom f and domg is nonempty, closed and convex.
(A2) The function f is Fréchet differentiable on an open set containing domg.
The gradient V f is uniformly continuous on any bounded subset of domg and

maps any bounded subset of domg to a bounded set in H.

Algorithm 4.1.1 (step 0) Choose x° € domg, take § € (0, %), oc>0andf €
(0,1).

(step 1) Set ay, = 00™ and my, is the smallest nonnegative integer such that

|V f(prox,, (=" — axV f(a"))) = V(")

< (5Hproxakg(xk — o Vf(z?) = 2. (4.1.1)

(step 2) Set
y* = prox,, (" — 4V f(z")). (4.1.2)

(step 3) Compute

Ci = {a. € domg : [y — 2, < a* — 2.}
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and

Qr = {z. € domg : (v, — 2" 2" — 2*) <0} (4.1.3)

(step 4) Compute
2" = Pe,no, (2°). (4.1.4)

(step 5) Set k <— k + 1, and go to (step 1).

Denote S, by the solution set of (Z1-1) and assume that S, is nonempty.

Theorem 4.1.2 Let H be a real Hilbert space. Assume that there exists o > 0
such that ay, > a > 0. Then the sequence (z%)32, generated by Algorithm 11

converges strongly to & = Ps, ().

Proof. We divide our proof into four steps.
Step 1 Show that (xj)52, is well - defined and S, C Cy N Qx, Vk > 0. For each

x € domg, we see that

ly* =zl < lla" =2l < I*l* = 2(2,9%) < [lo*)* — 2(z,2")
o 2z, o —yt) <2t - Iyt

o (o2t —yf) < SllefP - M) (415)

DN | —

Therefore CY is closed and convex for all £ > 0. Moreover, it is easy to
see that )y is closed and convex for all k& > 0. Therefore, C N Q) is closed and

convex for all £ > 0. Using (B=24) and (A1=2), we observe that

T a® — prox

zF — ay, xk
V) = V(b))

(6973 (6973

akg<

— V(") € ag(y").
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The convexity of g gives

x
9() = 9(s*) 2 (F = = V(). — ), ¥ € domg (4.1.6)
The convexity of f also implies
f(x)— fly) > (Vf(y),x —y),Vo € domf, y € domg. (4.1.7)

From (E18) and (BE2I2) with any € domg C domf and y = 2* € domg, we

have

xk_ k
(F+o)e) > fh) +90h) + (7 = Vi) o =) + (V) — o)
= @)+ 90" + (V") y" = 2¥)

T Lk b e h) (V@) = V), — o)

(073
> f(@) + 9(") + (V). yF — 2F)
4ok gt o) = VS = VIO - o)
1)
> f(a*) + ) + aik< R A

VW), ¥ — ),

where the last inequality follows from the linesearch (E-T1). Hence we obtain

(z* — o,y — z)
> ol f (@) + 9(y") = (f + 9) () + (Vf(y"), v — 2)]

e

Replacing = z* and y = y* in (B2122), we have f(2%)—f(y*) > (Vf(y¥), 2" —y*).
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So, we get

(" —f =) > wl(f+9)W") — (f +9)(=@)] —ol|lz* — y*||>.

Since 2(z* —y* y¥ —z) = ||a* — 2| — ||]2* — v*||* — ||y* — z||?, by (4.1.8), it follows

that

ly* — 2|

<l = 2l = 2040(f + ") — (F + 9)(@)] — (1 - 20) 2" — 4|4, 18)
Let z, € S, and set * = z, in (A=8). Hence we have
Iy =zl < [la* = 2.]]. (4.1.9)

Thus z, € Cy,Vk > 0. Therefore, S, C Cy,Vk > 0. For k = 0, we have that
2% € domg and Qp = domg and hence S, C Cy N Qy. Assume that 2™ is given
and S, C C, NQ, for some n € {0,1,2,...}. Since S, is nonempty, C,, N Q,, is
nonempty, closed and convex. So there exists a unique element z"** € C,, N Q,,

such that "™ = Py g, (2°). This gives

(x, — 2"t 2% — 2™ <0, Vo, € C,, N Q.. (4.1.10)

Since S, C C,, N Q,, in particular, we obtain

(x, — 2" 2% — 2" <0, Va, € S.. (4.1.11)

This implies that S, C @,+1. By induction we conclude that, S, C C,NQ%, Vk >

0 and thus (2%)52, is well - defined.



Step 2 Show that (2¥)72, is bounded. From (EI=3), we see that

(xy — k2 — xk> <0,Vx, € Q.

This implies that 2% = Pg, (z°). Then we have

Il = 2°l| < [l — @.]l, Va. € Qs

Since S, C Q, it follows that

|z* = 20| < ||2° — .||, Yz, € S..

In particular, since ' € Q,

lo* — 2l < "t = 2.
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(4.1.12)

(4.1.13)

By (EIT2) and (EIT3), we obtain klim |2* — 2°|| exists. Hence (z%)52, is
— 00

bounded.

Step 3 Show that Jim |2*t — 2F|| = 0. By (BEII9) and the fact that ¥ =
—00

Py, (2°), we see that
ka—&-l A kaQ < ka—&-l _ ZL“0||2 @ Hmk _ :E0||2.

Since lim ||2* — 20| exists, it follows that lim [z — 2*| = 0.
k—o0 k—o0

Step 4 Show that lim 2" = #, where Z = Ps, (2°). From (E13), 2**! € C} and

k—o00

Step 3, we see that

ly* — 2" < 2 = 2™ = 0, k — oc.
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Hence we obtain

ly* =™l < lly* = 2™ 2 |

— 0, k— 0. (4.1.14)

Since (z%)%2, is bounded, the set of its weak accumulation point is nonempty.

