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ABSTRACT

Fixed point theory takes a large amount of literature, since it provides useful tools to solve many
problems that have applications in different fields like engineering, economics, chemistry, game theory
and graph theory etc. However, once the existence of a fixed point of some mapping is established, then
to find the value of that fixed point is not an easy task, that is why we use iterative processes for computing
them. By time, many iterative processes have been developed and it is impossible to cover them all. The
well-known Banach contraction theorem use Picard iterative process for approximation of fixed point.

Some of the well-known iterative processes are those of Mann, Ishikawa, Agarwal, Noor, and so on.

The first purpose of this dissertation is to introduce and study a new type of two-step iterative
scheme which is called the projection type Ishikawa iteration with perturbations for two nonself generalized
asymptotically quasi-nonexpansive mappings in Banach spaces. A sufficient condition for convergence of
the iteration process to a common fixed point of mappings under our setting is also established in a real
uniformly convex Banach space. Furthermore, the strong convergence of a new iterative scheme with
perturbations to a common fixed point of two nonself generalized asymptotically quasi-nonexpansive

mappings on a nonempty closed convex subset of a real Banach space is proved.

The second purpose is to introduce and study convergence analysis of a new two-step iteration
process when applied to class of G-nonexpansive mappings. Weak and strong convergence theorems are
established for the new two-step iterative scheme in a uniformly convex Banach space with a directed
graph. Moreover, weak convergence theorem without making use of the Opial's condition is proved. We
also show the numerical experiment for supporting our main results and comparing rate of convergence

of the proposed method with the Ishikawa iteration and the modified S-iteration.

The results obtained in this dissertation extend and generalize some results in the literature.
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CHAPTER 1

INTRODUCTION

The presence or absence of a fixed point is an intrinsic property of a map.
However, many necessary or sufficient conditions for the existence of such points
involve a mixture of algebraic, order theoretic, or topological properties of the

mapping or its domain.

The origins of the theory, which date to the latter part of the nineteenth
century, test in the use of successive approximations to establish the existence
and uniqueness of solutions, particularly to differential equations. This method
is associated with the names of such celebrated mathematician as Cauchy, Li-
ouville, Lipschitz, Peano, Fredholm and, expecially, Picard. However, it is the
Polish mathematician Stefan Banach who is credited with placing the underlying
ideas into an abstract framework suitable for broad applications well beyond the
scope of elementary differential and integral equations. Around 1922, Banach
recognized the fundamental role of metric completeness; a property shared by all
of the spaces commonly exploited in analysis. For many years, activity in met-
ric fixed point theory was limited to minor extensions of Banach’s contraction
mapping principal and its manifold applications. The theory gained new impetus
largely as a result of pioneering work of Felix Browder in the mid-nineteen six-
ties and the development of nonlinear functional analysis as an active and vital
branch of mathematics. Pivotal in this development were the 1965 existence the-
orems of Browder, Gohde, and Kirk and the eary metric results of Edelstein. By
the end of the decade, a rich fixed point theory for nonexpansive mapping was
clearly emerging and it was equally clear that such mappings played a fundamen-
tal role in many aspects of nonlinear functional analysis with links to variational

inequalities and the theory of monotone and accretive operators.



Nonexpansive mappings respresent the limiting case in the theory of con-
tractions, where the Lipschitz constant is allows to become one, and it was clear
from the outset that the study of such mappings required techniques going far
beyond purely metric arguments. The theory of nonexpansive mappings has in-
volved an intertwining of geometrical and topological arguments. The original
theorems of Browder and Gohde exploited special convexity properties of the
norm in certain Banach spaces, while Kirk identified the underlying property of
normal structure and the role played by weak compactness. The early phases
of the development centred around the identification of spaces whose bounded
convex sets possessed normal structure, and it was soon discovered that certain
weakenings and variants of normal structure also sufficed. By the mid-nineteen
seventies it was apparent that normal structure was a substantially stronger condi-
tion than necessary. And, armed with the then newly descovered Goebel Karlovitz
lemma the quest turned toward classifying those Banach spaces in which all non-
expansive self-mappings of a nonempty weakly compact convex subset have a
fixed point. This has yielded many elegant results and led to numerous dis-
coveries in Banach space geometry, although the question itself remains open.
Asymptotic regularity of the averaged map was an important contribution of the

late seventies, that has been exploited in many subsequent arguments.

As we know, iteration methods are numerical procedures which compute
a sequence of gradually accurate iterates to approximate the solution of a class
of problems. Such methods are useful tools of applied mathematics for solving
real life problems ranging from economics and finance or biology to transporta-
tion, network analysis or optimization. When we design iteration methods, we
have to study their qualitative properties such as: convergence, stability, error
propagation, stopping criteria. This is an active area of research, several well
known scientists in the world paid and still pay attention to the qualitative study

of iteration methods; please, (see [[I1], [I2], [I4], [15]]).



Fixed-point iteration process for nonexpansive self-mappings including
Mann and Ishikawa iteration processes have been studied extensively by vari-
ous authors (see [[I6], [I7], [I8]]). We know that Mann and Ishikawa iteration

processes are defined as:

Tpi1 = (1 —ap)x, + oy Tx,, n>1, (1.1)
and

Tpr1 = (1 — o)y + @, Tyn, n>1, (1.2)

respectively. Obviously the iterative schemes (I) and (I=2) deals with one self-
mapping only. In 1986, Das and Debata [I'/] introduced and studied the case of
two mapping in iteration processes. This success can be rich source of inspriation
for many authors, see for example, Takahashi and Tamura [46] and Khan and
Takahashi [24]. For approximating the common fixed points, the two mappings
case has its own importance as it has a direct link with the minimization problem,

see for example Takahashi [45].

Being an important generalization of the class of nonexpansive self-mappings,
in 1972, Goebel and Kirk [21] introduced the class of asymptotically nonexpan-
sive self-mappings, who proved that if C' is a nonempty closed convex subset of
a real uniformly convex Banach space and T' is an asymptotically nonexpansive

self-mapping on C, then T has a fixed point.

In 1991, Schu [36] introduced the following modified Mann iteration pro-

Cess.

Tni1 = (]- - an)xn + anTnxnv n =1, (13)

to approximate fixed points of asymptotically nonexpansive self-mappings in
Hilbert space. Since then, Schu’s iteration process has been widely used to ap-

proximate fixed points of asymptotically nonexpansive self-mappings in Hilbert



space or Banach spaces (see [30, BG, B4, d7]).

Let C' be a nonempty closed convex subset of real normed linear space X.
A self-mapping T : C' — C'is said to be nonexpansive if | T(z) — T (y)|| < ||z —y/|
for all x,y € C. A self-mapping T': C' — C' is called asymptotically nonexpansive

if there exists a sequence {k,} C [1,00), k, — 1 as n — oo such that

[T"z = T y|| < knllz — y| (1.4)
for all z,y € C'and n > 1. A mapping T : C — C is said to be uniformly

L-Lipschitzian if there exists a constant L > 0 such that

[Tz = T"y|| < Lllz -yl (1.5)

for all z;y € C' and n > 1.

It is easy to see that if T" is an asymptotically nonexpansive, then it is

uniformly L—Lipschitzian with the uniform Lipschitz constant L = sup{k, : n >
1}.

Definition 1.0.1 (see [38]). A self-mapping 7 : C — C' is called generalized
asymptotically nonexpansive if there exists nonnegative real sequences {k,} and

{6, } with k, > 1, k, — 1 and 6,, — 0 as n — oo such that

17" — Ty < kalle — g + 5, (1.6)
forall z,y € Cand n > 1. T : C' = (' is said to be generalized asymptotically
quasi-nonexpansive if there exists nonnegative real sequences {k,} and {d, } with

k, > 1, k, — 1 and §,, — 0 as n — oo such that

[Tz = T"pl| < knllz = pll + dn (1.7)
forall z € C, p € F(T) (F(T) denote the set of fixed points of T') and n > 1.

It is clear from the definition that a generalized asymptotically quasi-
nonexpansive mapping is to unify various definitions of classes of mappings asso-
ciated with the class of generalized asymptotically nonexpansive mapping, asymp-

totically nonexpansive type, asymptotically nonexpansive mappings, and nonex-



pansive mappings. However, the converse of each of above statement may be not
true. The example shows that a generalized asymptotically quasi-nonexpansive

mapping is not an asymptotically quasi-nonexpansive mapping; see [38].

Iterative techniques for approximating fixed points of nonexpansive map-
pings and their generalizations, for example, asymptotically nonexpansive map-
pings, etc., have been studied by a number of authors (see, e.g., [13-17]) and

references cited therein.

In most of these papers, the well known Mann iteration process (1) (see
[27]) has been studied and the operator 7" has been assumed to map C' into itself.
The convexity of C' then ensures that the sequence {z,} generated by (I) is
well defined. If, however, C is a proper subset of the real Banach space X and
T maps C into X (as is the case in many applications), then the sequence given
by () may not be well defined. One method that has been used to overcome
this in the case of single operator 7' is to introduce a retraction P : X — C' in

the recursion formula () as follows: z; € C,

Tps1 = (1 —ap)xy + @y PTx,, n>1. (1.8)
For nonself nonexpansive mappings, some authors (see [19-23]) have
studied the strong and weak convergence theorems in Hilbert space or uniformly

convex Banach space.

The concept of nonself asymptotically nonexpansive mappings was in-
troduced by Chidume, Ofoedu and Zegeye [12] in 2003 as the generalization of
asymptotically nonexpansive self-mappings. The nonself asymptotically nonex-

pansive mapping is defined as follows:

Definition 1.0.2 (see [[7]). Let C' be a nonempty subset of a real normed linear
space X. Let P : X — C be a nonexpansive retraction of X onto C. A nonself-

mapping T : C — X is called asymptotically nonexpansive if there exists a



sequence {k,} C [1,00), k, — 1 as n — oo such that

IT(PT)" 2 = T(PT)"y|| < kallz =yl (1.9)
for all xz,y € C'and n > 1. T is said to be uniformly L-Lipschitzian if there exists

a constant L > 0 such that

IT(PT)" 2 = T(PT)" 'yl < Lz - yl| (1.10)
for all z,y € C"and n > 1.

In [2], they studied the following iterative sequence: x; € C,

Trns1 = P((1 — o)z, + o, T(PT)" ' y,) (1.11)

to approximate some fixed point of T under suitable conditions.

