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บทคดัย่อ
ทฤษฎีจุดตรึงมีการศึกษากันอย่างกว้างขวาง เนื่องจากเป็นเครื่องมือที่มีประโยชน์ในการแก้ปัญหา

ต่างๆ ในหลากหลายสาขา เช่น วิศวกรรม เศรษฐศาสตร์ เคมี ทฤษฎีเกม และทฤษฎกีราฟ เป็นต้น อย่างไรก็
ตามเมื่อการศึกษาเรื่องการมีจริงของจุดตรึงสำหรับบางการส่ง พบว่า การหาค่าของจุดตรึงที่มีอยู่นั้น ไม่ใช่
เรื่องง่าย น่ันคือเหตุผลว่า ทำไมจึงใช้กระบวนการทำซ้ำสำหรับการคำนวณหาจุดตรึง กระบวนการทำซ้ำ
หลายแบบไดรั้บการพัฒนาขึ้นแต่ก็ไม่ครอบคลุมการส่งต่างๆ ท้ังหมด ท่ีทราบกันเป็นอย่างดี ก็คือ ทฤษฎีการ
หดตัวของบานาคใช้กระบวนการทำซ้ำของปีการ์สำหรับการประมาณค่าของจุดตรึง นอกจากนี ้ยังมี
กระบวนการทำซำ้ท่ีรู้จักกันเป็นอย่างด ีไดแ้ก่ กระบวนการทำซำ้ของ มานน์ อิชิคาวา อัลกาวอร์ นูร์ และ
อื่น ๆ

วัตถุประสงค์แรกของวิทยานิพนธ์นี้ ได้แนะนำและศึกษาระเบียบวิธีการทำซ้ำสองขั้นตอนแบบใหม่
ซึ่งเรียกว่า ระเบียบวธีิการทำซำ้แบบอิชิคาวาดว้ยการรบกวนสำหรับการส่งนอกตัววางนัยท่ัวไปไม่ขยายคลา้ย
แบบเชิงเส้นกำกับในปริภูมิบานาค  โดยให้เงื่อนไขที่เพียงพอสำหรับการลู่เข้าของกระบวนการทำซ้ำที่แนะนำ
ขึ้นไปยังจุดตรึงร่วมของการส่ง ภายใต้เงื่อนไขที่กำหนดขึ้นในปริภูมิบานาคนูนเอกรูปค่าจริง ยิ่งไปกว่านั้น ได้
แสดงการพิสูจน์การลู่เข้าอย่างเข้มของระเบียบวิธีการทำซ้ำแบบใหม่ด้วยการรบกวน ไปยังจุดตรึงร่วมของ
สองการส่งนอกตัววางนัยท่ัวไปไม่ขยายคล้ายแบบเชิงเสน้กำกับบนเซตย่อยนูนปิด ท่ีไม่เป็นเซตว่างของปริภูมิ
บานาคค่าจริง

วัตถุประสงค์ที่สองได้แนะนำและศึกษาการวิเคราะห์การลู่เข้าของกระบวนการทำซ้ำสองขั้นตอน
แบบใหม่เมื่อประยุกต์ไปยังการส่งชนิดการส่งไม่ขยายแบบ G โดยให้ทฤษฎีบทการลู่เข้าอย่างอ่อนและอย่าง
เข้มสำหรับระเบียบวิธีการทำซ้ำสองขั้นตอนแบบใหม่ในปริภูมิบานาคนูนเอกรูปด้วยกราฟระบุทิศ ยิ่งไปกว่า
นั้น ได้พิสูจน์ทฤษฎีบทการลู่เข้าแบบอ่อนโดยไม่ใช้เงื่อนไขของโอเปียล และแสดงการทดลองเชิงตัวเลขเพื่อ
ยนืยันผลลัพธ์ท่ีไดแ้ละเปรียบเทียบอัตราการลู่เขา้ของวธีิการทำซำ้ท่ีแนะนำขึ้น กับวิธีการทำซ้ำแบบอิชิคาวา
และวธีิการทำซำ้ปรับปรุงแบบ S

ผลลัพธ์ที่ได้ในวิทยานิพนธ์ฉบับนี้ เป็นการขยาย และวางนัยทั่วไปของบางผลลัพธ์ที่เคยมีมาก่อน
หนา้นี้
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ABSTRACT

Fixed point theory takes a large amount of literature, since it provides useful tools to solve many
problems that have applications in different fields like engineering, economics, chemistry, game theory
and graph theory etc. However, once the existence of a fixed point of some mapping is established, then
to find the value of that fixed point is not an easy task, that is why we use iterative processes for computing
them. By time, many iterative processes have been developed and it is impossible to cover them all. The
well-known Banach contraction theorem use Picard iterative process for approximation of fixed point.
Some of the well-known iterative processes are those of Mann, Ishikawa, Agarwal, Noor, and so on.

The first purpose of this dissertation is to introduce and study a new type of two-step iterative
scheme which is called the projection type Ishikawa iteration with perturbations for two nonself generalized
asymptotically quasi-nonexpansive mappings in Banach spaces. A sufficient condition for convergence of
the iteration process to a common fixed point of mappings under our setting is also established in a real
uniformly convex Banach space. Furthermore, the strong convergence of a new iterative scheme with
perturbations to a common fixed point of two nonself generalized asymptotically quasi-nonexpansive
mappings on a nonempty closed convex subset of a real Banach space is proved.

The second purpose is to introduce and study convergence analysis of a new two-step iteration
process when applied to class of G-nonexpansive mappings. Weak and strong convergence theorems are
established for the new two-step iterative scheme in a uniformly convex Banach space with a directed
graph. Moreover, weak convergence theorem without making use of the Opial's condition is proved. We
also show the numerical experiment for supporting our main results and comparing rate of convergence
of the proposed method with the Ishikawa iteration and the modified S-iteration.

The results obtained in this dissertation extend and generalize some results in the literature.
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CHAPTER I

INTRODUCTION

The presence or absence of a fixed point is an intrinsic property of a map.

However, many necessary or sufficient conditions for the existence of such points

involve a mixture of algebraic, order theoretic, or topological properties of the

mapping or its domain.

The origins of the theory, which date to the latter part of the nineteenth

century, test in the use of successive approximations to establish the existence

and uniqueness of solutions, particularly to differential equations. This method

is associated with the names of such celebrated mathematician as Cauchy, Li-

ouville, Lipschitz, Peano, Fredholm and, expecially, Picard. However, it is the

Polish mathematician Stefan Banach who is credited with placing the underlying

ideas into an abstract framework suitable for broad applications well beyond the

scope of elementary differential and integral equations. Around 1922, Banach

recognized the fundamental role of metric completeness; a property shared by all

of the spaces commonly exploited in analysis. For many years, activity in met-

ric fixed point theory was limited to minor extensions of Banach’s contraction

mapping principal and its manifold applications. The theory gained new impetus

largely as a result of pioneering work of Felix Browder in the mid-nineteen six-

ties and the development of nonlinear functional analysis as an active and vital

branch of mathematics. Pivotal in this development were the 1965 existence the-

orems of Browder, Gohde, and Kirk and the eary metric results of Edelstein. By

the end of the decade, a rich fixed point theory for nonexpansive mapping was

clearly emerging and it was equally clear that such mappings played a fundamen-

tal role in many aspects of nonlinear functional analysis with links to variational