[e.e]

Take any weak accumulation point w of (z¥). So there is a subsequence (z¥7)%,

of (z%)%°, weakly converging to w. We get from (EI1d) and assumption (A2)
that
lim ||V f(y*) — V. f(z™)| = 0. (4.1.15)
n—oo

Since y*» = prox,, ,(z" — ay, V f(x*")), it follows from (BT24) that

Akp g

xhr —ay, V f(zhn) — yPn
Qy,

€ dg(y*)

n

which implies that

kn _ okn
i A - L Vi) - Vi) € V™) + dgly'™) € O(f + 9)(y*™). (4.1.16)

n

From (A114), (A11H) and (AI18), we conclude that w € S, by Lemma BTHI.
If z = Pg,(2"), it then follows from (EIT2), the fact that w € S, and the lower

semicontinuity of the norm that,

2% =zl < [l2" —w]
< liminf || — 2%~
n—oo
< limsup ||2° — z*
n—oo
< 2® —z|. (4.1.17)

Hence we obtain lim [z"* — 2°|| = [|2° — w|| = ||2° — Z||. This yields 2 — w =
n—oo
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T,n — oo. It follows that (z*) converges weakly to Z. So we have

|2° — z|| < liminf ||z° — 2*||
n—oo
< limsup [|2° — 2|
n—o0
< l=° — 7| (4.1.18)
This shows that lim |z* —2°|| = ||2° — Z||. From ¥ — Z, we also have 2* — 20 —
n— o0

7—a°. Since H satisfies the Kadec-Klee property, it follows that 2% — 2% — 7 —2°.

Therefore 2* — Z as k — oo. This completes the proof. O

Next, we introduce another version of the forward-backward algorithm

based on the shrinking projection method.

Algorithm 4.1.3 (step 0) Set Cy = domg, choose 1° € domg, take § € (0, %),
o>0and 0 € (0,1).

(step 1) Set ay, = 0™ and my, is the smallest nonnegative integer such that

a|VF(y") = V") < dlly* —2"|. (4.1.19)
(step 2) Set
y* = prox,, (2" — .V f(z")). (4.1.20)
(step 3) Compute
Crs1 = {2, € Cp - ly" — 2| < 2% — 2. ||} (4.1.21)
(step 4) Compute
" = Po,, (20). (4.1.22)

(step 5) Set k <k + 1, and go to (step 1).

Theorem 4.1.4 Let H be a real Hilbert space. Assume that there exists o > 0
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such that ay > « > 0. Then the sequence (z*)52, generated by Algorithm F-1.3

converges strongly to T = Ps, (x°).

Proof. We divide our proof into five steps.
Step 1 Show that Pckﬂ(mo) is well - defined and S, C Cj,1,Vk > 0. Similar to
Step 1 in Theorem BT, we can show that Cj,; is closed and convex, Vk > 0.

Also, we can show that
l2* — 2°|| < [|2° — .||, Yz, € C.

Thus, if z, € S,, then we have z, € Cyy1. So Sy C Cjyq and Pe,,, (2°) is well -

defined.

Step 2 Show that lim |2* — 2°|| exists. From 2* = Pg 2% Cpyy C O and
— 00

2 e Cy, VE > 1, we get
l2* — 2°| < Jla®* = 2°||, Yk > 0.
On the other hand, since S, C C}, we obtain
2% — 2°|| < ||z, — 2°||, V2, € S..
It follows that the sequence (z*) is bounded and nondecreasing. Therefore,
lim ||lz% — 2°|| exists.
k—o00
Step 3 Show that z* — z as kK — oo. For | > k, by the definition of C}, we see
that z! = Pg,(z°) € C; C Cy. So we obtain

" — 2*[* < fla’ — 2 — [|l2* — 2°|I%.

From Step 2, we have (z")32, is a Cauchy sequence. Hence, 2% — T as k — oo.
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Step 4 Show that x € S,. From Step 3, we see that

lim [z — 2%|| = 0.
k—o00

Since 2%t € Oy C Cy, we have
ly* — 2" < fl2* = 2" = 0, k — o0
It follows that

ly* =2l < lly® = 2]+ 2™ = )

— 0, kK — 0. (4.1.23)
We get from (E123) and assumption (A2) that
lim [Vf(y") = V£(=")] = 0. (4.1.24)
—00

Since y* = prox, (2% — a;V f(2F)), it follows from (BT24) that

kg

% — a Vf(ah) — o
Qg

€ 0g(y")

which implies that

ok — gk

73

+ V(") = V(") e VW) +09(y") CO(f +9)(y").  (4.1.25)

From (B123), (A124) and (E1Z3), we have Z € S,. by Lemma BT51

Step 5 Show that T = Pg,(2°). Since ¥ = Pg, (2°) and S, C C}, we obtain

(x° — 2F 2F —2,) > 0,Vaz, € S.. (4.1.26)
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By taking the limit in (E-T28), we obtain
(° — 2,7 — z,) > 0,Vx, € S,. (4.1.27)

This shows that T = Pg, (2°). We thus complete the proof. O

4.2 Strong convergence of the forward-backward splitting algorithms

via linesearches
Algorithm 4.2.1 Let F : domg — domg be a contraction. Let o > 0, 6 € (0,1)
and § € (0,3), take 2° € domg and
xr k k
y" = prox,, ,(v" — axV f(x")) (4.2.1)

where ay = g™ and my, is the smallest nonnegative integer such that

V(") = VI < olly* = 2"l. (4.2.2)

k+1

Construct x* by

" = ap F(2®) + (1 — ar)y”. (4.2.3)
Lemma 4.2.2 [3] The linesearch ({-2-3) stops after finitely many steps.