If T is a self-mapping, then P becomes the identity mapping so that (I°9)
and (I0) reduce to () and (I53), respectively. () reduces to (I=3).

In 2006, Wang [62] generalizes the iteration process ([CI) as follows:
xr1 € C,
Ypn = P((l — Bn)xn -+ ﬁnTQ(PTQ)n;ll'n),

Tpr1 = P((1 — ap)z, + oznTl(PTl)"_lyn), n>1, (1.12)

where 77,7, : C'" — X are nonself asymptotically nonexpansive mappings and
{an}, {Bn} are real sequences in [0,1). He proved strong convergence of the se-
quence {z,} defined by (II2) to a common fixed point of T} and T, under proper

conditions. Meanwhile, the results of [62] generalized the results of [12].

The nonself generalized asymptotically nonexpansive and nonself gener-

alized asymptotically quasi-nonexpansive mappings are defined as follows:

Definition 1.0.3 (see [19]). Let C' be a nonempty subset of a real normed linear
space X. Let P : X — C be a nonexpansive retraction of X onto C. A nonself-
mapping 1" : C' = X is called generalized asymptotically nonexpansive if there

exists nonnegative real sequences {k,} and {9, } with k, > 1, k, — 1 and 9,, = 0



as n — oo such that

IT(PT)" e = T(PT)" 'yl < kulle =yl + 0a (1.13)

forall z,y € Candn > 1. T : C' = X is said to be generalized asymptotically
quasi-nonexpansive if there exists nonnegative real sequences {k,} and {0, } with

k, > 1, k, — 1 and §,, — 0 as n — oo such that

IT(PT)" 2 — T(PT)""p|| < kullz = pll + 5. (1.14)

forallz € C,pe F(T) and n > 1.

If T is a self-mapping, then P becomes the identity mappings so that
(T3) and (I4) reduces to (I8) and (IZ4), respectively.

In 2008, Deng and Liu [19] studied the following iterative sequence which
can be viewed as an extension for iterative schemes of Wang [62]: z; € C (i =

0,1,2,...,q and g € N is a fixed number),

Yn = P(@pw, + B, To(PT)" 2y +7,0,), n=0,1,2,...,
Tni1 = P(an@n + BT (PTV)" Yng + Wnttn), n=q,q+1,0+2,...,
(1.15)
where 11,7, : C' — X are nonself generalized asymptotically quasi-nonexpansive
mappings, {u,}, {v,} are bounded sequences in C' and {«a,}, {B.}, {7}, {@n},
{B,,} and {7, } are real sequences in [0, 1] satisfying c, + B, +7, = @ +53,+7, = 1

for all n > 0. They gave the following strong convergence theorem.

Theorem 1.0.4 (see [1Y]). Let X be a real uniformly convexr Banach space,
C' a nonempty closed convex subset of X, Ty, Ty : C — X two uniformly L-
Lipschitzian, nonself generalized asymptotically quasi-nonexpansive mappings with
nonnegative real sequences {k,(f)}, {57(?‘)} C [1,00) (i = 1,2), respectively such

that Zflozl(kiq(f) —1) < o0, D07, 88 < oo. Suppose F = F(Ty) N F(Ty) # 0.



For any z; € C(i =0,1,2,...,q and q € N is a fived number), let {x,} be the
sequence defined by (ILJ) satisfying 0 < liminf, . a, < limsup,_,. a, < 1,
0 < liminf, oo @, < limsup, , @, <1, > " 7 < oo and >~ 7, < oo. If
Ty, Ty satisfies condition A" with respect to the sequence {x,}, then {x,} converges

strongly to a common fixed point of Ty, T5.

Recently, a new iterative scheme which is called the projection type
Ishikawa iteration for two nonself asymptotically nonexpansive mappings was

defined and constructed by Thianwan [48]. It is given as follows:

Yn = P((l e ﬁn)l‘n + BnTQ(PTQ)n_lxn);

Tni1 = P((1 — o)y, + oznTl(PTl)"_lyn), n>1, (1.16)

where {«a,} and {f,} are appropriate real sequences in [0,1). He studied the
scheme for two nonself asymptotically nonexpansive mappings and proved strong
convergence of the sequences {x,} and {y,} to a common fixed point of 7}, T3

under suitable conditions in a uniformly convex Banach space.

Note that Thianwan process (IIG) and Wang process (ICI2) are inde-

pendent: neither reduces to the other.

If Ty =T5 and 8, = 0 for all n > 1, then (II8) reduces to (). It also

can be reduces to Schu process (I=3).

We note that, in applications, there are perturbations always occurring
in the iterative processes because the manipulations are inaccurate. It is no doubt
that researching the convergent problems of iterative methods with perturbation
members is a significant job. This leads us, in this paper, to introduce and
study a new class of two-step iterative scheme with perturbations for solving the
fixed point problem for nonself generalized asymptotically quasi-nonexpansive

mappings. This iterative scheme can be viewed as an extension for Ishikawa type



iterative schemes of Thianwan [48]. The scheme is defined as follows.

Let X be a normed space, C' a nonempty convex subset of X, P: X — C
a nonexpansive retraction of X onto C' and 71,75 : C — X are given mappings.

Then for an arbitrary x; € C', the following iteration scheme is studied:

Yn = P((l - 571 - Pyn)xn + ﬁnT2<PT2)n_lxn + ’ann)a

Tpy1 = P((1 = ap — A\p)yn + anTl(PTl)"_lyn + \uy), n>1, (1.17)

where {a,}, {8}, {7} and {\,} are appropriate real sequences in [0,1) and
{un},{v,} are bounded sequences in C. We then prove its strong convergence

under some suitable conditions in Banach spaces.

Note that Deng and Liu process (ICI3) and our process () are inde-

pendent: neither reduces to the other.

If v, = Ay = 0 for all n > 1, then (ICI7) reduces to (IC18). Now, we
recall some well known concepts and results.

Fixed point theory is an immensely active area of research due to its
applications in multiple fields. It addresses the results which state that, under
certain conditions, a self map on a set admits a fixed point. Among all the results
in fixed point theory, the Banach contraction principle (see [6]) in metric fixed
point theory is the most celebrated one due to its simplicity and ease of applica-
tion in major areas of mathematics. Following the Banach contraction principle,
Boyd and Wong [§] investigated the fixed point results in nonlinear contraction
mappings. Subsequently, many authors extended and generalized this fixed point
theorem in different directions, in particular, by Reich [32]. In 2008, by com-
bination of the concepts in fixed point theory and graph theory, Jachymski [27]
generalized the Banach contraction principle in a complete metric space endowed

with a directed graph. In 2012, Aleomraninejad et al. [5] presented some iterative
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scheme for G-contraction and G-nonexpansive mappings in a Banach space with
a graph. In 2015, Alfuraidan and Khamsi [?] defined the concept of G-monotone
nonexpansive multivalued mappings defined on a hyperbolic metric space with a
graph. Alfuraidan [Il] studied the existence of fixed points of monotone nonex-
pansive mappings on a Banach space endowed with a directed graph. Tiammee et
al. [60] proved Browder’s convergence theorem for G-nonexpansive mappings in
a Hilbert space with a directed graph. They also proved the strong convergence

of the Halpern iteration for a G-nonexpansive mapping.
In 2016, Tripak [49] introduced and studied the following Ishikawa iter-

ation process:

Yn = (1 - Bn)xn + ﬂnTlxna

Tnr1 = (1 — o)y + @y Toyn (1.18)

to approximate common fixed points of two G-nonexpansive mappings in a Ba-

nach space endowed with a graph.

Agarwal et al. [3] introduced and studied the S-iteration process for a
class of nearly asymptotically nonexpansive mappings in Banach spaces. They
showed that this process has a better convergence rate than Ishikawa iteration
for a class of contractions in metric spaces. Recently, an iterative scheme which
is called the modified S-iteration for two G-nonexpansive mappings was defined

and constructed by Suparatulatorn et al. [42]. It is given as follows:

Yn = (1 ] 5n)xn + ﬂnTl-%n?

Tpt+1 = (1 - O‘n)Tlxn + anTQyn7 n Z Oa (119)

where {a,,} and {f,} are appropriate real sequences in (0, 1). They studied the
strong and weak convergence of the iterative scheme (ICI9) under proper condi-

tions in a uniformly convex Banach space endowed with a graph.

Motivated by the recent works, we introduce and study a new two-step
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iteration process for two G-nonexpansive mappings, where the sequence {x,} is

generated iteratively by xo € C' and

Yn = (1 - Bn)xn + 6nT1xm

Tp+1 = (1 - an)len + @nTZyn’ n Z 07 (12())

where {a,} and {3, } are appropriate real sequences in (0, 1).

The first purpose of this dissertation is to introduce and study a new type
of two-step iterative scheme which is called the projection type Ishikawa iteration
with perturbations for two nonself generalized asymptotically quasi-nonexpansive
mappings in Banach spaces. A sufficient condition for convergence of the iteration
process to a common fixed point of mappings under our setting is also established
in a real uniformly convex Banach space. Furthermore, the strong convergence of
a new iterative scheme with perturbations to a common fixed point of two nonself
generalized asymptotically quasi-nonexpansive mappings on a nonempty closed

convex subset of a real Banach space is proved.

The second purpose is to construct an iteration process for approximat-
ing common fixed points of two G-nonexpansive mappings and to prove some
weak and strong convergence theorems for such mappings in a uniformly convex
Banach space endowed with a graph. We also shows the numerical experiment
for supporting our main results and comparing rate of convergence of the pro-
posed method (IZ20) with the Ishikawa iteration process (1.1) and the modified

S-iteration process (1.2).
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The thesis is divided into 4 chapters. Chapter 1 is an introduction to the
research problems. Chapter 2 deals with basic concepts and preliminaries and
give some useful results that will be used in later chapters. Chapter 3 is the main
results of this research with divided into two section as follows:

(1) Projection type Ishikawa iteration with perturbations for common
fixed points of two nonself generalized asymptotically quasi-nonexpansive map-
pings.

(2) A new two-step iteration method for G-nonexpansive mappings in
Banach spaces with a graph.

Chapter 4 summarizes all the theorems in this thesis.



CHAPTER II

BASIC CONCEPTS AND PRELIMINARIES

2.1 Metric spaces and Banach spaces

Now, we recall some well known concepts and results.