inequalities and the theory of monotone and accretive operators.
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Nonexpansive mappings respresent the limiting case in the theory of con-

tractions, where the Lipschitz constant is allows to become one, and it was clear

from the outset that the study of such mappings required techniques going far

beyond purely metric arguments. The theory of nonexpansive mappings has in-

volved an intertwining of geometrical and topological arguments. The original

theorems of Browder and Göhde exploited special convexity properties of the

norm in certain Banach spaces, while Kirk identified the underlying property of

normal structure and the role played by weak compactness. The early phases

of the development centred around the identification of spaces whose bounded

convex sets possessed normal structure, and it was soon discovered that certain

weakenings and variants of normal structure also sufficed. By the mid-nineteen

seventies it was apparent that normal structure was a substantially stronger condi-

tion than necessary. And, armed with the then newly descovered Goebel Karlovitz

lemma the quest turned toward classifying those Banach spaces in which all non-

expansive self-mappings of a nonempty weakly compact convex subset have a

fixed point. This has yielded many elegant results and led to numerous dis-

coveries in Banach space geometry, although the question itself remains open.

Asymptotic regularity of the averaged map was an important contribution of the

late seventies, that has been exploited in many subsequent arguments.

As we know, iteration methods are numerical procedures which compute

a sequence of gradually accurate iterates to approximate the solution of a class

of problems. Such methods are useful tools of applied mathematics for solving

real life problems ranging from economics and finance or biology to transporta-

tion, network analysis or optimization. When we design iteration methods, we

have to study their qualitative properties such as: convergence, stability, error

propagation, stopping criteria. This is an active area of research, several well

known scientists in the world paid and still pay attention to the qualitative study

of iteration methods; please, (see [[11], [12], [14], [15]]).
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Fixed-point iteration process for nonexpansive self-mappings including

Mann and Ishikawa iteration processes have been studied extensively by vari-

ous authors (see [[16], [17], [18]]). We know that Mann and Ishikawa iteration

processes are defined as:

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.1)

and

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1, (1.2)

respectively. Obviously the iterative schemes (1.1) and (1.2) deals with one self-

mapping only. In 1986, Das and Debata [17] introduced and studied the case of

two mapping in iteration processes. This success can be rich source of inspriation

for many authors, see for example, Takahashi and Tamura [46] and Khan and

Takahashi [24]. For approximating the common fixed points, the two mappings

case has its own importance as it has a direct link with the minimization problem,

see for example Takahashi [45].

Being an important generalization of the class of nonexpansive self-mappings,

in 1972, Goebel and Kirk [21] introduced the class of asymptotically nonexpan-

sive self-mappings, who proved that if C is a nonempty closed convex subset of

a real uniformly convex Banach space and T is an asymptotically nonexpansive

self-mapping on C, then T has a fixed point.

In 1991, Schu [36] introduced the following modified Mann iteration pro-

cess:

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.3)

to approximate fixed points of asymptotically nonexpansive self-mappings in

Hilbert space. Since then, Schu’s iteration process has been widely used to ap-

proximate fixed points of asymptotically nonexpansive self-mappings in Hilbert
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space or Banach spaces (see [30, 36, 34, 47]).

Let C be a nonempty closed convex subset of real normed linear space X.

A self-mapping T : C → C is said to be nonexpansive if ∥T (x)−T (y)∥ ≤ ∥x−y∥

for all x, y ∈ C. A self-mapping T : C → C is called asymptotically nonexpansive

if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n → ∞ such that

∥T nx− T ny∥ ≤ kn∥x− y∥ (1.4)

for all x, y ∈ C and n ≥ 1. A mapping T : C → C is said to be uniformly

L-Lipschitzian if there exists a constant L > 0 such that

∥T nx− T ny∥ ≤ L∥x− y∥ (1.5)

for all x, y ∈ C and n ≥ 1.

It is easy to see that if T is an asymptotically nonexpansive, then it is

uniformly L−Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥

1}.

Definition 1.0.1 (see [38]). A self-mapping T : C → C is called generalized

asymptotically nonexpansive if there exists nonnegative real sequences {kn} and

{δn} with kn > 1, kn → 1 and δn → 0 as n → ∞ such that

∥T nx− T ny∥ ≤ kn∥x− y∥+ δn (1.6)

for all x, y ∈ C and n ≥ 1. T : C → C is said to be generalized asymptotically

quasi-nonexpansive if there exists nonnegative real sequences {kn} and {δn} with

kn > 1, kn → 1 and δn → 0 as n → ∞ such that

∥T nx− T np∥ ≤ kn∥x− p∥+ δn (1.7)

for all x ∈ C, p ∈ F (T ) (F (T ) denote the set of fixed points of T ) and n ≥ 1.

It is clear from the definition that a generalized asymptotically quasi-

nonexpansive mapping is to unify various definitions of classes of mappings asso-

ciated with the class of generalized asymptotically nonexpansive mapping, asymp-

totically nonexpansive type, asymptotically nonexpansive mappings, and nonex-
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pansive mappings. However, the converse of each of above statement may be not

true. The example shows that a generalized asymptotically quasi-nonexpansive

mapping is not an asymptotically quasi-nonexpansive mapping; see [38].

Iterative techniques for approximating fixed points of nonexpansive map-

pings and their generalizations, for example, asymptotically nonexpansive map-

pings, etc., have been studied by a number of authors (see, e.g., [13–17]) and

references cited therein.

In most of these papers, the well known Mann iteration process (1.1) (see

[27]) has been studied and the operator T has been assumed to map C into itself.

The convexity of C then ensures that the sequence {xn} generated by (1.1) is

well defined. If, however, C is a proper subset of the real Banach space X and

T maps C into X (as is the case in many applications), then the sequence given

by (1.1) may not be well defined. One method that has been used to overcome

this in the case of single operator T is to introduce a retraction P : X → C in

the recursion formula (1.1) as follows: x1 ∈ C,

xn+1 = (1− αn)xn + αnPTxn, n ≥ 1. (1.8)

For nonself nonexpansive mappings, some authors (see [19–23]) have

studied the strong and weak convergence theorems in Hilbert space or uniformly

convex Banach space.

The concept of nonself asymptotically nonexpansive mappings was in-

troduced by Chidume, Ofoedu and Zegeye [12] in 2003 as the generalization of

asymptotically nonexpansive self-mappings. The nonself asymptotically nonex-

pansive mapping is defined as follows:

Definition 1.0.2 (see [12]). Let C be a nonempty subset of a real normed linear

space X. Let P : X → C be a nonexpansive retraction of X onto C. A nonself-

mapping T : C → X is called asymptotically nonexpansive if there exists a
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sequence {kn} ⊂ [1,∞), kn → 1 as n → ∞ such that

∥T (PT )n−1x− T (PT )n−1y∥ ≤ kn∥x− y∥ (1.9)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists

a constant L > 0 such that

∥T (PT )n−1x− T (PT )n−1y∥ ≤ L∥x− y∥ (1.10)

for all x, y ∈ C and n ≥ 1.

In [12], they studied the following iterative sequence: x1 ∈ C,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn) (1.11)

to approximate some fixed point of T under suitable conditions.