Theorem 4.2.3 Let (2%)pen and (o) be sequences generated by Algorithm F-21.
Suppose that there exists a > 0 such that a > « for all k € N and (ax) C (0,1)
such that

k—o0

[o.¢]
lim a, =0 and g ap = 00,
k=1

then the sequence (x*)ren converges strongly to a point x. = Ps, F(z.).
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Proof. Using (B1=24) and (E=21), we see that

ah — — Vf(z") = v proxakg(;l;k — axVf(zh))

o 677

— Vf(z") € 0g(y").

From the convexity of g, we have

k_ ok
g(z) — g(y*) > <:1: 5 v Vf(@*),z — "), Vz € domy. (4.2.4)
k
Also the convexity of f implies
f(@) = f(y) 2 (Vf({y),z —y), Vo € domf, y € domy. (4.2.5)

Combining (E24) and (E23) with any # € domg C domf and y = z* € domg,

we obtain

g(@) — g(*) + f(z) — f(")

ab — k k k k
> o = Vf("),r —y") +(Vf(z"),z = 2")
— g = o)+ (V) - VS Y

+HV f(y"), y" — )

aikwf oyt — ) — V) - VDI - 2]
+H(VI(yF), y" — 2¥)

1

0
— (" =y x —yF) = =" =P (V) o —2),
g Qg

vV

Vv

where the last inequality follows from (B=272). It then follows that

(2% — o,y — )
> o f(2") + g(y") — (f + 9)(2) + (VF("), v — 2]

—ola* — o]
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Replacing = z* and y = y* in (B223), we have f(z*)—f(y*) > (Vf(y*), 2" —y).

We obtain

(@ —y" =) = al(f + 9) (") = (f + 9)(x)] = 8]l«* — ¢ (4.2.6)

Using 2(z* — y*, y* — @) = [Ja* — || — [|a* — y*|]* — [ly* — 2|, we get by (E=2T)

that

Iy —2|* < llo* = ]l* = (1 =20) l2* — y*[* = 204 [(f +9) (4"*) — (f + 9)(2)]. (4.2.7)

Let x, = PsF(x.). Then we have, by (E=21)

ly* = 2.7 <l — 2.]* — (1 - 20) 2" — y"||*. (4.2.8)

Now, we will show that (z*)xen is bounded. Using (E2R), we get

Jo* ™ — |l = JlacF () + (1 — an)y* — .
< adlF@) - 2] + (1 - ap)llyt — .
< allF@®) 2 + (1= ap)lle* - 2.
< allF(@*) = Fle)| + adlF(e.) — o]l + (1= a)o* — .
< aellet — o)) + anl| F(a,) — @l + (1 — a2 — 2.

(1 —ar(1 =) ||lz" — 2| + ar| F(2.) — 2. (4.2.9)

By induction, we can show that (2*)cy is bounded. On the other hand, we see

that

ka—i-l . .’L‘*||2 — <l’k+1 o CL‘*,Ik+1 i $*>
= (ar(F(*) —z.) + (1 = an)(y* —z.), 2" — )

+(1 — ap) (y* — 2y, 2" — 2,)



34

< || F@h) = P2 = 2l + an(F(2.) — 2, 25 = 22)
(1= ap)ly* =zl -]
Qg
< FUFE) = F@lP + [ = a.])
tap(F(z,) — 2y, 2" — 2,)
1 — ak
P8 kg ot — )
apC a
< Bk =+ S —
+ay(F(z.) — T4, 2" — 2,)
1—a

Using (AZR) and (B2210), we then have

agC a
I — 2 * < %ka =P+ Sl = 2 andF () - 2ot - )

l—a
PEZO) ot (L 20 g ),

It follows that

J4 =< (1= a1 — Il — ] = (1 - 26)(1 - ag)lle* — o

205 (F (2,) — 24, 2" — 2,). (4.2.11)

In order to use Lemma BTZA, we set

= o - P

k+1 I*>

ok = 2a,(F(x,) — x4,
2

e = (1= 20)(1 — ap)||2* — y*||?

(F(z,) — z0, 2" — 2,)

wr = ag(l —c).
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So (E=21) reduces to the inequalities

k+1

»
VAN

(1 — wi)s® + wex, k> 1 (4.2.12)

P <SP — i + o (4.2.13)

Let (k) be a subsequence of (k) and suppose that lim ), = 0. Then we have
n—oo

|2k — yFn|| — 0 as n — co. Also we obtain,

bt =g = b P + (1= )y -y
= P -

— 0,as n — oo. (4.2.14)

Since (2%7),en is bounded, the set of its weak accumulation points is nonempty.

Take any weak accumulation point T of (2*7),cy. So there is a subsequence

(2% )sey of (2%)peny weakly converging to Z. We get from Assumption (A2) that

lim [V f(y*) = V.f(a")

| =0. (4.2.15)

Since y*m = prox (zFni — ay, V f(z)), it follows from (BT24) that

ki, 9
xkni - aknivf<xkni) _ ykni

€ dg(y™) (4.2.16)
&7

which implies that

l’kni —yknz ‘I—Vf( kn, \Vi En, v En, ) kn,;
o ymi) = V(™) € fy™i) + 0g(y™)

7

C Af+9) ™). (4.2.17)

kn,

Passing i — 0o, by Lemma BT51 and since ||x* — y*=|| — 0, we have T € S,.
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It follows that

limsup(F(z,) = 20,0% — ) = I (F(r.) o, 0 =)
n—oo 1—r 00

= (F(z.) —z,,T—z,) < 0.