Definition 2.1.1. [25] A metric space is a pair (X, d), where X is a set and d is

a metric on X (or distance function on X), that, a real valued function defined

on X x X such that for all z,y, z € X we have:

(1) d(z,y) = 0,

(2) d(z,y) = 0 if and only if x = v,

(3) d(x,y) = d(y, z) (symmetry),

(4) d(x,y) < d(z,z) + d(z, y)(triangle inequality).

Definition 2.1.2. [25] A sequence {x,} in a metric space X = (X, d) is said to

be convergent if there is an x € X such that

lim d(z,,z) =0

n—oo

x is called the limit of {z,} and we write

lim z, =« or, simplex,, — x
n—oo

we say that {z,} converges to x. If {z,} is not convergent, it is said to be

divergent.

Lemma 2.1.3. [77] Let {an}, {b,} and {5,} be sequences of nonegative real num-

bers satisfying the inequality
1 < (14 60n)an + by, Yn=1,2...,

[fién < oo and ibn < 00, then
n=1 n=1

(1) lim a, exists.
n—oo
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(2) lim a, = 0 whenever liminf a, = 0.
n— oo n—oo

Definition 2.1.4. [?5] A sequence (z,) in a metric space X = (X, d) is said to
be Cauchy if for every € > 0 there is an N(e¢) € N such that d(z,,,z,) < € for

every m,n > N(e).

Definition 2.1.5. [25] A metric space (X,d) is said to be complete if every

Cauchy sequence in X converges.

Definition 2.1.6. [25] Every convergent sequence in a matric space is a Cauchy

sequence.

Theorem 2.1.7. [28] Let {x,} be a sequence in R. If every subsequence {x,, }

of {x,} has a convergent subsequence, then {x,} is convergent.

Definition 2.1.8. [28] Let X be a matric space and A be any nonempty subset
of X. For each z in X, the distance d(z, A) from x to A is inf{d(x,y)|ly € A}.

Definition 2.1.9. [?8] Let X be a linear space (or vector space). A norm on X
is a real-valued function || - || on X such that the following conditions are satisfied
by all members x and y of X and each scalar «:

(1) [|z]| > 0 and ||z|| = 0 if and only if z = 0,

(2) llazl] = lafll«];

(3) lz + yll < ll=[l + lly]| (triangle inequality).

The ordered pair (X, || - ||) is called a normed space or normed vector space or

normed linear space.

Definition 2.1.10. [2R8] Let X be normed space. The metric induced by the
norm of X is the metric d on X defined by the formula d(z,y) = ||z — y|| for all

x,y € X. The norm topology of X is the topology obtained from this metric.

Definition 2.1.11. [28] A Banach norm or complete norm is a norm that induces
a complete metric. A normed space is a Banach space or B-space or complete

normed space if its norm is a Banach norm.
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2.2 Fixed points of nonexpansive, asymptotically nonexpansive and

G-nonexpansive mappings

Definition 2.2.1. [64] Let C' be subset of a Banach space X. A mapping T :
C' — C is called nonexpansive if [Tz — Ty|| < ||z — y|| for all z,y € C. The set
of all fixed points of T is denoted by F(T) = {x € C|z = Tx}.

Definition 2.2.2. [54] Let C' be subset of a Banach space X. A self-mapping
f: C — C is called contraction on C' of there exists a constant a € (0,1) such
that || f(z)— f(y)|| < a|lz—y|| for all z,y € C. We use Il to denote the collection

of all contraction on C.

Theorem 2.2.3. /3] (The Banach contraction principle)
Let X be complete metric space and let f be a contraction of X. Then f has a

unique fized point.

Definition 2.2.4. [9] A mapping T : C' — X is called demiclosed with respect
to y if for each sequence {z,} in C and each x € X, z,, — x weakly and Tz,, — y

imply that x € C' and Tz = y.

Lemma 2.2.5. [0/ Let X be a uniformly convex Banach space, C' a nonempty
closed convex subset of X and T : C' — X be a nonexpansive mapping. Then
I —T is demiclosed at 0, i.e., if v, — x weakly and x,, — Tx, — 0 strongly, then

x € F(T), where F(T) is the set of fized point of T

Lemma 2.2.6. [13] Let X be a uniformly convex Banach space, C' be a nonempty
closed convex subset of X and T : C' — C be an asymptotically nonexpansive
mapping. Then I — T is demi-closed at zero, i.e., for each sequence {x,} in C,
if {xn} converges weakly to q € C and {(I — T)x,} converges strongly to 0, then
(I -T)qg=0.

Lemma 2.2.7. ([12], Theorem 3.4) Let X be a uniformly convex Banach space,

C' a nonempty closed convex subset of X, and letT : C — X be an asymptotically
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nonezxpansive mapping with a sequence {k,} C [1,00) and k, — 1 as n — oo.
Then I — T is demiclosed at zero. i.e., if v, — x weakly and x, — Tx, — 0

strongly, then x € F(T), where F(T) is the set of fized point of T.

Lemma 2.2.8. [20] Suppose two mappings S, T : C — C, where C is a subset of
a normed space X, said to be satisfy condition (A') if there exists a nondecreasing
function f : [0,00) — [0,00) with f(0) = 0, f(r) > 0 for all r € (0,00) such
that either ||z —Tzx| > f(d(z, F)) or ||lx —Tz|| = f(d(x, F)) for all x € C where
d(z, F)=inf {|lx —p| : pe F = F(S)NF(T)}.

Lemma 2.2.9. ([44], Lemma 1) Let {a,}, {b,} and {d,} be sequence of nonneg-

ative real numbers satisfying the inequality.
Gp+1 S (1 + 5n)an + bn

If Y72 00 < 00 and Y~ b, < oo, then lim a, exists. In particular, if {a,} has

n—o0

a subsequence converging to 0, then lim a,, = 0.
n—oo

Lemma 2.2.10. [3]/ Suppose that X be a uniformly convexr Banach space and
0<p<t,<qg<1foralneN. Let{x,} and {y,} be two sequences of X
such that lim supl|y,| < r and limsup||t,x, + (1 —t,)ys|| = r hold for some r >
0.Then nll_{gjﬁxoz —yall = 0. o

Lemma 2.2.11. [/1] Let X be a Banach space which satisfies Opial’s condition
and let {z,} be a sequence in X . Let u,v € X be such that lim,, . ||z, — ul
and lim,,_, ||z, — v|| exist. If {x,,} and {z,, } are subsequences of {x,} which

converge weakly to uw and v, respectively, then u = v.
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Let X be a Banach space with dimension X > 2. The modulus of X is

the function 0x : (0,2] — [0, 1] defined by
) 1
ox(€) = inf{1 — ISz +y)ll : 2l =1, llyll = L, e = flz — yl|}-

Banach space X is uniformly convex if and only if dx(e) > 0 for all € € (0, 2].

A subset C' of X is said to be a retract if there exists a continuous
mapping P : X — C such that Px = x for all x € C. Every closed convex subset
of a uniformly convex Banach space is a retract. A mapping P : X — X is said
to be a retraction if P? = P. It follows that if a mapping P is a retraction, then

Pz = z for every z € R(P), the range of P.

A set C' is optimal if each point outside C' can be moved to be closer to

all points of C. It is well known (see [IR]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space,

and if C' CX is an optimal set with interior, then C' is a nonexpansive retract of

X.

(2) A subset of ”, with 1 < p < o0, is a nonexpansive retract if and only

if it is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Ba-
nach spaces, optimal sets are closed and convex. Moreover, every closed convex

subset of a Hilbert space is optimal and also a nonexpansive retract.

Recall that two mappings S,7T : C' — X, where C'is a subset of a normed
space X, are said to satisfy condition A" (see [20]) if there exists a nondecreasing
function f : [0,00) — [0,00) with f(0) =0, f(r) > 0 for all » € (0, 00) such that
either

|l = Szl = f(d(x, F)) or |z —Tx| > f(d(z, F))
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for all x € C, where d(z, F) =inf{||z —q|| : ¢ € F = F(S)N F(T)}.

Note that condition A" reduces to condition (A) (see [47]) when S = T.
Maiti and Ghosh [26] and Tan and Xu [47] have approximated fixed points of a

nonexpansive mapping 7' by Ishikawa iterates under the condition (A).
In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2.12 (see [47]). Let {a,}, {b,} and {5,} be sequences of non-negative

real numbers satisfying the inequality

An+1 S (]- i 6n)an Sin b’m n Z 1.

If 50 by, < o0 and )7 0, < 00, then

(i) lim,, o0 a,, exists;

(ii) In particular, if {a,} has a sequence {ay,,} converging to 0, then
lim,,_, a, = 0.

Lemma 2.2.13 (see [36]). Let X be a real uniformly convexr Banach space and
0 <p<t, <q<1 forall positive integer n > 1. Also suppose that {x,} and {y,}
are two sequences of X such that limsup,, , . ||z,|| < 7, limsup,,_, [|yn| < r and

limy, o0 |[tnzn + (1 —t)ynl| = r hold for some r > 0, then lim, .« ||z, — yn|| = 0.

Let C' be a nonempty subset of a real Banach space X. Let A denote
the diagonal of the cartesian product C' x C,i.e., A= {(z,x) : x € C'}. Consider
a directed graph G such that the set V(G) of its vertices coincides with C, and
the set E(G) of its edges contains all loops, i.e., F(G) DA. We assume G has no
parallel edge. So we can identify the graph G with the pair (V(G), E(G)). By
G~ we denote the conversion of a graph G, i.e., the graph obtained from G by

reversing the direction of edges. Thus we have
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EGY ={(z,y) € X x X : (y,7) € E(G)}.

We recall a few basic notions concerning the connectivity of graphs. All
of them can be found, e.g., in [23]. If x and y are vertices in a graph G, then a
path in G from z to y of length N (N € NU {0}) is a sequence {z;}Y, of N + 1
vertices such that o = z, oy = y and (2, 241) € E(G) for i =0,1,... N — 1.
A graph G is connected if there is a path between any two vertices. A directed
graph G = (V(G), E(G)) is said to be transitive if, for any z,y,z € V(G) such
that (z,y) and (y, z) are in E(G), we have (z,z2) € E(G).

Let g € V(G) and A a subset of V(G). We say that A is dominated by xg
if (zo,2) € E(G) for all z € A. A dominates z if for each z € A, (z, ) € E(G).