If T is a self-mapping, then P becomes the identity mapping so that (1.9)

and (1.10) reduce to (1.4) and (1.5), respectively. (1.11) reduces to (1.3).

In 2006, Wang [52] generalizes the iteration process (1.11) as follows:

x1 ∈ C,

yn = P ((1− βn)xn + βnT2(PT2)
n−1xn),

xn+1 = P ((1− αn)xn + αnT1(PT1)
n−1yn), n ≥ 1, (1.12)

where T1, T2 : C → X are nonself asymptotically nonexpansive mappings and

{αn}, {βn} are real sequences in [0, 1). He proved strong convergence of the se-

quence {xn} defined by (1.12) to a common fixed point of T1 and T2 under proper

conditions. Meanwhile, the results of [52] generalized the results of [12].

The nonself generalized asymptotically nonexpansive and nonself gener-

alized asymptotically quasi-nonexpansive mappings are defined as follows:

Definition 1.0.3 (see [19]). Let C be a nonempty subset of a real normed linear

space X. Let P : X → C be a nonexpansive retraction of X onto C. A nonself-

mapping T : C → X is called generalized asymptotically nonexpansive if there

exists nonnegative real sequences {kn} and {δn} with kn > 1, kn → 1 and δn → 0
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as n → ∞ such that

∥T (PT )n−1x− T (PT )n−1y∥ ≤ kn∥x− y∥+ δn (1.13)

for all x, y ∈ C and n ≥ 1. T : C → X is said to be generalized asymptotically

quasi-nonexpansive if there exists nonnegative real sequences {kn} and {δn} with

kn > 1, kn → 1 and δn → 0 as n → ∞ such that

∥T (PT )n−1x− T (PT )n−1p∥ ≤ kn∥x− p∥+ δn (1.14)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.

If T is a self-mapping, then P becomes the identity mappings so that

(1.13) and (1.14) reduces to (1.6) and (1.7), respectively.

In 2008, Deng and Liu [19] studied the following iterative sequence which

can be viewed as an extension for iterative schemes of Wang [52]: xi ∈ C (i =

0, 1, 2, . . . , q and q ∈ N is a fixed number),

yn = P (αnxn + βnT2(PT2)
n−1xn + γnvn), n = 0, 1, 2, . . . ,

xn+1 = P (αnxn + βnT1(PT1)
n−1yn−q + γnun), n = q, q + 1, q + 2, . . . ,

(1.15)

where T1, T2 : C → X are nonself generalized asymptotically quasi-nonexpansive

mappings, {un}, {vn} are bounded sequences in C and {αn}, {βn}, {γn}, {αn},

{βn} and {γn} are real sequences in [0, 1] satisfying αn+βn+γn = αn+βn+γn = 1

for all n ≥ 0. They gave the following strong convergence theorem.

Theorem 1.0.4 (see [19]). Let X be a real uniformly convex Banach space,

C a nonempty closed convex subset of X, T1, T2 : C → X two uniformly L-

Lipschitzian, nonself generalized asymptotically quasi-nonexpansive mappings with

nonnegative real sequences {k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such

that
∑∞

n=1(k
(i)
n − 1) < ∞,

∑∞
n=1 δ

(i)
n < ∞. Suppose F = F (T1) ∩ F (T2) ̸= ∅.
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For any xi ∈ C (i = 0, 1, 2, . . . , q and q ∈ N is a fixed number), let {xn} be the

sequence defined by (1.15) satisfying 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
∑∞

n=1 γn < ∞ and
∑∞

n=1 γn < ∞. If

T1, T2 satisfies condition A′ with respect to the sequence {xn}, then {xn} converges

strongly to a common fixed point of T1, T2.

Recently, a new iterative scheme which is called the projection type

Ishikawa iteration for two nonself asymptotically nonexpansive mappings was

defined and constructed by Thianwan [48]. It is given as follows:

yn = P ((1− βn)xn + βnT2(PT2)
n−1xn),

xn+1 = P ((1− αn)yn + αnT1(PT1)
n−1yn), n ≥ 1, (1.16)

where {αn} and {βn} are appropriate real sequences in [0, 1). He studied the

scheme for two nonself asymptotically nonexpansive mappings and proved strong

convergence of the sequences {xn} and {yn} to a common fixed point of T1, T2

under suitable conditions in a uniformly convex Banach space.

Note that Thianwan process (1.16) and Wang process (1.12) are inde-

pendent: neither reduces to the other.

If T1 = T2 and βn = 0 for all n ≥ 1, then (1.16) reduces to (1.11). It also

can be reduces to Schu process (1.3).

We note that, in applications, there are perturbations always occurring

in the iterative processes because the manipulations are inaccurate. It is no doubt

that researching the convergent problems of iterative methods with perturbation

members is a significant job. This leads us, in this paper, to introduce and

study a new class of two-step iterative scheme with perturbations for solving the

fixed point problem for nonself generalized asymptotically quasi-nonexpansive

mappings. This iterative scheme can be viewed as an extension for Ishikawa type
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iterative schemes of Thianwan [48]. The scheme is defined as follows.

Let X be a normed space, C a nonempty convex subset of X, P : X → C

a nonexpansive retraction of X onto C and T1, T2 : C → X are given mappings.

Then for an arbitrary x1 ∈ C, the following iteration scheme is studied:

yn = P ((1− βn − γn)xn + βnT2(PT2)
n−1xn + γnvn),

xn+1 = P ((1− αn − λn)yn + αnT1(PT1)
n−1yn + λnun), n ≥ 1, (1.17)

where {αn}, {βn}, {γn} and {λn} are appropriate real sequences in [0, 1) and

{un}, {vn} are bounded sequences in C. We then prove its strong convergence

under some suitable conditions in Banach spaces.

Note that Deng and Liu process (1.15) and our process (1.17) are inde-

pendent: neither reduces to the other.

If γn = λn = 0 for all n ≥ 1, then (1.17) reduces to (1.16). Now, we

recall some well known concepts and results.

Fixed point theory is an immensely active area of research due to its

applications in multiple fields. It addresses the results which state that, under

certain conditions, a self map on a set admits a fixed point. Among all the results

in fixed point theory, the Banach contraction principle (see [6]) in metric fixed

point theory is the most celebrated one due to its simplicity and ease of applica-

tion in major areas of mathematics. Following the Banach contraction principle,

Boyd and Wong [8] investigated the fixed point results in nonlinear contraction

mappings. Subsequently, many authors extended and generalized this fixed point

theorem in different directions, in particular, by Reich [32]. In 2008, by com-

bination of the concepts in fixed point theory and graph theory, Jachymski [22]

generalized the Banach contraction principle in a complete metric space endowed

with a directed graph. In 2012, Aleomraninejad et al. [5] presented some iterative
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scheme for G-contraction and G-nonexpansive mappings in a Banach space with

a graph. In 2015, Alfuraidan and Khamsi [2] defined the concept of G-monotone

nonexpansive multivalued mappings defined on a hyperbolic metric space with a

graph. Alfuraidan [1] studied the existence of fixed points of monotone nonex-

pansive mappings on a Banach space endowed with a directed graph. Tiammee et

al. [50] proved Browder’s convergence theorem for G-nonexpansive mappings in

a Hilbert space with a directed graph. They also proved the strong convergence

of the Halpern iteration for a G-nonexpansive mapping.