We see that

oot o <l = g gt — b

— 0asn — oo. (4.2.18)

From (E=218), we have

lim sup(F(x,) — z,, 2"t — 2,) <0. (4.2.19)

n—00

Hence we get lim sup xx, < 0. Using Lemma BTZA, we conclude that the sequence

n—o0

(z*) converges strongly to x, = Ps, F(x,). O

We next introduce a new linesearch which is different from the previous

linesearches.

Linesearch 4.2.4 Given z € domg, 0 >0, § € (0,1) and 6 € (0, 3).
Fori1=20,1,2,... , set

L(z,i) = proX,gi,(z — 00"V f(z))

and

S(x,1) = proxygi,(L(x,i) — 00"V f(L(z,1))).
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If
200" max{[|V f(S(x,4)) — Vf(L(x, )|, [V f(L(z,7)) = V ()|}
6(||S(z,4) — Lz, 1) || + || L(z,4) — x| (4.2.20)
then v = o6’
Else i =1+ 1.

We next show that Linesearch B224 is well - defined.

Lemma 4.2.5 The Linesearch stops after finitely many steps.

Proof. 1f z € S,, then x = prox, (r—oV f(z)) = L(x,0). It follows that S(z,0) =

x and the linesearch stops with zero step and hence v = o. If ¢ S,, then

200" max{||V f(S(x, 7)) = VF(L(z, )|, VS (L(x, 1)) = Vf ()]}
5(I1S(x,4) — L(z, )| + | L=z, i) — =)). (4.2.21)

So, we have as i — oo, ||S(z,i) — L(z,i)|| — 0 and ||L(z,i) — z|| — 0. By (A2),
we see that |V f(S(x,1)) — Vf(L(z,4))|| = 0 and ||V f(L(z,i)) — V f(x)|| — 0 as
i — 00. So, by (E=2Z1), we have ML—M — 0 as i — oo. Using (B1=24), we have

xr— o0V f(x) — L(x,1)

o e dg(L(z,7)).

Hence mffé,m’i) € 0g(L(z,7)) + V f(x). So, as i — oo, we have 0 € dg(z) + V f(x)

by Lemma BT51. Thus x € S, which is a contradiction. This completes the

proof. O]

Using this linesearch, we propose the following algorithm:
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Algorithm 4.2.6 Let F : domg — domg be a contraction. Let o > 0, 6 € (0,1)

and 6 € (0,3), take 2° € domg and

y* = prox,  (z* — 7V f(z")), (4.2.22)

where vy, = o™ and my, is the smallest nonnegative integer such that

2, max{ ||V f (prox., , (" — %V f (") = VLGOI, IV (") = VF5)}

< O([lprox, (" = V") = v*ll + [l2* = ") (4.2.23)
Construct %% by
kel _ k k k
" = ap B () + (1 — ag)prox,, (v" — V(YY) (4.2.24)

Theorem 4.2.7 Let (2%).en and (v;) be sequences generated by Algorithm F-2.8.
Suppose that there exists v > 0 such that v, > 7 for all k € N and (a) C (0,1)

such that

[o.¢]
lim a, = 0 and E ap = 00,
k—o0 -

then the sequence (2*)ren converges strongly to a point x. = Ps, F(z.,).

Proof. We set

2 = prox,, ,(v* — V(")) (4.2.25)
Using (BT-24) and (E222), we see that

b — P vt - ab — prox,,  (zF — oV f ("))
Tk Tk

— Vf(=") € 9g(y").

By the convexity of g, it follows that

ok — ok

Vk

g(x) = g(y*) > ( — Vf(a*),x —y"),Va € domy. (4.2.26)
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Also, from (BT-24) and (E=223), we have

k _ e k _ k
L2y = Ll ZVID) gy € gy
Tk Tk

By the convexity of g, we also have

b — o

g(x) — g(zF) > { o V"), z — ), Vo € domg. (4.2.27)
k
We see that
flx)—=fly) > (Vf(y),x —y),Vo € domf, y € domg. (4.2.28)

For any x € domg C domf and y = 2* in (E228), we get

fla) = f(a*) > (V f(z*), & — 2"). (4.2.29)

Also if y = y* in (B2Z28), then we get

f@)— fW*) = (V") z = ). (4.2.30)

So from (B=228), (E=221), (-229) and (E—=230), we have

9(z) = 9(y*) + g(z) — g(2*) + f(@) = f(=*) + f(2) = f(y")

> (L vk, s — o)+ (T — Vi), e — o)
Yk Vi
H(Vf(a"),x —2") + (VI ("), 2 — ")
= %(wk—y’“,x—y@+<Vf(:v’“),y’“—w>+%@’“—Z’“,x—zk)
V(") 2" — ) + (V)2 — 2% + (V (), 2 — yF)
- %W ey = - ) 4 (V) g — o)

("), 2 = o)
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= %“ﬁ‘yhx_f?+@”—fw—w%thﬂﬂv—VﬂMLw—x%
VL) — o) 4 (VHE) — VAR, 2 — ) 4 (VAR 2 — o)
> it = ot =) U 2t = ) - 95 - VA - o)

—,
HVFYR), 9" =) = V(") = VFER 2" — o]
);

H(VF(25), 28 — yF). (4.2.31)