We say that a mapping 7' : ' — (' is said to be G-contraction if T

satisfies the following conditions:
(i) T preserves edges of G (or T is edge-preserving), i.e.,
(z,y) € E(G) = (Tx, Ty) € E(G),

(ii) T decreases weights of edges of G in the following way: there

exists a € (0, 1) such that
(z,y) € BE(G) = [Tz - Tyl| < aflz —yl.
A mapping T : C' — C is said to be G-nonexpansive (see [2], Definition 2.3 (iii))

if T satisfies the following conditions:

(i) T preserves edges of G, i.e.,
(z,y) € E(G) = (T'z,Ty) € E(G),
(ii) T non-increases weights of edges of GG in the following way:

(,y) € E(G) = [Tz = Ty|| < [l —yl|



20

In this paper, we use — and — to denote the strong convergence and

weak convergence, respectively.

A mapping T : C' — C'is said to be G-demiclosed at 0 if, for any sequence

{z,} in C such that (z,,z,+1) € E(G), x, — x and Tz,, — 0 imply Tx = 0.

A Banach space X is said to satisfy Opial’s condition [29] if z,, — = and

x # y implying that

lim sup ||z, — z|| < limsup ||z, — y||.
n—00 n—00

Let C be a nonempty closed convex subset of a real uniformly convex
Banach space X. Recall that the mappings T;(7 = 1,2) on C are said to satisfy
condition (B) [39] if there exists a nondecreasing function f : [0,00) — [0, 00)

with f(0) = 0 and f(r) > 0 for all » > 0 such that for all x € C,
maz{|x =Ty, [l — Tox|} = f(d(z, F)),

where F' = F(Ty) N F(Ty), F(T;)(i = 1,2) are the sets of fixed points of T; and
d(z, F) = nf{ |z — gl : g € F}.

Let C' be a subset of a metric space (X,d). A mapping T : C' — C'is
semi-compact [39] if for a sequence {z,} in C' with lim d(x,,Tz,) = 0, there
n—oo

exists a subsequence {z,,} of {z,} such that x,, = p e C.

Let C' be a nonempty subset of a normed space X and let G = (V(G), E(G))
be a directed graph such that V(G) = C. Then, C is said to have Prop-
erty WG(SG) if for each sequence {z,} in C' converging weakly (strongly) to
v € C and (2, Tny1) € E(G), there is a subsequence {w,;} of {x,} such that

(Tn;, v) € E(G) for all j € N.

Remark 2.2.14 (see [42]). If G is transitive, then property WG is equivalent to
the property: if {z,} is a sequence in C' with (z,,z,,1) € E(G) such that for
any subsequence {x,,} of the sequence {z,} converging weakly to x in X, then

(xn,x) € E(G) for all n € N.
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In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2.15 ([42]). Suppose that X is a Banach space having Opial’s con-
dition, C'" has Property WG and let T : C' — C' be a G-nonexpansive mapping.
Then, I — T is G-demiclosed at 0, i.e., if v, — x and z, — Tx, — 0, then

x € F(T), where F(T) is the set of fized points of T.

Lemma 2.2.16 ([47]). Let {a,} and {t,} be two sequences of nonnegative real

numbers satisfying the inequality
pi1 < ap +t, forall n > 1.

If 57ty < 00, then lim, o a, exists.

Lemma 2.2.17 ([36]). Let X be a uniformly convex Banach space, and {a,} a
sequence in [0,1 — 0] for some § € (0,1). Suppose that sequences {x,} and {y,}
in X are such that limsup ||x,|| < ¢,limsup ||y,|| < ¢ and limsup ||a,z, + (1 —

n—o0 n—o0 n—00

an)Ynl| = ¢ for some ¢ > 0. Then lim ||z, — y,|| = 0.
n—00

Lemma 2.2.18 ([A1]). Let X be a Banach space that satisfies Opial’s condition

and let {x,} be a sequence in X. Let u,v € X be such that lim ||z, — u|| and
n—oo

lim ||z, — || exist. If {xn;} and {x,,} are subsequences of {x,} that converge

n—oo

weakly to u and v, respectively, then u = v.

Lemma 2.2.19 ([d]). Let X be a uniformly convex Banach space, C' be a nonempty
bounded convex subset of X. Then there exists a strictly increasing continuous con-
vex function v : [0,00) — [0,00) with v(0) = 0 such that, for any nonexpansive
mapping T : C'— X, any finite manrg; elements {z;}"_, in C' and any finite many

nonnegative numbers {\;}1_, with Z Ai =1, the following inequality holds:
i=1

T N) = YONTall < mass (i =) = [T = T )
=1 -

i=1
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Lemma 2.2.20 ([35]). Let {x,} be a bounded sequence in a reflexive Banach
space X. If for any weakly convergent subsequence {x,,} of {xyn}, both {x,,} and

{2, 41} converge weakly to the same point in X, then the sequence {x,} is weakly

convergent.



CHAPTER III

MAIN RESULTS

3.1 Projection type Ishikawa iteration with perturbations for com-
mon fixed points of two nonself generalized asymptotically quasi-

nonexpansive mappings

Lemma 3.1.1. Let X be a real Banach space and C' a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let Ty, T, : C' —
X be two nonself generalized asymptotically quasi-nonexpansive mappings of C
with sequences {k:?(f)}, {(559} C [1,00) (i = 1,2), respectively such that Z;‘;l(k%)—
1) < oo, 07, 89 < 00 and F = F(Ty) N F(Ty) # 0. Suppose that {cw}, {Ba},
{7} and {\,} are real sequences in [0,1) such that > >~ n < 00, Y0 Ay < 00
and {u,},{v,} are bounded sequences in C. From an arbitrary 1 € C, define

the sequence {x,} by (LI7). If g € F, then lim,_, ||z, — ¢l exists.

Proof. Let q € F, by boundedness of the sequences {u,} and {v,}, so we can put
M = max{sup ||u, — q||,sup ||v. — ql|}
n>1 n>1

Setting k%) =1+ 7", kP = 14+ r?. Since Z;’;l(kﬁf) —1) < o0 (i=12),s0
52 ) <00, 32 ) < 0. Using (IZT7), we have

[y = all = IP((1 = Bn — ) + BuTa(PT2)" 2 + mvn) — P(q)||
<A = B — ) (@ — @) + Bu(T2(PT2)" 2 — q) + n(vn — )|
< (1= Bn = y)llzn — all + Bul To(PT2)" 2 — gl + Aullvn — 4l
< (1= 8o = )llen = all + Ba(1 + D)@ — gl + 6&) + 7 M
= (1= B = )l @n = dll + (Bu + BurD)wn — all + 62 + 1M

< lzn — gl + ng)Ha:n —q| + 57(12) + M
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= (L+ )|z, — gl + 0@ + .M,

and so

201 — qll = 1P((1 — @ = M) yn + 0 TL(PTY)" Yy 4 Anttn) — P(q)]]
<11 = an = X)) (Yo = q) + (T (PT)" g — q) + An(tn — g
< (1= an = M) llyn = qll + @l TL(PT)™ gy — gll + Aallun — gl
< (1= an = Xa)llygn = all + an(@+70) g — all + 6 + XM
= (1= an = X)llyn — gl + (n + ) llyn — gll + 0 + XM
<y = all + rPlyn — qll + 68 + XM

= 1+ yn — qll + 6L + A, M

< A+ +rD)zn — gl + 62 + M) + 6 + X M
= 1+ A+ D)z, — gl

+ (1 4+ MDD 4 (14 rW)y, M + 68 + N M

=@+ 7P+ 4 rDrP) |z, — gl + 2,

where £} =1+ T7(11))5(2) +(1+ rg))%M + 6 4+ A\, M and we note here that

Zn1€5)<OOSIHCeZ—1%<OOZnM<0<>Zn1 <00an

oo and » o7, 8% < oo. Since o A M 4 @4l )r,(f)) < 0o we obtained by

Lemma 212 (i) that lim,, . ||z, — ¢|| exists. This completes the proof. O

Lemma 3.1.2. Let X be a real uniformly convex Banach space and C' a nonempty
closed convexr nonexpansive retract of X with P as a nonexpansive retraction. Let
11, T, : C — X be two uniformly L— Lipschitzian, nonself generalized asymptot-
ically quasi-nonexpansive mappings of C' with sequences {kff)}, {5@} C [1,00)
(i = 1,2), respectively such that > - (kn D 1) < oo, > 58 < oo and
F =F(T)NF(Ty) # 0. Suppose that {ca,}, {Bn} are real sequences in [e,1 — €]
for some € € (0,1), {7}, {\} C[0,1) such that > " vn < 00, Y o0 Ap < 00
and {un}, {v,} are bounded sequences in C'. From an arbitrary x, € C, define the

sequence {x,} by (II7). Then lim, o ||z, — T2, || = limy, o0 ||2n — Toxy|| = 0.
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Proof. Let q € F. Setting Y =14 r(l) ED =1 +r?. By Lemma BT, we see
that lim,, . ||z, — ¢|| exists. It follows that {z,} and {y,} are bounded. Also,

{tn — yn} and {v, — x,} are bounded. Now we set

C = max{sup [[un = ynl|, sup [lvn, — zn[}.
n>1 n>1
Assume that lim,,_,« ||z, — ¢|| = ¢. In addition,

Iy = all < @+ rP)lan — qll + 0 + 701, (3.1)

where the notation M is taken from Lemma BTl
Taking the lim sup on both sides in the inequality (B), we have

limsup [y, — qll < e. (3.2)

n—oo
Note that ||y, — ¢ + An(Un — Yn)l| < |lyn — ¢|| + A\nC' gives that

lim sup ||yn —q + )\n<un - yn)” S c. (33>

n—o0

In addition, |7} (PTy)" 'y — q+ A (tn — yn) || < kL lyn — gl + s 4 A\, C, taking

the lim sup on both sides in this inequality, we have

lim sup HT1<PT1)n71yn —q + )\n(un - yn)” S C. (34)

n—oo
In addition,

Hxn-&-l - q“ < ||(1 — On — /\n)(yn =~/ an(TI<PT1>n_1yn —q)+ /\n(un - q)”

< (1470 + 0@ 4 rOr®)|z, — gl + 0, (3.5)

where the notation 5%1) is taken from Lemma B

1)

Since > 77 ( Vo D )) <00, >, el < 0o and lim,_, o |z —qll = ¢,

letting n — oo in the inequality (B3), we have
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lim /(1 — o = Aa) (Y — @) + (T2 (PT)" 'y — @) + A — q)|| = c.