In 2016, Tripak [49] introduced and studied the following Ishikawa iter-

ation process:

yn = (1− βn)xn + βnT1xn,

xn+1 = (1− αn)xn + αnT2yn (1.18)

to approximate common fixed points of two G-nonexpansive mappings in a Ba-

nach space endowed with a graph.

Agarwal et al. [3] introduced and studied the S-iteration process for a

class of nearly asymptotically nonexpansive mappings in Banach spaces. They

showed that this process has a better convergence rate than Ishikawa iteration

for a class of contractions in metric spaces. Recently, an iterative scheme which

is called the modified S-iteration for two G-nonexpansive mappings was defined

and constructed by Suparatulatorn et al. [42]. It is given as follows:

yn = (1− βn)xn + βnT1xn,

xn+1 = (1− αn)T1xn + αnT2yn, n ≥ 0, (1.19)

where {αn} and {βn} are appropriate real sequences in (0, 1). They studied the

strong and weak convergence of the iterative scheme (1.19) under proper condi-

tions in a uniformly convex Banach space endowed with a graph.

Motivated by the recent works, we introduce and study a new two-step
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iteration process for two G-nonexpansive mappings, where the sequence {xn} is

generated iteratively by x0 ∈ C and

yn = (1− βn)xn + βnT1xn,

xn+1 = (1− αn)T1yn + αnT2yn, n ≥ 0, (1.20)

where {αn} and {βn} are appropriate real sequences in (0, 1).

The first purpose of this dissertation is to introduce and study a new type

of two-step iterative scheme which is called the projection type Ishikawa iteration

with perturbations for two nonself generalized asymptotically quasi-nonexpansive

mappings in Banach spaces. A sufficient condition for convergence of the iteration

process to a common fixed point of mappings under our setting is also established

in a real uniformly convex Banach space. Furthermore, the strong convergence of

a new iterative scheme with perturbations to a common fixed point of two nonself

generalized asymptotically quasi-nonexpansive mappings on a nonempty closed

convex subset of a real Banach space is proved.

The second purpose is to construct an iteration process for approximat-

ing common fixed points of two G-nonexpansive mappings and to prove some

weak and strong convergence theorems for such mappings in a uniformly convex

Banach space endowed with a graph. We also shows the numerical experiment

for supporting our main results and comparing rate of convergence of the pro-

posed method (1.20) with the Ishikawa iteration process (1.1) and the modified

S-iteration process (1.2).
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The thesis is divided into 4 chapters. Chapter 1 is an introduction to the

research problems. Chapter 2 deals with basic concepts and preliminaries and

give some useful results that will be used in later chapters. Chapter 3 is the main

results of this research with divided into two section as follows:

(1) Projection type Ishikawa iteration with perturbations for common

fixed points of two nonself generalized asymptotically quasi-nonexpansive map-

pings.

(2) A new two-step iteration method for G-nonexpansive mappings in

Banach spaces with a graph.

Chapter 4 summarizes all the theorems in this thesis.



 

 

 

CHAPTER II

BASIC CONCEPTS AND PRELIMINARIES

2.1 Metric spaces and Banach spaces

Now, we recall some well known concepts and results.

Definition 2.1.1. [25] A metric space is a pair (X, d), where X is a set and d is

a metric on X (or distance function on X), that, a real valued function defined

on X ×X such that for all x, y, z ∈ X we have:

(1) d(x, y) ≥ 0,

(2) d(x, y) = 0 if and only if x = y,

(3) d(x, y) = d(y, x) (symmetry),

(4) d(x, y) ≤ d(x, z) + d(z, y)(triangle inequality).

Definition 2.1.2. [25] A sequence {xn} in a metric space X = (X, d) is said to

be convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0

x is called the limit of {xn} and we write

lim
n→∞

xn = x or, simplexn → x

we say that {xn} converges to x. If {xn} is not convergent, it is said to be

divergent.

Lemma 2.1.3. [47] Let {an}, {bn} and {δn} be sequences of nonegative real num-

bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ...,

If
∞∑
n=1

δn < ∞ and
∞∑
n=1

bn < ∞, then

(1) lim
n→∞

an exists.
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(2) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.

Definition 2.1.4. [25] A sequence (xn) in a metric space X = (X, d) is said to

be Cauchy if for every ϵ > 0 there is an N(ϵ) ∈ N such that d(xm, xn) < ϵ for

every m,n ≥ N(ϵ).

Definition 2.1.5. [25] A metric space (X, d) is said to be complete if every

Cauchy sequence in X converges.

Definition 2.1.6. [25] Every convergent sequence in a matric space is a Cauchy

sequence.

Theorem 2.1.7. [28] Let {xn} be a sequence in R. If every subsequence {xnk
}

of {xn} has a convergent subsequence, then {xn} is convergent.

Definition 2.1.8. [28] Let X be a matric space and A be any nonempty subset

of X. For each x in X, the distance d(x,A) from x to A is inf{d(x, y)|y ∈ A}.

Definition 2.1.9. [28] Let X be a linear space (or vector space). A norm on X

is a real-valued function ∥ ·∥ on X such that the following conditions are satisfied

by all members x and y of X and each scalar α:

(1) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0,

(2) ∥αx∥ = |α|∥x∥,

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).

The ordered pair (X, ∥ · ∥) is called a normed space or normed vector space or

normed linear space.

Definition 2.1.10. [28] Let X be normed space. The metric induced by the

norm of X is the metric d on X defined by the formula d(x, y) = ∥x− y∥ for all

x, y ∈ X. The norm topology of X is the topology obtained from this metric.

Definition 2.1.11. [28] A Banach norm or complete norm is a norm that induces

a complete metric. A normed space is a Banach space or B-space or complete

normed space if its norm is a Banach norm.
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2.2 Fixed points of nonexpansive, asymptotically nonexpansive and

G-nonexpansive mappings

Definition 2.2.1. [54] Let C be subset of a Banach space X. A mapping T :

C → C is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. The set

of all fixed points of T is denoted by F (T ) = {x ∈ C|x = Tx}.

Definition 2.2.2. [54] Let C be subset of a Banach space X. A self-mapping

f : C → C is called contraction on C of there exists a constant α ∈ (0, 1) such

that ∥f(x)−f(y)∥ ≤ α∥x−y∥ for all x, y ∈ C. We use ΠC to denote the collection

of all contraction on C.

Theorem 2.2.3. [43] (The Banach contraction principle)

Let X be complete metric space and let f be a contraction of X. Then f has a

unique fixed point.

Definition 2.2.4. [9] A mapping T : C → X is called demiclosed with respect

to y if for each sequence {xn} in C and each x ∈ X, xn → x weakly and Txn → y

imply that x ∈ C and Tx = y.

Lemma 2.2.5. [9] Let X be a uniformly convex Banach space, C a nonempty

closed convex subset of X and T : C → X be a nonexpansive mapping. Then

I − T is demiclosed at 0, i.e., if xn → x weakly and xn − Txn → 0 strongly, then

x ∈ F (T ), where F (T ) is the set of fixed point of T .