Using (-22R), we obtain

@) — o) + 9(a) ~ 9() + £(z) = Fa*) + F(@) = 1)
(e~ @ — )+ 0 = o= ] = IV - VA6~ )

+(") = F@") = IV IWY) = VEEO =yl + f() = [y, (4.2.32)

v

So we have

L = of gt — 2+ G — 22— )

Vk
> (F+9)W") = (f+9)(@) + (f +9) (") = (f +9)(x) = [V f(zF)
=V = 2" = IVF*) = VEEOI* = o). (4.2.33)

Using (B2223), we obtain

@t~ =)+ O = 2 o)
(f+9) ") = (f +9) (@) + (f + 9)(2*) = (f + g)(2)

J k k_ ok
—5_\lg" — + ||z — -
5y (125 =M+ 1 = o*Dlly” — 27

v

—g%m%—yW+Wﬁ—yww%—yw
= (f+9W") = (f+9)(@)+ (f+9) (") = (f+9)()

=5 (125 =y [ly* = 2"+ ly* — ")

—5 (12 =917 + I = ¥ ll1=" = o1
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= (o))~ (f+ @) + (f+g)(z’“)—(f+g)(x)—%!|y’“—x’“l\2

N T S T
e 12" — 4" %HIE R R T
5
> (f+9) W) = (f+9)(x)+ (J“rg)(zk)—(f+g)(rc)—Elly’“—f":ll2
T Y T R A S S A
k= o1 = et = = o o]

= (F+ a6 - (f+a)) + (f+g)<2’“)—<f+g)(x)—%Hy’“—w’“HQ

1)
——I2* = | (4.2.34)
Yk
We know that
2(a* — ¢ g —a) = ||l2* — 2| = ||2* — o1 = Ily* — =]

and

20y" =252 —a) =yt —al® = lly* = 2P =1l )

So we have

k

I12* — =||?

IN

¥ = allP — fla — )2 — g — ¥ + 281y = |2 + 28] 2F — P
—2(f + )W) = (f + 9)(@) + (] +9)() = (/ + 9) ()]
= b — 2l (1 = 2t — 2HP = (1 - 28))F — P

=2%[(f + ") = (f +9)(@) + (f +9) (") = (f +9)(x)].  (4.2.35)

Let z, = Ps, F(z.). Then we have
128 = 2. |? < fl2* — 2P = (1 = 20)([ly* — 2" + 12" — ") (4.2.36)

Now, we will show that (2*).ey is bounded. Similar to Theorem E23, we can
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show that
k1 _ < (1 —a(l—- k— + ai|| F(xy) — 4.2.37
”x m*” _( ak( c))”m x*” ak” ( *) x*” ( L. )

By induction, we can show that (z%)iey is bounded. We also can show that

ot =2 < ol — a4+ St = | + alFe) — a2t -2
1 =
T e e ) (1.2.39)

2

Using (A—=238) and (E=Z38), we then have

2 — ., ?

< (-ad=o)la® —af* = (1= 20)(1 = ap)(lly* — 2" + [|2* — »*|1*)

k+1
k x) 7 Lk — Lk ). L.
+2a5,(F(24) — Tuy T) (4.2.39)

Applying Lemma BTZ3, we set

= 2t = o

k+1 11*>

or = 2ax(F(xy) — T4, x
2
1—c¢)

Ye = (1—20)(1 — a)(ly" — "7 + 12" — *|1*)

<F(5L‘*) - :E*7xk+1 - .I'*>

Xk =

—

W = &k(l — C).

Let (k,) be a subsequence of (k) and suppose that lim 1, = 0. Then we have
n—oo

|z*n — %] — 0 and ||y*» — 2F|] — 0 as n — oco. Also we obtain,

bt = 2| = g () + (1= aP) e — |

= a||F(z") — 2| — 0,as n — 0.
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This shows that ||x* ™1 — 2| — 0 as n — co. Since (z*"),cy is bounded, the set
of its weak accumulation points is nonempty. Take any weak accumulation point
T of (z%),en. So there is a subsequence (27 );cy of (z*),cy weakly converging

to z. From Assumption (A2), we get
lin [V () — V7 (5)]] = 0. (42.40)
1—00

Using y* = prox,,  (z*n — 4, Vf(2*)) and (BT2d), we see that

Vhn,; 9

ybni — Zbni — 4 YV f (i)
2 4

€ Og(2Fm) (4.2.41)

which implies that

En, k.
Yy — zm , ' ' .
——— VW) + VI € dg(t) + VG
C A(f+g)(zFm). (4.2.42)
Hence z € S, by Lemma BTH1. So we obtain
lim Sup(F(x*) = Lxy xkn i Q3*> = hnl <F<5L’*) z x*yxkni - SL’*>
71— 00

n—oo

= (F(xy) — T4, T — x4)

< 0. (4.2.43)

It follows that
limsup(F(z,) — z,, 2" — 2,) <0. (4.2.44)

n—oo
Hence limsup xz, < 0. Then the sequence (x*).ey converges strongly to x, =
n—oo
Pg, F(z.) by Lemma BTZ3. This completes the proof. O
Proposition 4.2.8 Let (7 )ken be the sequence generated by Linesearch f-24. If

the gradient of f is globally Lipschitz continuous on domg with constant L > 0,
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then o >~ > min{o,00/2L} for all k € N.