n—oo

(3.6)

From

11— ) (Yo — ¢+ Aa(tn — Yn)) + (T (PT)"  yn — ¢+ A (un — yn)) || =

1L = a = A) (¥ = @) + an(T(PTY)" "y — q) + Xalun — ).

and (B@), we have

lim H(l - an)(yn —q-+ )‘n(un — yﬂ)) + an(T1<PT1)n_lyn —q+ )‘n<un - yn))H

n—oo
=c.
. (3.7)
By using (833), (B4), (871) and Lemma PZ2T3, we have
nh—{{olo | Ty (PT)™ Yy — ynll = 0. (3.8)

In addition,

||T2(PT2)n_1a7n — g+ Yn(vn — xn)” < HT2(PT2)n_1517n = ql| + llvn — 20|

<ED |len — qll +62 +7.C,
and taking the lim sup on both sides in this inequality, we have

limsup || To(PT2)" ‘2, — ¢+ m(vn — 3| < c (3.9)

n—oo

Using (CT4), we have

Hxn—&-l - QH <(1-a,-— )‘N)”yn —q|| + anHTI(PTl)n_lyn - QH + /\nHun - QH
= (1= an = X)lyn — all + el T (PT)™ s — Y + Y — 4]

+ )‘nHun — Yn + Yn — q”
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< (1= an = X)) lyn — all + | TV (PT)™ Y — |
+ anllyn — qll + Aalltn = yull + Anllyn — 4|

Taking the lim inf on both sides in the inequality (B10), by (BR), > 2, A, < o0

and lim, o || Zn11 — ¢|| = ¢, we have
liminf ||y, —q|| > c. (3.11)
n—oo

It follows from (B2) and (BT that lim,, ,« ||y, — ¢|| = ¢. This implies that

c= lim ||y, —¢|| < lim |[(1 = By — )(zn — @)
n—oo n—oo
+ Bu(To(PTy)" 2, — q) + Yn(vn — q)||

< i —q| =
i o < lim flz, —qll = ¢,

nh_{ilo 11 = Bo = ) (0 = @) + Bu(To(PT2)" " 20 — q) + mmlve — @)l = ¢ (3.12)

From

||(1 W 6n)(xn —q-+ Vn(vn - xn)) + ﬁn(T2(PT2)n_1xn —q+ 7n<vn - xn))”

= I(1 = B = ) (xn — q) + ﬂn(TZ(PTQ)nilxn —q) + u(vn — 9|

and (BZ), we have

im (1 = B.)(Tn — g+ Yulvn — 7)) + ﬁn(T2<PT2)n71xn — ¢+ Yn(vn — 7))|| = ¢

n—oo

(3.13)

Note that ||z, — ¢ + Yn(vn — z0)|| < |20 — ¢]] + 7.C gives that

limsup |2, — g + Y (vn — 22)] < c. (3.14)

n—oo
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Using (BM), (813), (B14) and Lemma XT3, we obtain

lim ||Ty(PTy)" ‘2, — 2, = 0. (3.15)

n—oo

From vy, = P((1 =B, —7n) %0+ BuTo(PTo)" 12 +900n), Yooy Yn < 00 and (BIH),
we have
1y — 2ol = [IP((1 = B = )20 + BuTo(PT2)" 'y + 1nva) — 24|
<11 = Bn = ) (@n — &) + Bu(Ta(PT2)" @0 — 20) + Yn(vn — T
< Bl To(PT2)" 20 — Zull + llvn — Za
< | T(PL)" 'z, — 2| + 7C

— 0 (as n— o0). (3.16)

Now, since T; (i = 1,2) are uniformly L-Lipschitzian for Lipschitz constant L =
maxi<;<2{L;} > 0. We note that
1T (PT2)" 2 — 2l = ITV(PT1)" ™ @ = Y + Y — T
< T (PT2)" @0 = yll + lyn — @al
= |(PTY)" ' — TA(PTY)"
+ T1(PT)" Y — Yull + [[Yn = 2
< |T(PT2)"  wn — Ta(PTh)"
+ T PTY)" ™ Yo = Yull + llyn — 2l

< Lllwn = yull + 1T(PT)" g0 — yull + 1y — 2l
Thus, it follows from (BR) and (BIH) that

lim |7y (PT)" ‘2, — 2, = 0. (3.17)
n—oo

By using ([CT4), we have

[n1 = Zall < (1= 0 = Aa)l[gn = Zall + QI T2 (PT)" g — all + Al — 20
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< (L= an = A)llyn = 2all + ull 1 (PT)" = Yo + Yo — 2
+ Anllttn = Yo + Yn — T

< (1= an = A)llyn = @all + 0l TL(PT2)" g —
+anllyn = zall + Anlltn = yall + Aallyn — zall

< 1y = zall + 1T1(PT)"™ o — yall + AnC.

It follows from (B3), (B0@) and >, A, < oo that

lim ||z,41 — x| = 0. (3.18)
n—oo

Using (BT1) and (BI8), we have

|Zns1 — To(PTL)"  ania|| = [|Tns1 — o + 20 — Ti(PT)™ 2,
+ T (PTl)"flfljn -1 (PTl)nflanrl I
< lnsr = zll + T (PTY)" @0 — Ty (PTY)" |
+ | T(PT)" 2y — 2|
< N|#ns1 = @nll + Lllats — ol + 1T (PTH)" ™ 2 — 24,

— 0 (as n— o0). (3.19)

In addition, for n > 2,

|Zns1 — TL(PTY)" *Zny1l| = |Tnss — Tn + 2 — Ty (PTY)" 22,
+ Ty (PT)" 2z, — Ty (PTL)" 22|
<N @ngr — x|l + [ TU(PT)" 220 — |
+ [TV (PT)" gy — TA(PTY)" 2|
< Nwngr = @l + | T (PTY)" 22y — 2

+ L”xn-i-l — Ty |.
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It follows from (BI8) and (BT9) that
hm |Zns1 — TL(PT)" %y = 0. (3.20)
We denote as (PTy)'™! the identity maps from C' onto itself. Thus by the in-

equality (B19) and (B=20), we have

Tpt1 — L1Zpp1|| = || Tngr — L1 1) | Tt 1 )" 1 — T
I T =1 T(PT)" + Ty (PTy)"! T I

(
< N#ns1 = To(PT)" @i || + T2 (PT)" 21 — Tipsa |
< NZpsr = T(PT)" T || + LI(PT)™ 2ng1 — Ty |

= [[£p11 = TL(PTL)" npa | + LI (PT)(PTY)" 211 — Pl@nta)|
< N|#ns1 = T(PT)" 2 || + LITi(PTL)" 21 — T |

—0 (as n— 00),
which implies that lim,, , ||z, — T12,|| = 0. Similary, we may show that
nh_}lglo | zn — Tozy|| = 0.
The proof is completed. n

We prove the strong convergence of the scheme (ICI4) under condition

A’ which is weaker than the compactness of the domain of the mappings.

Theorem 3.1.3. Let X be a real uniformly convexr Banach space and C' a nonempty
closed convexr nonexpansive retract of X with P as a nonexpansive retraction. Let
11, T, : C — X be two uniformly L— Lipschitzian, nonself generalized asymptot-
ically quasi-nonexpansive mappings of C satisfying condition A" with sequences
(EY, {68y  [1,00) (i = 1,2), respectively such that Z;‘;l(kﬁf') —1) < oo,
> 5% < 0o and F = F(Ty) N F(Ty) # 0. Suppose that {an}, {B.} are

real sequences in [e,1 — €| for some € € (0,1), {7}, {\} C [0,1) such that
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Yo Y <00, D2 Ay < 00 and {u,}, {v,} are bounded sequences in C. Then
the sequences {x,} and {y,} defined by the iterative scheme ([I.I7) converge

strongly to a common fized point of T and Ts.

Proof. By Lemma BT, we have lim,,_,« ||z, — 112, || = limy, o0 ||, — T2z, || = 0.

It follows from condition A" that

lim f(d(z,, F)) < lim ||z, — Tiz,| =0 or
n—oo

n—00

lim f(d(zn, F)) < lim ||@, — Teaz,|| = 0.
n— o0

n—o0
In the both case, lim,_,, f(d(x,, F')) = 0. Since f : [0,00) — [0, 00) is a nonde-
creasing function satisfying f(0) = 0, f(r) > 0 for all r € (0, 00), we obtain that
lim, o d(x,, F') = 0. That is
lim inf ||z, —y*|| = lim d(z,, F) = 0.
n—o0 y*eF n—00

It implies that

m VN
Jnf, im [|lzn =y =0.

So, for any given € > 0, there exists p € F' and N > 0 such that for all n > N

|zn — p|| < §. This shows that

|Zn4m = Zull < (|Tntm — Pl + |20 — Dl
< 7 + 1 €
N
for all n > N and m > 1. Hence, {z,} is a Cauchy sequence and so is con-
vergent since X is complete. Let lim, o x, = u. From lim, o ||z, — T12,| =

limy, 00 ||2n — T2, || = 0 and the continuity of 77 and 75, we have ||[Thu — u|| =



32
|Tou — u|| = 0. Thus u € F. From (B18), we have
lim [y, — 2| =0,
n—so0
it follows that lim,,_,« ||y, — u|| = 0. This completes the proof. O

The following result follows from Theorem E—TT.

Theorem 3.1.4. Let X be a real uniformly convex Banach space and C' a nonempty
closed conver nonexpansive retract of X with P as a nonexpansive retraction.
Let T1, Ty : C — X be two nonself asymptotically nonexpansive mappings of
C satisfying condition A" with sequences {kﬁf)} C [1,00) (i = 1,2) such that
Z;‘;l(k,(f) —1) < o0 and F = F(Ty) N F(Ty) # 0. Suppose that {a,}, {fn}
are real sequences in [e,1 — €] for some € € (0,1), {7}, {\} C [0,1) such
that > 07 o < 00, 300 Ay < 00 and {u,}, {v,} are bounded sequences in C.
Then the sequences {x,} and {y,} defined by the iterative scheme (I-17) converge

strongly to a common fixed point of Ty and T.

For v, = A\, = 0, the iterative scheme (IT7) reduces to that of (I18) for
uniformly L-Lipschitzian, nonself generalized asymptotically quasi-nonexpansive

mappings and the following result is directly obtained by Theorem E—TTI.