Lemma 2.2.6. [13] Let X be a uniformly convex Banach space, C be a nonempty

closed convex subset of X and T : C → C be an asymptotically nonexpansive

mapping. Then I − T is demi-closed at zero, i.e., for each sequence {xn} in C,

if {xn} converges weakly to q ∈ C and {(I − T )xn} converges strongly to 0, then

(I − T )q = 0.

Lemma 2.2.7. ([12], Theorem 3.4) Let X be a uniformly convex Banach space,

C a nonempty closed convex subset of X, and let T : C → X be an asymptotically
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nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and kn → 1 as n → ∞.

Then I − T is demiclosed at zero. i.e., if xn → x weakly and xn − Txn → 0

strongly, then x ∈ F (T ), where F (T ) is the set of fixed point of T .

Lemma 2.2.8. [20] Suppose two mappings S, T : C → C, where C is a subset of

a normed space X, said to be satisfy condition (A′) if there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such

that either ∥x−Tx∥ ≥ f(d(x, F )) or ∥x−Tx∥ = f(d(x, F )) for all x ∈ C where

d(x, F )= inf {∥x− p∥ : p ∈ F = F (S)
∩
F (T )}.

Lemma 2.2.9. ([44], Lemma 1) Let {an}, {bn} and {δn} be sequence of nonneg-

ative real numbers satisfying the inequality.

an+1 ≤ (1 + δn)an + bn.

If
∑∞

n=1δn < ∞ and
∑∞

n=1bn < ∞, then lim
n→∞

an exists. In particular, if {an} has

a subsequence converging to 0, then lim
n→∞

an = 0.

Lemma 2.2.10. [34] Suppose that X be a uniformly convex Banach space and

0 < p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of X

such that lim sup
n→∞

∥yn∥ ≤ r and lim sup
n→∞

∥tnxn + (1− tn)yn∥ = r hold for some r ≥

0.Then lim
n→∞

∥xn − yn∥ = 0.

Lemma 2.2.11. [41] Let X be a Banach space which satisfies Opial’s condition

and let {xn} be a sequence in X . Let u, v ∈ X be such that limn→∞ ∥xn − u∥

and limn→∞ ∥xn − v∥ exist. If {xnk
} and {xmk

} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.
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Let X be a Banach space with dimension X ≥ 2. The modulus of X is

the function δX : (0, 2] → [0, 1] defined by

δX(ϵ) = inf{1− ∥1
2
(x+ y)∥ : ∥x∥ = 1, ∥y∥ = 1, ϵ = ∥x− y∥}.

Banach space X is uniformly convex if and only if δX(ϵ) > 0 for all ϵ ∈ (0, 2].

A subset C of X is said to be a retract if there exists a continuous

mapping P : X → C such that Px = x for all x ∈ C. Every closed convex subset

of a uniformly convex Banach space is a retract. A mapping P : X → X is said

to be a retraction if P 2 = P. It follows that if a mapping P is a retraction, then

Pz = z for every z ∈ R(P ), the range of P.

A set C is optimal if each point outside C can be moved to be closer to

all points of C. It is well known (see [18]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space,

and if C ⊂X is an optimal set with interior, then C is a nonexpansive retract of

X.

(2) A subset of lp, with 1 < p < ∞, is a nonexpansive retract if and only

if it is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Ba-

nach spaces, optimal sets are closed and convex. Moreover, every closed convex

subset of a Hilbert space is optimal and also a nonexpansive retract.

Recall that two mappings S, T : C → X, where C is a subset of a normed

space X, are said to satisfy condition A
′
(see [20]) if there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that

either

∥x− Sx∥ ≥ f(d(x, F )) or ∥x− Tx∥ ≥ f(d(x, F ))
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for all x ∈ C, where d(x, F ) = inf{∥x− q∥ : q ∈ F = F (S) ∩ F (T )}.

Note that condition A
′
reduces to condition (A) (see [47]) when S = T.

Maiti and Ghosh [26] and Tan and Xu [47] have approximated fixed points of a

nonexpansive mapping T by Ishikawa iterates under the condition (A).

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2.12 (see [47]). Let {an}, {bn} and {δn} be sequences of non-negative

real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑∞

n=1 bn < ∞ and
∑∞

n=1 δn < ∞, then

(i) limn→∞ an exists;

(ii) In particular, if {an} has a sequence {ank
} converging to 0, then

limn→∞ an = 0.

Lemma 2.2.13 (see [36]). Let X be a real uniformly convex Banach space and

0 ≤ p ≤ tn ≤ q < 1 for all positive integer n ≥ 1. Also suppose that {xn} and {yn}

are two sequences of X such that lim supn→∞ ∥xn∥ ≤ r, lim supn→∞ ∥yn∥ ≤ r and

limn→∞ ∥tnxn + (1− tn)yn∥ = r hold for some r ≥ 0, then limn→∞ ∥xn − yn∥ = 0.

Let C be a nonempty subset of a real Banach space X. Let △ denote

the diagonal of the cartesian product C × C, i.e.,△= {(x, x) : x ∈ C}. Consider

a directed graph G such that the set V (G) of its vertices coincides with C, and

the set E(G) of its edges contains all loops, i.e., E(G) ⊇△. We assume G has no

parallel edge. So we can identify the graph G with the pair (V (G), E(G)). By

G−1 we denote the conversion of a graph G, i.e., the graph obtained from G by

reversing the direction of edges. Thus we have
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E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

We recall a few basic notions concerning the connectivity of graphs. All

of them can be found, e.g., in [23]. If x and y are vertices in a graph G, then a

path in G from x to y of length N (N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1

vertices such that x0 = x, xN = y and (xi, xi+1) ∈ E(G) for i = 0, 1, . . . N − 1.

A graph G is connected if there is a path between any two vertices. A directed

graph G = (V (G), E(G)) is said to be transitive if, for any x, y, z ∈ V (G) such

that (x, y) and (y, z) are in E(G), we have (x, z) ∈ E(G).

Let x0 ∈ V (G) and A a subset of V (G). We say that A is dominated by x0

if (x0, x) ∈ E(G) for all x ∈ A. A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

We say that a mapping T : C → C is said to be G-contraction if T

satisfies the following conditions:

(i) T preserves edges of G (or T is edge-preserving), i.e.,

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) T decreases weights of edges of G in the following way: there

exists α ∈ (0, 1) such that

(x, y) ∈ E(G) ⇒ ∥Tx− Ty∥ ≤ α∥x− y∥.

A mapping T : C → C is said to be G-nonexpansive (see [2], Definition 2.3 (iii))

if T satisfies the following conditions:

(i) T preserves edges of G, i.e.,

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) T non-increases weights of edges of G in the following way:

(x, y) ∈ E(G) ⇒ ∥Tx− Ty∥ ≤ ∥x− y∥.
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In this paper, we use → and ⇀ to denote the strong convergence and

weak convergence, respectively.

A mapping T : C → C is said to be G-demiclosed at 0 if, for any sequence

{xn} in C such that (xn, xn+1) ∈ E(G), xn ⇀ x and Txn → 0 imply Tx = 0.

A Banach space X is said to satisfy Opial’s condition [29] if xn ⇀ x and

x ̸= y implying that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥.