Proof. Suppose that V f is globally Lipschitz continuous with constant L > 0. It

is obvious that v, < 0. If v < o, define 3, := %, §* := prox_, (" — 3V f(2F))

and 2 := prox; (5" — %V f(§")). It follows from the definition of Linesearch
24 that

29, max{||V f(*) = VL @), IV (") - VF(F")II}

> O(1IZF = g*ll + 12" = g* ), (4.2.45)

which gives ||z¥ — 7*|| + ||#* — *|| # O for all k € N. By the Lipschitz assumption
on Vf, we obtain

IVf(E") = Vi@ < LIz =7

and

IVf(*) = VG < Llla* - 7°).

This shows that

max{[|V£(z*) = VF@). [V f(=*) — VFF)I}

< IVFES) = VGO + IVEET) = VG
< L(I2" = g°|| + 2" — "), Vk e N.
. . ] . _ . 00
Combining the latter inequality with (=2243), we have 27, L > 6, i.e., 1 > o
when v, < 0. O]

Remark 4.2.9 Since the second part of (A2) holds even if the gradient of f
is Lipschitz continuous, using Proposition B228, it follows that the stepsize i

imposed on Theorem E=277 is also satisfied.
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4.3 Numerical examples and applications

In this section, we present some numerical examples to the signal recov-
ery. We consider our first algorithm defined by projection method and provide a
comparison among Algorithm -T2, Algorithm 214 and Algorithm EZT71. In this
case, we set TzF = proxag(mk —aVf(z¥)). It is known that T is a nonexpansive
mapping when a € (0, %) and L is the Lipschitz constant of Vf. Compressed
sensing can be modeled as the following underdeterminated linear equation sys-
tem:

k- S (4.3.1)

where € R” is a vector with k nonzero components to be recovered, y € RM
is the observed or measured data with noisy €, and A : RY — RM(M < N)is a
bounded linear operator. It is known that to solve (E=311) can be seen as solving
the LASSO problem:
1 2
min oy — Azfly + Al (4.3.2)

where A > 0. So we can apply our method for solving (E=32) in case f(z) =
lly — Az|3 and g(z) = Al|z|. It is noted that Vf(z) = AT (Az —y).

In our experiment, the sparse vector x € RY is generated from uniform
distribution in the interval [-2,2] with k nonzero elements. The matrix A € RM*N
is generated from a normal distribution with mean zero and invariance one. The
observation y is generated by with Gaussian noise white signal - to - noise ratio
SNR=40. The initial point z° is picked randomly. The restoration accuracy is

measured by the mean squared error as follows:
MSE = i||a:k —z*[|2 <1075,
N

where z* is an estimated signal of x.
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In what follows, let 0 = 5, # = 0.4, and 6 = 0.4 in both Algorithm
214 and Algorithm EZT71 and let the step size ay in Algorithm 212 and Algo-

rithm 214 be . Let h(z) = £ be a contraction and choose aj = in all

A[12

L
100k
algorithms. We denote by CPU the time using in CPU and Iter the number of

iterations. The numerical results are reported as follows:

Table 1: Computational results for solving the LASSO problem by Algorithm BT,
Algorithm T2 and Algorithm 211

N =512, M = 256 N = 1024, M = 512
m - sparse signal Method

CPU Tter CPU Iter

m = 20 Algorithm 4.3612 673 35.2779 1258
Algorithm 214 41.5479 3645 265.4392 6851

Algorithm 2111 9.7712 1742 65.0949 3249

m = 30 Algorithm BT 6.0680 793 32.7622 1335
Algorithm 214 56.6697 4370 282.0070 7265

Algorithm 2111 13.0234 2109 64.8357 3457

m = 40 Algorithm BT 5.5765 790 35.2468 1391
Algorithm 214 57.1358 4495 324.6561 7639

Algorithm 2111 14.2279 2175 71.0742 3649

m = 50 Algorithm BT 7.8385 1024 41.1793 1416
Algorithm 214 96.3842 5901 357.4149 7818

Algorithm 2111 24.7290 2873 88.7461 3731

The data in Table 1 shows that, for a given tolerance, all algorithms can be used to
solve the LASSO problem in compressed sensing. To be more precise, Algorithm
AT with a linesearch take significantly less number of iterations and CPU time
compared to Algorithm ETT of [I8] and Algorithm P14 of []. Next, we provide
some numerical experiments for two cases to illustrate the convergence behavior

of all algorithm in comparison.
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Original signal ( N=512, M=256, 20 spikes )

a0 100 150 200 260 300 3580 400 450 500

Measured values with SNR=40
T T

1 1 1 1 1
50 100 150 200 250

Recovered signal by Algorithm 4.1.1 ( 673 iterations, CPU=4.3612)
! T \| | T \J T | T T \|
08—
; | L .

) 100 150 200 250 300 350 400 450 00

Recovered signal by Algorithm 2.1.4 ( 3645 iterations, CPU=41.5479)

50 100 180 200 250 300 350 400 450 500
Recovered signal by Algorithm 2.1.1 ( 1742 iterations, CPU=9.7712)

e v

Figure 1: From top to bottom: original signal, observation data, recovered
signal by Algorithm BT, Algorithm P14 and Algorithm P11 with N = 512
and M = 256, respectively.