Theorem 3.1.5. Let X be a real uniformly convexr Banach space and C' a nonempty
closed convexr nonexpansive retract of X with P as a nonexpansive retraction. Let
11, T, : C — X be two uniformly L— Lipschitzian, nonself generalized asymptot-
ically quasi-nonexpansive mappings of C satisfying condition A" with sequences
(E9Y, {68y € [1,00) (i = 1,2), respectively such that Z;‘;l(kﬁf') —1) < oo,
> 5 < 0o and F = F(Ty) N F(Ty) # 0. Suppose that {a,} and {B,} are
real sequences in [e,1 — €] for some € € (0,1). Then the sequences {x,} and {y,}
defined by the iterative scheme (IA) converge strongly to a common fixed point
of Ty and Ts.
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The following result follows from Theorem E—T-3.

Theorem 3.1.6. Let X be a real uniformly convexr Banach space and C' a nonempty
closed conver nonexpansive retract of X with P as a nonexpansive retraction.
Let T\, Ty : C — X be two nonself asymptotically nonexpansive mappings of
C satisfying condition A’ with sequences {kff)} C [1,00) (i = 1,2) such that
Z;’il(kﬁf) —1) < o0 and F = F(Ty) N F(Ty) # 0. Suppose that {«,} and {5,}
are real sequences in e, 1 — €| for some € € (0,1). Then the sequences {z,} and

{yn} defined by the iterative scheme (I18) converge strongly to a common fized
point of Ty and Ts.

In the remainder of this section, we deal with the strong convergence of
the new iterative scheme ([CI7) to a common fixed point of nonself generalized

asymptotically quasi-nonexpansive mappings in a real Banach space.

Theorem 3.1.7. Let X be a real Banach space and C' a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let Ty, T, : C' —
X be two nonself generalized asymptotically quasi-nonexpansive mappings of C
with sequences {k:ff)}, {(559} C [1,00) (i = 1,2), respectively such that Zle(k%)—
1) <00,y 2, 5 < 0o and F = F(Ty)NF(Ty) # 0 is closed. Suppose that {a,,},
{Bn} are real sequences in [e,1 — €] for some € € (0,1), {7}, {Au} C[0,1) such
that > 07 o < 00, Y00 A, < 00 and {u,}, {v,} are bounded sequences in C.
Then the sequence {x,} defined by the iterative scheme ([I.T]) converges strongly
to a common fixed point of Ty and Ty if and only if liminf, ., d(z,, F') = 0, where

d(zy, F) =infyep ||z, —y||, n > 1.

Proof. The necessity of the conditions is obvious. Thus, we will only prove the
sufficiency. As in the proof of Lemma BT, by the arbitrariness of ¢ € F, we

have
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|21 — gl < @+ +r@ +rOrP) )z, — gl + 0,
and so

d(@ni1, F) < (U410 40 4 rDrP)d(@,, F) + e,

n

where ¢ = (1 4+ r{0% + (1 + r)y M + 68 + A, M. Since °°°, () +
r? + rr?) < oo and > el) < o0, we obtained by Lemma ZZZT2 that
lim, o d(x,, F') exists. Then, by hypothesis liminf, .. d(x,, F') = 0, we have
limy, 00 d(xy,, F') = 0. From Theorem BT, it obtain that {x,,} defined by (I172) is
a Cauchy sequence in C. Let lim,, o, , = u. Now lim,,_,o, d(x,,, F') = 0 gives that
d(u, F) = 0. F is closed; therefore u € F. This completes the proof of Theorem
T4, O
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3.2 A new two-step iteration method for G-nonexpansive mappings

in Banach spaces with a graph

Throughout the section, we let C' be a nonempty closed convex subset of a Banach
space X endowed with a directed graph G such that V(G) = C and E(G) is
convex. We also suppose that the graph G is transitive. The mappings 7T; (i =
1,2) are G-nonexpansive from C to C' with F' = F(11) N F(1) nonempty. For

an arbitrary xo € C, defined the sequence {x,} by (IZ20)

We start with proving the following useful results.

Proposition 3.2.1. Let zy € F be such that (xo, 20), (20, o) are in E(G). Then

(T, 20), (Yns 20)5 (205 Tn)s (20, Yn), (Tn, Yn) and (T,, Tny1) are in E(G).

Proof. We proceed by induction. Since T is edge-preserving and (g, zo) € E(G),
we have (Tizo,29) € E(G) and so (yo, 20) € E(G), by E(G) is convex. Again,
by edge-preserving of 77 and (o, 20) € E(G), we have (Thyo, 20) € E(G). Then,
since Ty is edge-preserving and (yo, 20) € E(G), we get (Tayo, 20) € E(G). By
the convexity of E(G) and (Thyo, 20, ), (T2Y0, 20) € E(G), we get (x4, z0) € E(G).
Thus, by edge-preserving of T3, (Tiz1,20) € E(G). Again, by the convexity
of E(G) and (Tyx1, 20, ), (71, 20) € E(G), we have (y1,29) € E(G) and hence,
(Tyyi1, z0) and (Toyr, 20) € E(G). Next, we assume that (zy, z9) € E(G). Since
Ty is edge-preserving, we get (Thxx, 20) € F(G) and hence, (yx, 20) € E(G), since
E(G) is convex. Hence, by edge-preserving of T} and (y, 20) € E(G), we have
(Thyg, 20) € E(G). Since Ty is edge-preserving, we have (Toy, 20) € E(G). By
the convexity of E(G), we get (zx41,20) € E(G). Hence, by edge-preserving
of T, we obtain (Tixy1,20) € E(G), and so (Yry1,20) € E(G), since E(G) is
convex. Therefore, (x,,20), (Yn,20) € E(G) for all n > 1. Since T7 is edge-

preserving and (zp,x9) € E(G), we have (z9,Tixy) € E(G), and so (z9,y0) €
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E(G). Using a similar argument, we can show that (zo, z,), (20, yn) € E(G) under
the assumption that (zp,z0) € F(G) and (20,y0) € E(G). By the transitivity of

G, we get (Tn, Yn), (Tn, Tny1) € E(G). This completes the proof. O

Lemma 3.2.2. Let X be a uniformly convexr Banach space. Suppose that {a,,},
{B.} are real sequences in [0, 1—0] for some d € (0,1) and (o, 20), (20, 20) € E(G)
for arbitrary xo € C' and zy € F. Then
(i) lm ||z, — 20| exists;

n—oo

(i) lim ||z, — Tix,|| =0 = lim ||z, — Tox,||.
n—oo n—oo

Proof. (i) Let zp € F. By Proposition B2, we have (x,, 20), (yn, 20) € E(G).

Then, by G-nonexpansiveness of T;(i = 1,2) and using (I"20), we have

[y = 20ll = (1 = Bn)zn + BrTizn — 2
= [[(1 = Bn)(xn — 20) + Bn(Thn — 2)|
< (1= Bo)llen = 2oll + Bull Trzn — 2|
< (1= Bo)llen = 20|l + Pullzn — 2|

= ||z, — 20|, (3.21)
and so

|41 — 20l = [|(1 = ) T14n + anT2yn — 20|
= [|(1 = an)(T1yn — 20) + u(Toyn — 20|
< (1= a)l[Tiyn — 20| + anl|Toyn — 20|
< (1= an)llyn — 20|l + anllyn — 20|
= [|yn — ol|

< ||zn — 20l (3.22)
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It follows from Lemma P28 that lim ||z, — 2o|| exists. In particular, the se-
n—oo

quence {z,} is bounded.

(ii) Assume that lim ||z, — z|| = ¢. If ¢ = 0, then by G-nonexpansiveness of
n—oo

T;(i =1,2), we get

[ = Tiwnl| < |20 = 20l + [l20 — Tz
< [lzn = 2ol + [1z0 = znll

Therefore, the result follows. Suppose that ¢ > 0. Taking the lim sup on both

sides in the inequality (B7ZI), we obtain

lim sup ||y, — 20| < limsup ||z, — 20| = ¢ (3.23)

n—o0 n—oo

In addition, by G-nonexpansiveness of 7;(i = 1,2), we have || Ty, — 20| < ||yn —

2pl|, taking the lim sup on both sides in this inequality and using (3223), we obtain

lim sup || Tiyn — 20| < c. (3.24)

n—oo

Since lim ||z,41 — 20| = ¢. Letting n — oo in the inequality (B=22), we have
n—o0

lm |[(1 = an)(Thyn — 20) + an(Toyn — 20)|| = c. (3.25)

n—oo

By using (B724), (B29) and Lemma ZZZT4, we have

7}1_{{)10 | T1yn — Toy,|| = 0. (3.26)

Note that [[2,41 — 20l < [|yn — 20| gives that

liminf ||y, — 20| > ¢ (3.27)
n—oo
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From (B23) and (B=21), we have

lim |y, — 20| = c. (3.28)

n—00

From (B220) and (B=28), we have

Tim [[(1 = Bn) (20 = 20) + Bu(Tran — 20)[| = c. (3.29)

In addition, limsup ||Tyx, — zo|| < limsup ||z, — 20|| = ¢, using (B229) and Lemma
n—oo n—0o0

2217, we have

lim ||Thz, — z,|| = 0. (3.30)
n—oo
Thus, it follows from (B=30) that

”yn 7 an = ”(1 — Bn)Tn + BnTizn — xn”
S BnHTlxn - xn”

— 0 (as n — 00). (3.31)

Using (B230), (B231) together with G-nonexpansiveness of T3, we have

S ||T1yn - TlmnH + ||T1xn N yn”
< yn — 2ol + | T120 — 2all + (|20 — ynl

— 0 (as n — 00). (3.32)

Using (B28), (B=3T), (B232) together with G-nonexpansiveness of Ty, we have

< ||T235n - yn” + Hyn - xn”

= ||T2xn - T2yn + TZ:yn - yn” + ”yn - l‘nH
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< NTozn — Toyull + 1 T2yn — ynll + lyn — 2l

— 0 (as n — o0).

Therefore, we conclude lim ||z, —Tiz,|| = 0= lim ||z, — Tbx,||. This completes
n—00 n—r00

the proof. n

We now prove the weak convergence of the sequence generated by the
new iteration process (IZZ0) for two G-nonexpansive mappings in a uniformly

convex Banach space satisfying Opial’s condition.

Theorem 3.2.3. Let X be a uniformly convexr Banach space which satisfies
Opial’s condition and C' has Property W@G. Suppose that {«,} and {5,} are real
sequences in [0, 1 — 0] for some ¢ € (0,1). If (xg, 20), (20, o) € E(G) for arbitrary
xg € C and zy € F, then {x,} converges weakly to a common fized point of T}

and T5.