Let C be a nonempty closed convex subset of a real uniformly convex

Banach space X. Recall that the mappings Ti(i = 1, 2) on C are said to satisfy

condition (B) [39] if there exists a nondecreasing function f : [0,∞) → [0,∞)

with f(0) = 0 and f(r) > 0 for all r > 0 such that for all x ∈ C,

max{∥x− T1x∥, ∥x− T2x∥} ≥ f(d(x, F )),

where F = F (T1) ∩ F (T2), F (Ti)(i = 1, 2) are the sets of fixed points of Ti and

d(x, F ) = inf{∥x− q∥ : q ∈ F}.

Let C be a subset of a metric space (X, d). A mapping T : C → C is

semi-compact [39] if for a sequence {xn} in C with lim
n→∞

d(xn, Txn) = 0, there

exists a subsequence {xnj
} of {xn} such that xnj

→ p ∈ C.

Let C be a nonempty subset of a normed spaceX and letG = (V (G), E(G))

be a directed graph such that V (G) = C. Then, C is said to have Prop-

erty WG(SG) if for each sequence {xn} in C converging weakly (strongly) to

x ∈ C and (xn, xn+1) ∈ E(G), there is a subsequence {xnj
} of {xn} such that

(xnj
, x) ∈ E(G) for all j ∈ N.

Remark 2.2.14 (see [42]). If G is transitive, then property WG is equivalent to

the property: if {xn} is a sequence in C with (xn, xn+1) ∈ E(G) such that for

any subsequence {xnj
} of the sequence {xn} converging weakly to x in X, then

(xn, x) ∈ E(G) for all n ∈ N.
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In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2.15 ([42]). Suppose that X is a Banach space having Opial’s con-

dition, C has Property WG and let T : C → C be a G-nonexpansive mapping.

Then, I − T is G-demiclosed at 0, i.e., if xn ⇀ x and xn − Txn → 0, then

x ∈ F (T ), where F (T ) is the set of fixed points of T.

Lemma 2.2.16 ([47]). Let {an} and {tn} be two sequences of nonnegative real

numbers satisfying the inequality

an+1 ≤ an + tn for all n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ an exists.

Lemma 2.2.17 ([36]). Let X be a uniformly convex Banach space, and {αn} a

sequence in [δ, 1− δ] for some δ ∈ (0, 1). Suppose that sequences {xn} and {yn}

in X are such that lim sup
n→∞

||xn|| ≤ c, lim sup
n→∞

||yn|| ≤ c and lim sup
n→∞

||αnxn + (1 −

αn)yn|| = c for some c ≥ 0. Then lim
n→∞

||xn − yn|| = 0.

Lemma 2.2.18 ([41]). Let X be a Banach space that satisfies Opial’s condition

and let {xn} be a sequence in X. Let u, v ∈ X be such that lim
n→∞

||xn − u|| and

lim
n→∞

||xn − v|| exist. If {xnj
} and {xnk

} are subsequences of {xn} that converge

weakly to u and v, respectively, then u = v.

Lemma 2.2.19 ([4]). Let X be a uniformly convex Banach space, C be a nonempty

bounded convex subset of X. Then there exists a strictly increasing continuous con-

vex function γ : [0,∞) → [0,∞) with γ(0) = 0 such that, for any nonexpansive

mapping T : C → X, any finite many elements {xi}ni=1 in C and any finite many

nonnegative numbers {λi}ni=1 with
n∑

i=1

λi = 1, the following inequality holds:

γ∥T (
n∑

i=1

λixi)−
n∑

i=1

λiTxi∥ ≤ max
1≤i,j≤n

(∥xi − xj∥ − ∥Txi − Txj∥).
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Lemma 2.2.20 ([35]). Let {xn} be a bounded sequence in a reflexive Banach

space X. If for any weakly convergent subsequence {xnj
} of {xn}, both {xnj

} and

{xnj+1} converge weakly to the same point in X, then the sequence {xn} is weakly

convergent.



 

 

 

CHAPTER III

MAIN RESULTS

3.1 Projection type Ishikawa iteration with perturbations for com-

mon fixed points of two nonself generalized asymptotically quasi-

nonexpansive mappings

Lemma 3.1.1. Let X be a real Banach space and C a nonempty closed convex

nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →

X be two nonself generalized asymptotically quasi-nonexpansive mappings of C

with sequences {k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n −

1) < ∞,
∑∞

n=1 δ
(i)
n < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn},

{γn} and {λn} are real sequences in [0, 1) such that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞

and {un}, {vn} are bounded sequences in C. From an arbitrary x1 ∈ C, define

the sequence {xn} by (1.17). If q ∈ F, then limn→∞ ∥xn − q∥ exists.

Proof. Let q ∈ F , by boundedness of the sequences {un} and {vn}, so we can put

M = max{sup
n≥1

∥un − q∥, sup
n≥1

∥vn − q∥}.

Setting k
(1)
n = 1 + r

(1)
n , k

(2)
n = 1 + r

(2)
n . Since

∑∞
n=1(k

(i)
n − 1) < ∞ (i = 1, 2), so∑∞

n=1 r
(1)
n < ∞,

∑∞
n=1 r

(2)
n < ∞. Using (1.17), we have

∥yn − q∥ = ∥P ((1− βn − γn)xn + βnT2(PT2)
n−1xn + γnvn)− P (q)∥

≤ ∥(1− βn − γn)(xn − q) + βn(T2(PT2)
n−1xn − q) + γn(vn − q)∥

≤ (1− βn − γn)∥xn − q∥+ βn∥T2(PT2)
n−1xn − q∥+ γn∥vn − q∥

≤ (1− βn − γn)∥xn − q∥+ βn(1 + r(2)n )∥xn − q∥+ δ(2)n + γnM

= (1− βn − γn)∥xn − q∥+ (βn + βnr
(2)
n )∥xn − q∥+ δ(2)n + γnM

≤ ∥xn − q∥+ r(2)n ∥xn − q∥+ δ(2)n + γnM
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= (1 + r(2)n )∥xn − q∥+ δ(2)n + γnM,

and so

∥xn+1 − q∥ = ∥P ((1− αn − λn)yn + αnT1(PT1)
n−1yn + λnun)− P (q)∥

≤ ∥(1− αn − λn)(yn − q) + αn(T1(PT1)
n−1yn − q) + λn(un − q)∥

≤ (1− αn − λn)∥yn − q∥+ αn∥T1(PT1)
n−1yn − q∥+ λn∥un − q∥

≤ (1− αn − λn)∥yn − q∥+ αn(1 + r(1)n )∥yn − q∥+ δ(1)n + λnM

= (1− αn − λn)∥yn − q∥+ (αn + αnr
(1)
n )∥yn − q∥+ δ(1)n + λnM

≤ ∥yn − q∥+ r(1)n ∥yn − q∥+ δ(1)n + λnM

= (1 + r(1)n )∥yn − q∥+ δ(1)n + λnM

≤ (1 + r(1)n )((1 + r(2)n )∥xn − q∥+ δ(2)n + γnM) + δ(1)n + λnM

= (1 + r(1)n )(1 + r(2)n )∥xn − q∥

+ (1 + r(1)n )δ(2)n + (1 + r(1)n )γnM + δ(1)n + λnM

= (1 + r(1)n + r(2)n + r(1)n r(2)n )∥xn − q∥+ ε(1)n ,

where ε
(1)
n = (1 + r

(1)
n )δ

(2)
n + (1 + r

(1)
n )γnM + δ

(1)
n + λnM and we note here that∑∞

n=1 ϵ
(1)
n < ∞ since

∑∞
n=1 γn < ∞,

∑∞
n=1 λn < ∞,

∑∞
n=1 r

(1)
n < ∞,

∑∞
n=1 δ

(1)
n <

∞ and
∑∞

n=1 δ
(2)
n < ∞. Since

∑∞
n=1(r

(1)
n + r

(2)
n + r

(1)
n r

(2)
n ) < ∞ we obtained by

Lemma 2.2.12 (i) that limn→∞ ∥xn − q∥ exists. This completes the proof.