——Algorithm 4.1.1
031 —-—-Algorithm 2.1.4
—— Algorithm 2.1.1

08k

07 g —

2000 2500 3000 3500 4000
number of iterations

Figure 2: The MSE versus number of iterations in case N = 512, M = 256.
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Original signal { N=1024, M=512, 30 spikes )

o
7D5+

100 200 200 400 500 £00 700 800 910 1000

Measured values with SNR=40

50 100 150 200 250 300 350 400 450 00

Recovered signal by Algorithm 4.1.1 ¢ 1335 iterations, CPU=32.7622)

05—

o
VEI5<|>
-1

S T 0 U TS N &
I O 1 O

100 200 200 400 500 00 700 800 900 1000

Recovered signal by Algorithm 2.1.4 ( 7265 iterations, CPU=282.0070 )

05

086

] ]
e repr B

100 200 300 400 500 600 700 800 900 1000
Recovered signal by Algorithm 2.1.1 ( 3457 iterations, CPU=64.8257)

o
rDE““
-1

SN T R [
L T ] | §

Figure 3: From top to bottom: original signal, observation data, recovered
signal by Algorithm BT, Algorithm P14 and Algorithm 211 with N = 512
and M = 256, respectively.

nor ---Algorithm 2.1.4 [

T
——Algorithm 4.1.1

—Algorithm2.1.1 ||

1 = |
o 1000 2000 3000 4000 5000 6000 7000 6000

Figure 4: The MSE versus number of iterations in case N = 512, M = 256.
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Next, we discuss our forward-backward algorithm defined by the shrink-
ing projection method. We provide a comparison among Algorithm T, Algo-
rithm 2173 and Algorithm B-1T73. For convenience, we set all condition as in the

previous example.

Table 2: Computational results for solving the LASSO problem by Algorithm B3,
Algorithm T3 and Algorithm 2111

N =512, M = 256 N =1024, M = 512
m - sparse signal Method

CPU Iter CPU Iter

m = 20 Algorithm B3 5.2158 660 40.9654 1247
Algorithm P13 29.0458 3548 183.4528 6789

Algorithm 2711 5.8716 1696 46.3793 3222

m = 30 Algorithm BT3 8.7975 865 45.0510 1369
Algorithm P13 42.1279 4820 236.4308 7648

Algorithm 211 9.8976 2325 62.7609 3645

m = 40 Algorithm B-T3 7.4329 926 42.7707 1365
Algorithm PZT3 53.7019 5079 224.0050 7551

Algorithm 27171 12.2709 2461 54.1403 3608

m = 50 Algorithm B3 8.6868 1099 56.2084 1508
Algorithm P13 107.2563 6309 308.9143 8439

Algorithm 271711 20.1471 3085 67.8876 4053

The data in Table 2 shows that, for a given tolerance, all algorithms can be
used to solve the LASSO problem in compressed sensing. To be more precise,
Algorithm B3 with a linesearch take significantly less number of iterations and

CPU time compared to Algorithm P of [I8] and Algorithm PZTH of [23].

We plot the original signal, observation data, recovered signal, the num-

ber of iterations versus MSE.
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Original signal ( N=512, M=256, 50 spikes )
T T | T | | T T T | T \l
| 1 | | 1 . | |l 11 | 1 |
| T i [
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2m0 280 200 350 400 280 00
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Measured values with SNR=40
T T

. 1 1 | 1 1 J
B 100 150 200 250

Recovered signal by Algorithm 4.1.3 ( 1099 iterations, CPU=8.6868 )
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Recovered signal by Algorithm 2.1.5 ( 6309 iterations, CPU=107.2563 )
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Recovered signal by Algorithm 2.1.1 ( 3085 iterations, CPU=20.1471)
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Figure 5: From top to bottom: original signal, observation data, recovered
signal by Algorithm B3, Algorithm P13 and Algorithm P11 with N = 512
and M = 256, respectively.

1.4 T T
——Algorithm4.1.3
—---Algorithm2.1.5
v ——Algorithm2.1.1 ||
T -
08+ -

MSE

| L L
o 1000 2000 3000 4000 5000 6000 7000
number of iterations

Figure 6: The MSE versus number of iterations in case N = 512, M = 256.



Original signal ( N=1024, M=512, 40 spikes )
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Recovered signal by Algorithm 4.1.3 ( 1365 iterations, CPU=42.7707)
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Figure 7: From top to bottom: original signal, observation data, recovered
signal by Algorithm B3, Algorithm P13 and Algorithm P11 with N = 512

and M = 256, respectively.
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Figure 8: The MSE versus number of iterations in case N = 512, M = 256.
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Next, we provide a comparison among Algorithm 2174, Algorithm =21
and Algorithm BE=28. In our experiment, the sparse vector € RY is generated
from uniform distribution in the interval [-2,2] with k& nonzero elements. The
matrix A € RM*¥ is generated from a normal distribution with mean zero and
invariance one. The observation y is generated by with Gaussian noise white
signal-to-noise ratio SNR=40. The initial point 2° is picked randomly. The

restoration accuracy is measured by the mean squared error as follows:
MSE = —||2* — 2*||? < 10~
N Y

where z* is an estimated signal of x.

In what follows, let the step size (), in Algorithm 212 is W and b* = 0
and let 0 =2, 6 = 0.4, and § = 0.4 in both Algorithm B=271 and Algorithm E=28.