Proof. Let zg € F be such that (zo, 20), (20,20) € E(G). From Lemma B3 (i),
we have nll_I)Iolo |xn — zo0|| exists, so {z,,} is bounded. It follows from Lemma B=22
(i7) that nthSO |zn — Tha,|| =0 = 111520 |zn, — Tomw,||. Since X is uniformly convex
and {x,} is bounded, we may assume that x, — u as n — oo, without loss of
generality. By Lemma 2213, we have v € F. Suppose that subsequences {x,, }
and {zn,} of {z,} converge weakly to u and v, respectively. By Lemma B2
(4i), we obtain that ||z, — Tizy,| — 0 and |z,, — Tiz,,|| — 0 as k,j — oo.
Using Lemma PZZT3, we have u,v € F. By Lemma B3 (i), nh_)rgo |z, — u|| and
nh_{rolo |zn, — v]| exist. It follows from Lemma 2218 that u = v. Therefore, {x,}

converges weakly to a common fixed point of 17 and 7. O
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Note that the Opial’s condition has remained key to prove weak conver-
gence theorems. However, each [P (1 < p < oo) satisfies the Opial’s condition,

while all LP do not have the property unless p = 2.

Next, we deal with the weak convergence of the sequence {x,} generated
by (1.3) for two G-nonexpansive mappings without assuming the Opial’s condition

in a uniformly convex Banach space with a directed graph.
We start with proving the following lemma for later use.

Lemma 3.2.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and suppose that C has property WG. Let T be a G-nonexpansive

mapping on C. Then I — T is G-demiclosed at 0.

Proof. Let {z,} be a sequence in C' such that (z,,z,+1) € E(G), x, — ¢ € C and
(I =T)x, — 0 as n — oo. By property WG, there exists a subsequence {z,} of
{2, } such that (z,,,q) € E(G) for all j € N. By Remark 2214, (z,,q) € E(G) for
all n € N. Since {z,,} weakly converges in a uniformly convex Banach space X, it
is bounded and hence there exists » > 0 such that {z,} C D = CNB(0,r). Then
D is nonempty closed convex subset of C. Thus, T': D — C' is G-nonexpansive

mapping. By Mazur’s theorem (see [61]]), for each positive integer n, there exists

m(n) m(n)
a convex combination y, = Z Nix; with \; > 0 and Z A; = 1 such that
Iy — all < = (3.33)
Yn — ¢ - )

Since F(G) is convex and (z;,q) € E(G) for each i € N, we must have that
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Z)\i(mi, Z)\xz, Z/\,q
- m(n

ZA%

— (qu) S E(G)

It follows from lim ||z, — T'z,|| = 0 that for every e > 0, there exists a positive
n—o0

integer N such that

|lzn — Tz, <€ (3.34)

for every n > N. On the other hand, using Lemma 22219 and (8234), we have

m(n) m(n) m(n)
HTyn - yn” = HTyn - Z ANilx; + Z Ail'w; — Z )\zsz
m(n) m(n) m(n
< Ty, — Z NTz|| + || Z A\Tx; — Z A
< |Tyn — Z AiTz;|| + Z Aill Tz — x|
< g4t ,— x| = || Tw; — T
< gt _max (=l = [To = Tayl) + ¢
< 47t max (|l = Taill + [lay — Tayll) + e

n<i,j<m(n)
Therefore, from (B=33), (B334), (3.35) and G-nonexpansiveness of T, we have

lg —Tqll < lg = ynll + lyn — Tynll + [ Tyn — T4l
<2lg—yoll +7" max  (|lz; — Tl + ||z — Txyl]) + €
n<i,j<m(n)
2

<=4+ 97H2) + ¢
n

for n > N. Taking lim sup on both sides in this inequality, we obtain
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lg — Tqll <7 (2€) +e (3.35)

Since v is monotonically increasing with v(0) = 0 and € is arbitrary, we must

have

lg — Tqll = 0. (3.36)

Therefore, ¢ = T'q. This completes the proof. O

Theorem 3.2.5. Let X be a uniformly convexr Banach space. Suppose that C' has
Property WG, {an}, {Bn} are real sequences in [0,1 — 6] for some § € (0,1), I’
is dominated by xy and F dominates xo. If (xo,20), (20, Z0) € E(G) for arbitrary
xg € C and zy € F, then {x,} converges weakly to a common fized point of T}

and T.

Proof. Let zg € F be such that (zo, 20), (20, %0) are in E(G). From Lemma B=22
(), we have Jgr;o |zn, — 20|| exists, so {x,} is bounded in C'. Since C' is nonempty
closed convex subset of a uniformly convex Banach space X, it is weakly compact
and hence there exists a subsequence {z,,} of the sequence {z,} such that {z,,}

converges weakly to some point p € C. By Lemma B2 (ii) we obtain that

lim ||z, — Tz, || = 0= lim ||z, — Tox,,|. (3.37)
j—00 j—00

In addition, || T2y, — Ynll < | Toyn — T19nl| + || T1Yn — Yul|, using (B228) and (B=32),

we have

Using Lemma B=2Z4 we have I — T} and I — T, are G-demiclosed at 0 so that

p € F. To complete the proof it suffices to show that {x,} converges weakly to p.
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To this end we need to show that {z,} satisfies the hypothesis of Lemma PZZ220.
Let {zy,} be a subsequence of {x,} which converges weakly to some ¢ € C. By

similar arguments as above ¢ is in F. Now for each j > 1, using (I20), we have

Tpjp1r = (1= ) 1Y, + n; Toyn, .- (3.39)

It follows from (B=37) that

7, — (o) — i) -, — (3.40)

Now from (=20) and (BZD),

ynj =3 (1 N /an)l‘nj —I_ ﬁanlxnj - q (341)

Using (B232) and (B=1), we have

lenj = (lenj - ynj) + ynj i q (342>

Also from (B38) and (B-41), we have

TZynj == (TQynj - ynj) _l_ ?/nj = q. (343)

It follows from (B=39), (B42) and (B=43) that

Tnj+1 —q.

Therefore, the sequence {z,} satisfies the hypothesis of Lemma which in
turn implies that {z,} weakly converges to ¢ so that p = ¢. This completes the

proof. ]

In the remainder of this section, we deal with the strong convergence of
the sequence generated by the new iteration process (I20) for two G-nonexpansive

mappings in a uniformly convex Banach space with a directed graph.
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Theorem 3.2.6. Let X be a uniformly convex Banach space. Suppose that {a,},
{Bn} are real sequences in [§,1 — 0] for some § € (0,1), T;(i = 1,2) satisfy
condition (B), F is dominated by xo and F dominates xo. Then {x,} converges

strongly to a common fixed point of Ty and T.

Proof. By Lemma B2 (i), we have rllg& | zn,—q|| exists and so T}L)IIOlo d(z,, F) exists
for any ¢ € F. Also by Lemma B2 (ii), 7}1_{20 |xn—Thz,|| =0 = nh_}r{)lo |xn —Tox,||.
It follows from condition (B) that 7}1_}1210 f(d(z,, F)) = 0. Since f : [0,00) — [0, 00)
is a nondecreasing function satisfying f(0) = 0, f(r) > 0 for all r € (0,00), we
obtain that T}LIEIO d(xn, F)) = 0. Hence, we can find a subsequence {,,} of {,}

and a sequence {u;} C F such that |z,, —u;|| < 55. Put n;1 = n; + k for some

k > 1. Then

1
10— 51 < emyvis = 5] < 1, = 5] < -

We obtain that [luj11 —u;l| < 577, so {u;} is a Cauchy sequence. We assume that

uj — qo € C as j — oo. Since F is closed, we get qo € F. So we have x,;, — qo

as j — oo. Since lim ||x, — qo|| exists, we obtain x,, — go. This completes the
n—,oo

proof. n

Theorem 3.2.7. Let X be a uniformly conver Banach space. Suppose that C
has Property SG, {an,},{Bn} are real sequences in [6,1— 4] for some § € (0,1), F
is dominated by xo and F dominates xqo. If one of T;(i = 1,2) is semi-compact,

then {x,} converges strongly to a common fized point of Ty and Ts.

Proof. Tt follows from Lemma B2 that {z,} is bounded and lim ||z, —Tiz,| =
n— oo
0 = lim ||z, — Tyx,||. Since one of T} and T5 is semi-compact, then there exists
n—oo
a subsequence {x,,} of {z,} such that z,, — ¢ € C as j — oo. Since C has

Property SG and transitivity of graph G, we obtain (z,,;,q) € E(G). Notice that,
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for each i € {1,2}, lim ||z,, — Tz, || = 0. Then
J—00 ' '

g = Tigl < llg = 2oyl + ll20, = Ti, | + | Tz, — Tig]
< Nla = @ull + 20, = Tian, || + [|2n; — gl
— 0 (as j — 00).
Hence ¢ € F. Thus lim d(z,, F) exists by Theorem BZB. We note that

n—oo

d(xn,, F) < d(zn,,q) — 0 as j — oo, hence lim d(z,,F') = 0. It follows, as
n—oo

in the proof of Theorem B=2H, that {x,} converges strongly to a common fixed

point of T} and T,. This completes the proof. ]

Now we are ready to discuss an example as well as the numerical exper-
iments for supporting our main theorem. The following definitions will be useful

in this context.

In 1976, Rhoades [33] gave the idea how to compare the rate of conver-

gence between two iterative methods as follows:

Definition 3.2.8. [33] Let C' be a nonempty closed convex subset of a Banach
space X and T : C' — C be a mapping. Suppose that {z,} and {z,} are two
iterations which converge to a fixed point ¢ of 7. Then {z,} is said to converge

faster than {z,} if

|zn —qll < |20 —ql|

for all n > 1.

In 2011, Phuengrattana and Suantai [31] showed that the Ishikawa iter-
ation converges faster than the Mann iteration for a class of continuous functions

on the closed interval in a real line.

In order to study, the order of convergence of a real sequence {a,} con-

verging to a, we usually use the well-known terminology in numerical analysis,



46

see [0], for example.