Lemma 3.1.2. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T1, T2 : C → X be two uniformly L−Lipschitzian, nonself generalized asymptot-

ically quasi-nonexpansive mappings of C with sequences {k(i)
n }, {δ(i)n } ⊂ [1,∞)

(i = 1, 2), respectively such that
∑∞

n=1(k
(i)
n − 1) < ∞,

∑∞
n=1 δ

(i)
n < ∞ and

F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn} are real sequences in [ϵ, 1− ϵ]

for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞

and {un}, {vn} are bounded sequences in C. From an arbitrary x1 ∈ C, define the

sequence {xn} by (1.17). Then limn→∞ ∥xn − T1xn∥ = limn→∞ ∥xn − T2xn∥ = 0.
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Proof. Let q ∈ F. Setting k
(1)
n = 1+ r

(1)
n , k

(2)
n = 1+ r

(2)
n . By Lemma 3.1.1, we see

that limn→∞ ∥xn − q∥ exists. It follows that {xn} and {yn} are bounded. Also,

{un − yn} and {vn − xn} are bounded. Now we set

C = max{sup
n≥1

∥un − yn∥, sup
n≥1

∥vn − xn∥}.

Assume that limn→∞ ∥xn − q∥ = c. In addition,

∥yn − q∥ ≤ (1 + r(2)n )∥xn − q∥+ δ(2)n + γnM, (3.1)

where the notation M is taken from Lemma 3.1.1.

Taking the lim sup on both sides in the inequality (3.1), we have

lim sup
n→∞

∥yn − q∥ ≤ c. (3.2)

Note that ∥yn − q + λn(un − yn)∥ ≤ ∥yn − q∥+ λnC gives that

lim sup
n→∞

∥yn − q + λn(un − yn)∥ ≤ c. (3.3)

In addition, ∥T1(PT1)
n−1yn− q+λn(un− yn)∥ ≤ k

(1)
n ∥yn− q∥+ δ

(1)
n +λnC, taking

the lim sup on both sides in this inequality, we have

lim sup
n→∞

∥T1(PT1)
n−1yn − q + λn(un − yn)∥ ≤ c. (3.4)

In addition,

∥xn+1 − q∥ ≤ ∥(1− αn − λn)(yn − q) + αn(T1(PT1)
n−1yn − q) + λn(un − q)∥

≤ (1 + r(1)n + r(2)n + r(1)n r(2)n )∥xn − q∥+ ε(1)n , (3.5)

where the notation ε
(1)
n is taken from Lemma 3.1.1.

Since
∑∞

n=1(r
(1)
n +r

(2)
n +r

(1)
n r

(2)
n ) < ∞,

∑∞
n=1 ϵ

(1)
n < ∞ and limn→∞ ∥xn+1−q∥ = c,

letting n → ∞ in the inequality (3.5), we have
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lim
n→∞

∥(1− αn − λn)(yn − q) + αn(T1(PT1)
n−1yn − q) + λn(un − q)∥ = c.

(3.6)
From

∥(1− αn)(yn − q + λn(un − yn)) + αn(T1(PT1)
n−1yn − q + λn(un − yn))∥ =

∥(1− αn − λn)(yn − q) + αn(T1(PT1)
n−1yn − q) + λn(un − q)∥.

and (3.6), we have

lim
n→∞

∥(1− αn)(yn − q + λn(un − yn)) + αn(T1(PT1)
n−1yn − q + λn(un − yn))∥

= c.

(3.7)
By using (3.3), (3.4), (3.7) and Lemma 2.2.13, we have

lim
n→∞

∥T1(PT1)
n−1yn − yn∥ = 0. (3.8)

In addition,

∥T2(PT2)
n−1xn − q + γn(vn − xn)∥ ≤ ∥T2(PT2)

n−1xn − q∥+ γn∥vn − xn∥

≤ k(2)
n ∥xn − q∥+ δ(2)n + γnC,

and taking the lim sup on both sides in this inequality, we have

lim sup
n→∞

∥T2(PT2)
n−1xn − q + γn(vn − xn)∥ ≤ c. (3.9)

Using (1.17), we have

∥xn+1 − q∥ ≤ (1− αn − λn)∥yn − q∥+ αn∥T1(PT1)
n−1yn − q∥+ λn∥un − q∥

= (1− αn − λn)∥yn − q∥+ αn∥T1(PT1)
n−1yn − yn + yn − q∥

+ λn∥un − yn + yn − q∥
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≤ (1− αn − λn)∥yn − q∥+ αn∥T1(PT1)
n−1yn − yn∥

+ αn∥yn − q∥+ λn∥un − yn∥+ λn∥yn − q∥

≤ ∥yn − q∥+ ∥T1(PT1)
n−1yn − yn∥+ λnC. (3.10)

Taking the lim inf on both sides in the inequality (3.10), by (3.8),
∑∞

n=1 λn < ∞

and limn→∞ ∥xn+1 − q∥ = c, we have

lim inf
n→∞

∥yn − q∥ ≥ c. (3.11)

It follows from (3.2) and (3.11) that limn→∞ ∥yn − q∥ = c. This implies that

c = lim
n→∞

∥yn − q∥ ≤ lim
n→∞

∥(1− βn − γn)(xn − q)

+ βn(T2(PT2)
n−1xn − q) + γn(vn − q)∥

≤ lim
n→∞

∥xn − q∥ = c,
and so

lim
n→∞

∥(1− βn − γn)(xn − q) + βn(T2(PT2)
n−1xn − q) + γn(vn − q)∥ = c. (3.12)

From

∥(1− βn)(xn − q + γn(vn − xn)) + βn(T2(PT2)
n−1xn − q + γn(vn − xn))∥

= ∥(1− βn − γn)(xn − q) + βn(T2(PT2)
n−1xn − q) + γn(vn − q)∥

and (3.12), we have

lim
n→∞

∥(1− βn)(xn − q + γn(vn − xn)) + βn(T2(PT2)
n−1xn − q + γn(vn − xn))∥ = c.