Let F'(z) = 5 be a contraction and choose a; = ﬁ in all algorithms. We denote

by CPU the time using in CPU and Iter the number of iterations. The numerical

results are reported as follows:
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Table 3: Computational results for solving the LASSO problem by Algorithm P12,

Algorithm B2 and Algorithm B4

N =512, M = 256

N =1024, M = 512

m - sparse signal Method

CPU Iter CPU Iter

m = 10 Algorithm 0.8440 966 8.9773 2019
Algorithm B2 0.4650 338 3.0526 635

Algorithm 24 0.3661 180 2.7670 349

m = 15 Algorithm 212 1.1808 1071 8.3444 1895
Algorithm B2 0.5427 369 3.0859 601

Algorithm B4 0.4676 193 2.4348 324

m = 20 Algorithm 212 1.3669 1243 11.3604 2301
Algorithm B=2T 0.6102 426 3.4292 683

Algorithm 24 0.4997 224 2.8893 381

m = 30 Algorithm T2 2.8177 1753 14.5687 25687
Algorithm B2 0.8495 572 3.7913 762

Algorithm B8 0.7782 316 3.2678 462

The data in Table 1 shows that for a given tolerance, all algorithms can

be used to solve the LASSO problem in compressed sensing. To be more precise,

Algorithm B28 with a new linesearch take significantly less number of iterations

and CPU time compared to Algorithm PT2 of [31] and Algorithm E=21 with

Linesearch PZ14.

We next give some numerical experiments for two cases to illustrate the

convergence behavior of all algorithm in comparison. We plot the original sig-

nal, observation data, recovered signal, the number of iterations versus objective

function value and MSE.
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CHAPTER V

CONCLUSIONS

From our study, we get the main results as the following;:

Algorithm 5.3.1 (step 0) Choose 2° € domg, take § € (0, %), oc>0andf €

0,1).

(step 1) Set ay, = 00™ and my, is the smallest nonnegative integer such that

|V £ (prox,, 4(z" — axV f(a"))) = V(")

< dprox, (2" — i Vf(2*)) — 2F|.

kg

(step 2) Set

yk = pI'OXakg<Ik - Ckaf(LEk))

(step 3) Compute
Ci = {# € domg : [ly* = 2. < |la* — 2.}

and

Qr = {r. € domg : (z, — 2" 2" — 2¥) <0},

(step 4) Compute

2 = Poyng, (2°).

(step 5) Set k <— k + 1, and go to (step 1).

(5.3.3)

(5.3.4)

(5.3.5)

(5.3.6)

Theorem 5.3.2 Let H be a real Hilbert space. Assume that there exists o > 0

such that ag > a > 0. Then the sequence (z%)2°, generated by Algorithm G171

converges strongly to T = Pg,(2°).

Algorithm 5.3.3 (step 0) Set Cy = domg, choose 2° € domg, take & € (0, %),

og>0and 6 € (0,1).
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(step 1) Set ay, = d0™ and my, is the smallest nonnegative integer such that

ap||[Vf(y") = V(") < 6olly* — 2. (5.3.7)
(step 2) Set
y* = proxakg(:vk — o, Vf(2")). (5.3.8)
(step 3) Compute
Cror1 = {2. €Cr : |[¥* — 2| < ||l2* — .||} (5.3.9)
(step 4) Compute
2" = Po, (29). (5.3.10)

(step 5) Set k <— k + 1, and go to (step 1).

Theorem 5.3.4 Let H be a real Hilbert space. Assume that there exists o > 0
such that ay, > a > 0. Then the sequence (z*)32, generated by Algorithm G-1-3

converges strongly to T = Pg,(2°).

Algorithm 5.3.5 Let F : domg — domg be a contraction. Let o > 0, 6 € (0,1)

and 6 € (0, 3), take 2° € domg and
ko k k
y" = prox,, ,(v" — ap V f(2")) (5.3.11)
where ay, = d@™* and my, is the smallest nonnegative integer such that

o[ VF(y*) = V)] < dlly* —2". (5.3.12)

k+1

Construct x by

" = F(2%) + (1 — ap)y”. (5.3.13)

Lemma 5.3.6 [3] The linesearch ({-2-3) stops after finitely many steps.
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Theorem 5.3.7 Let (2%)ren and (o) be sequences generated by Algorithm F-21.
Suppose that there exists a > 0 such that a > « for all k € N and (ay) C (0,1)
such that

o
lim a; =0 and g ap = 00,
k=1

k—o0

then the sequence (x*)ren converges strongly to a point x, = Ps, F(x,).

Linesearch 5.3.8 Given z € domg, o >0, 6 € (0,1) and 6 € (0, 3).
Fori1=20,1,2,... , set

L(z,i) = prox,gi,(z — 00"V f(z))

and
S(x,1) = prox,gi,(L(x,i) — 00"V f(L(z,1))).
If
200" max{||[V f(S(z,4)) — V(L(z, ), |Vf(L(z, i) = V ()]}
< 0(||S(x, i) — L(z,9)|| + || L(z,i) — z]|) (5.3.14)
then v = o6
Else i =1+ 1.

Linesearch b=3 R is well - defined.

Lemma 5.3.9 The Linesearch b=38 stops after finitely many steps.

Using this linesearch, we propose the following algorithm:

Algorithm 5.3.10 Let F' : domg — domg be a contraction. Let o >0, 6 € (0,1)
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and § € (0,1), take 2° € domg and

Yt = proxw(mk — %V ("), (5.3.15)

where v, = 0™ and my, is the smallest nonnegative integer such that

2y, max{ ||V f (prox,,, (* = wVf(y)) = VLG, [V F (") = VM

< (llprox,, (v = wVF (W) =yl + =" = y*]). (5.3.16)

Construct z*1 by
P4 = B () + (1 — a)prox,, (0 — VS, (5.317)

Theorem 5.3.11 Let (%) ey and (7;) be sequences generated by Algorithm [-2-4.
Suppose that there exists v > 0 such that v, > 7 for all k € N and (a) C (0,1)

such that

o
lim a;, = 0 and E ai = 00,
k—o0 =

then the sequence (x*)ren converges strongly to a point x, = Ps, F(x,).
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