Definition 3.2.9. [I0] Suppose {a,} is a sequence that converges to a, with

a, # a for all n. If positive constants A\ and « exist with

lim an — o _
n—00 |an — a|0‘

then {a,} converges to a of order «, with asymptotic error constant A. If a = 1
(and A\ < 1), the sequence is linearly convergent and if o = 2, the sequence is
quadratically convergent. Berinde [7] employed above concept for comparing the

rate of convergence between the two iterative methods as follows:

Definition 3.2.10. [[d] Let {a,} and {b,} be two sequences of positive numbers

that converge to a and b, respectively. Assume that there exists

lim 2 — ] _

n—00 \bn—b‘ B

(i) If I = 0, then it is said that the sequence {a,} converges to a faster than the

sequence {b,} to b.
(i) If 0 < I < oo, then we say that the sequence {a,} and {b,} have the same

rate of convergence.

Example 3.2.11. Let X =R and C = [0,2]. Let G = (V(G), E(G)) be a directed
graph defined by V(G) = C and (z,y) € E(G) if and only if 0.50 < z,y < 1.70.
Define a mapping Ty, T> : C — C' by

2
Tix = 3 arcsin(z — 1) + 1,
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TQIL‘ = \/57
for any x € C. It is easy to show that T},T; are G-nonexpansive but Ty,T5 are

not nonexpansive because

|Tyx — Tyl > 0.50 = |z — y|
and

|Tou — Tov| > 0.45 = |u — |

when x = 1.95,y = 1.45,u = 0.5 and v = 0.05. Let

n—+1
Qy, =
5n + 3
and
n+ 2
ﬂn_8n+5'

Choose zyp = yop = xog = 1.35. We note that x = 1 is a common fixed point
of Ty and T,. Let {x,} be a sequence generated by (20) and {y,}, {z.} be
sequences generated by modified S-iteration and Ishikawa iteration, respectively.
By computing, we obtain the following numerical experiments for common fixed

point of 77 and 75 and rate of convergence of {z,}, {y,} and {z,}.
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Comparison of sequence generated by Ishikawa {zn},
Modified S-iteration {yn} and Proposed iteration {xn}.

1.4 . ;
¢ Ishikawa iteration
1.35@ @ Modified S-iteration A
+  Proposed iteration
1.3F ¢ i
o 1251 4 i
e ¢
= @
g 12 + o 1
2 ¢
£ 115} ¢ 1
© ) ®
g + O o
1.1F o o 4
¢ ® % o
1.05f g 0
? 0 °
1+ ® ©¢ ¢ ¢ o © © o
0.95 ' !
0 5 10 15

lterations Number

Figure 1: Numerical experiment of Example BZZI1 by using Ishikawa iteration, modified
S-iteration and the proposed method.

Figure M presents the three comparative methods consist of Ishikawa
iteration, modified S-iteration and the proposed method converge to the solutions

of the numerical experiment.
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Convergence comparison of sequence generated by Ishikawa iteration {zn},
Modified S—iteration {yn} and Proposed iteration {xn}.

—_
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Figure 2: Convergence comparison of sequence generated by Ishikawa iteration, modified
S-iteration and the proposed method for Example B=2711

Figure B shows the convergence comparison between two sequences {a,, }

_ lan—1]

and {b,} that converge to the same limit results from the parameter [,, = ]

lead from Definition B2210. The diamond plot shows the convergence comparison
between two sequences generated by modified S-iteration and Ishikawa iteration,
the circle plot shows the convergence comparison between two sequences gener-
ated by proposed method and Ishikawa iteration and the plus sign plot shows
the convergence comparison between two sequences generated by the proposed
method and modified S-iteration. It can be seen from this figure that both dia-
mond and circle plot tends to zero while the plus sign plot tends to some constant.
It was interpreted that both modified S-iteration and proposed methods are con-
verged faster than Ishikawa iteration methods. The proposed method has the
same convergence rate as compared with modified S-iteration method. However,

the presented method still converged faster than modified S-iteration since the
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ratio of |z, — 1] and |y, — 1| in each iteration step is always less than one (see

Definition B=XR).



o1

Table 1: Comparative sequences generated by Ishikawa iteration, modified S-
iteration and the proposed iteration for numerical experiment of Example BZ2ZT1]

Comparative sequences

Rate of convergence between

Proposed  Modified Ishikawa two generated sequences
iteration  S-iteration iteration
|2 — 1 lyn — 1] |zn — 1]
X z

too o G P N P | R P |
1 1.1982 1.2157 1.2994  6.622e¢ — 01 7.204e — 01 9.192¢ — 01
2 1.1151 1.1335 1.2604  4.419e¢ — 01 5.126e — 01 8.621e — 01
3 1.0677 1.0829 1.2282  2.967¢ — 01 3.633¢ — 01 8.166e — 01
4 1.0401 1.0516 1.2008  2.000e — 01 2.571le — 01 7.779¢ — 01
5 1.0239 1.0322 1.1773 1.352¢ — 01 1.818¢ — 01 7.438e — 01
10 1.0019 1.0031 1.0975 1.949¢ — 02 3.193e — 02 6.102¢ — 01
20 1.0000 1.0000 1.0310 4.151e—04 9.615e¢ — 04 4.317¢ — 01
30 1.0000 1.0000 1.0101 8.919¢ — 06 2.852¢ — 05 3.126e¢ — 01
40 1.0000 1.0000 1.0033 1.925¢ — 07 8.418¢ — 07 2.287e¢ — 01
50 1.0000 1.0000 1.0011  4.173e — 09 2.478¢ — 08 1.683¢ — 01
60 1.0000 1.0000 1.0003  9.084e — 11 7.291e — 10 1.245e¢ — 01

Table 1 also shows the numerical experiment for supporting our main
results and comparing rate of convergence of the proposed method with Ishikawa

iteration and modified S-iteration.



CHAPTER IV

CONCLUSION

4.1 Conclusion

The following results are all main theorems of this thesis:

Theorem 4.1.1. Let X be a real uniformly convexr Banach space and C' a nonempty
closed convexr nonexpansive retract of X with P as a nonexpansive retraction. Let
Ty, T; : C — X be two uniformly L— Lipschitzian, nonself generalized asymptot-
ically quasi-nonezpansive mappings of C satisfying condition A" with sequences
{k:q(f)}, {51?)} C [1,00) (i = 1,2), respectively such that Zzozl(kg) —1) < o0,
> 5% < 0o and F = F(Ty) N F(Ty) # 0. Suppose that {ay}, {B.} are
real sequences in [e,1 — €| for some € € (0,1), {7}, {\} C [0,1) such that
Yo Y < 00, D2 Ay < 00 and {u,}, {v,} are bounded sequences in C. Then
the sequences {x,} and {y,} defined by the iterative scheme ([I.I7) converge

strongly to a common fized point of Ty and Ts.

Theorem 4.1.2. Let X be a real uniformly convex Banach space and C' a nonempty
closed conver nonexpansive retract of X with P as a nonexpansive retraction.
Let T1, Ty : C — X be two nonself asymptotically nonexpansive mappings of
C satisfying condition A" with sequences {kr(f)} C [1,00) (i = 1,2) such that
Z;’;l(k,ﬁi) —1) < o0 and F = F(Ty) N F(Ty) # 0. Suppose that {a}, {fn}
are real sequences in [e,1 — €] for some ¢ € (0,1), {7}, {\} C [0,1) such
that > 07 o < 00, Y00 Ay < 00 and {u,}, {v,} are bounded sequences in C.
Then the sequences {x,} and {y,} defined by the iterative scheme (I.17) converge

strongly to a common fixed point of Ty and T.

Theorem 4.1.3. Let X be a real uniformly convexr Banach space and C' a nonempty

closed convexr nonexpansive retract of X with P as a nonexpansive retraction. Let



53

Ty, 15 : C — X be two uniformly L— Lipschitzian, nonself generalized asymptot-
ically quasi-nonexpansive mappings of C satisfying condition A" with sequences
(Y, {68 € [1,00) (i = 1,2), respectively such that S°°° (kY — 1) < oo,
Yo 5 < 0o and F = F(Ty) N F(Ty) # 0. Suppose that {a,} and {8,} are
real sequences in [€,1 — €| for some € € (0,1). Then the sequences {x,} and {y,}
defined by the iterative scheme (IIA) converge strongly to a common fixed point
of Ty and Ts.

Theorem 4.1.4. Let X be a real uniformly convex Banach space and C' a nonempty
closed conver nonexpansive retract of X with P as a nonexpansive retraction.
Let T1,T5 : C — X be two nonself asymptotically nonexpansive mappings of
C satisfying condition A’ with sequences {kﬁf)} C [1,00) (: = 1,2) such that
Zzozl(k,(f) —1) < oo and F = F(T)) N F(Ty) # 0. Suppose that {«,} and {5,}
are real sequences in e, 1 — €| for some € € (0,1). Then the sequences {z,} and

{yn} defined by the iterative scheme (II8) converge strongly to a common fized

point of Ty and Ts.

Theorem 4.1.5. Let X be a real Banach space and C' a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T, Ty : C' —
X be two nonself generalized asymptotically quasi-nonexpansive mappings of C
with sequences {k}, {68}  [1,00) (i = 1,2), respectively such that Zle(kﬁf)—
1) <oo, Y 7, 5 < 00 and F = F(TY)NF(Ty) # 0 is closed. Suppose that {ov,},
{Bn} are real sequences in [e,1 — €] for some € € (0,1), {7}, {\} C[0,1) such
that > 07 1 < 00, Y oo Ay < 00 and {u,}, {v,} are bounded sequences in C.
Then the sequence {x,} defined by the iterative scheme ([I.T]) converges strongly
to a common fixed point of Ty and Ty if and only if liminf,_, . d(z,, F') = 0, where

d(z,, F) =infyep ||z, —y|l, n > 1.

Theorem 4.1.6. Let X be a uniformly convexr Banach space which satisfies

Opial’s condition and C' has Property WG. Suppose that {«,} and {5,} are real



sequences in [0, 1 — 0] for some ¢ € (0,1). If (xg, 20), (20, x0) € E(G) for arbitrary
xg € C and zy € F, then {x,} converges weakly to a common fized point of T}

and TQ.

Theorem 4.1.7. Let X be a uniformly convexr Banach space. Suppose that C' has
Property WG, {ay,},{B.} are real sequences in [6,1 — 0] for some § € (0,1), F
is dominated by xy and F dominates xo. If (zo,20), (20, 20) € E(G) for arbitrary
xg € C and zy € F, then {x,} converges weakly to a common fized point of T}

and Ts.
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