(3.13)

Note that ∥xn − q + γn(vn − xn)∥ ≤ ∥xn − q∥+ γnC gives that

lim sup
n→∞

∥xn − q + γn(vn − xn)∥ ≤ c. (3.14)
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Using (3.9), (3.13), (3.14) and Lemma 2.2.13, we obtain

lim
n→∞

∥T2(PT2)
n−1xn − xn∥ = 0. (3.15)

From yn = P ((1−βn−γn)xn+βnT2(PT2)
n−1xn+γnvn),

∑∞
n=1 γn < ∞ and (3.15),

we have

∥yn − xn∥ = ∥P ((1− βn − γn)xn + βnT2(PT2)
n−1xn + γnvn)− xn∥

≤ ∥(1− βn − γn)(xn − xn) + βn(T2(PT2)
n−1xn − xn) + γn(vn − xn)∥

≤ βn∥T2(PT2)
n−1xn − xn∥+ γn∥vn − xn∥

≤ ∥T2(PT2)
n−1xn − xn∥+ γnC

→ 0 (as n → ∞). (3.16)

Now, since Ti (i = 1, 2) are uniformly L-Lipschitzian for Lipschitz constant L =

max1≤i≤2{Li} > 0. We note that

∥T1(PT1)
n−1xn − xn∥ = ∥T1(PT1)

n−1xn − yn + yn − xn∥

≤ ∥T1(PT1)
n−1xn − yn∥+ ∥yn − xn∥

= ∥T1(PT1)
n−1xn − T1(PT1)

n−1yn

+ T1(PT1)
n−1yn − yn∥+ ∥yn − xn∥

≤ ∥T1(PT1)
n−1xn − T1(PT1)

n−1yn∥

+ ∥T1(PT1)
n−1yn − yn∥+ ∥yn − xn∥

≤ L∥xn − yn∥+ ∥T1(PT1)
n−1yn − yn∥+ ∥yn − xn∥.

Thus, it follows from (3.8) and (3.16) that

lim
n→∞

∥T1(PT1)
n−1xn − xn∥ = 0. (3.17)

By using (1.17), we have

∥xn+1 − xn∥ ≤ (1− αn − λn)∥yn − xn∥+ αn∥T1(PT1)
n−1yn − xn∥+ λn∥un − xn∥
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≤ (1− αn − λn)∥yn − xn∥+ αn∥T1(PT1)
n−1yn − yn + yn − xn∥

+ λn∥un − yn + yn − xn∥

≤ (1− αn − λn)∥yn − xn∥+ αn∥T1(PT1)
n−1yn − yn∥

+ αn∥yn − xn∥+ λn∥un − yn∥+ λn∥yn − xn∥

≤ ∥yn − xn∥+ ∥T1(PT1)
n−1yn − yn∥+ λnC.

It follows from (3.8), (3.16) and
∑∞

n=1 λn < ∞ that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.18)

Using (3.17) and (3.18), we have

∥xn+1 − T1(PT1)
n−1xn+1∥ = ∥xn+1 − xn + xn − T1(PT1)

n−1xn

+ T1(PT1)
n−1xn − T1(PT1)

n−1xn+1∥

≤ ∥xn+1 − xn∥+ ∥T1(PT1)
n−1xn+1 − T1(PT1)

n−1xn∥

+ ∥T1(PT1)
n−1xn − xn∥

≤ ∥xn+1 − xn∥+ L∥xn+1 − xn∥+ ∥T1(PT1)
n−1xn − xn∥,

→ 0 (as n → ∞). (3.19)

In addition, for n ≥ 2,

∥xn+1 − T1(PT1)
n−2xn+1∥ = ∥xn+1 − xn + xn − T1(PT1)

n−2xn

+ T1(PT1)
n−2xn − T1(PT1)

n−2xn+1∥

≤ ∥xn+1 − xn∥+ ∥T1(PT1)
n−2xn − xn∥

+ ∥T1(PT1)
n−2xn+1 − T1(PT1)

n−2xn∥

≤ ∥xn+1 − xn∥+ ∥T1(PT1)
n−2xn − xn∥

+ L∥xn+1 − xn∥.
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It follows from (3.18) and (3.19) that

lim
n→∞

∥xn+1 − T1(PT1)
n−2xn+1∥ = 0. (3.20)

We denote as (PT1)
1−1 the identity maps from C onto itself. Thus by the in-

equality (3.19) and (3.20), we have

∥xn+1 − T1xn+1∥ = ∥xn+1 − T1(PT1)
n−1xn+1 + T1(PT1)

n−1xn+1 − T1xn+1∥

≤ ∥xn+1 − T1(PT1)
n−1xn+1∥+ ∥T1(PT1)

n−1xn+1 − T1xn+1∥

≤ ∥xn+1 − T1(PT1)
n−1xn+1∥+ L∥(PT1)

n−1xn+1 − xn+1∥

= ∥xn+1 − T1(PT1)
n−1xn+1∥+ L∥(PT1)(PT1)

n−2xn+1 − P (xn+1)∥

≤ ∥xn+1 − T1(PT1)
n−1xn+1∥+ L∥T1(PT1)

n−2xn+1 − xn+1∥

→ 0 (as n → ∞),

which implies that limn→∞ ∥xn − T1xn∥ = 0. Similary, we may show that

lim
n→∞

∥xn − T2xn∥ = 0.

The proof is completed.

We prove the strong convergence of the scheme (1.17) under condition

A
′
which is weaker than the compactness of the domain of the mappings.

Theorem 3.1.3. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T1, T2 : C → X be two uniformly L−Lipschitzian, nonself generalized asymptot-

ically quasi-nonexpansive mappings of C satisfying condition A
′
with sequences

{k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n − 1) < ∞,∑∞

n=1 δ
(i)
n < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn} are

real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such that
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∑∞
n=1 γn < ∞,

∑∞
n=1 λn < ∞ and {un}, {vn} are bounded sequences in C. Then

the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge

strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.1.2, we have limn→∞ ∥xn−T1xn∥ = limn→∞ ∥xn−T2xn∥ = 0.

It follows from condition A
′
that

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − T1xn∥ = 0 or

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − T2xn∥ = 0.

In the both case, limn→∞ f(d(xn, F )) = 0. Since f : [0,∞) → [0,∞) is a nonde-

creasing function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), we obtain that

limn→∞ d(xn, F ) = 0. That is

lim
n→∞

inf
y∗∈F

∥xn − y∗∥ = lim
n→∞

d(xn, F ) = 0.

It implies that

inf
y∗∈F

lim
n→∞

∥xn − y∗∥ = 0.

So, for any given ε > 0, there exists p ∈ F and N > 0 such that for all n ≥ N

∥xn − p∥ < ε
2
. This shows that

∥xn+m − xn∥ ≤ ∥xn+m − p∥+ ∥xn − p∥

<
ε

2
+

ε

2
= ε

for all n ≥ N and m ≥ 1. Hence, {xn} is a Cauchy sequence and so is con-

vergent since X is complete. Let limn→∞ xn = u. From limn→∞ ∥xn − T1xn∥ =

limn→∞ ∥xn − T2xn∥ = 0 and the continuity of T1 and T2, we have ∥T1u − u∥ =
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∥T2u− u∥ = 0. Thus u ∈ F. From (3.16), we have

lim
n→∞

∥yn − xn∥ = 0,

it follows that limn→∞ ∥yn − u∥ = 0. This completes the proof.

The following result follows from Theorem 4.1.1.

Theorem 3.1.4. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction.

Let T1, T2 : C → X be two nonself asymptotically nonexpansive mappings of

C satisfying condition A
′
with sequences {k(i)

n } ⊂ [1,∞) (i = 1, 2) such that∑∞
n=1(k

(i)
n − 1) < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn}

are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such

that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞ and {un}, {vn} are bounded sequences in C.

Then the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge

strongly to a common fixed point of T1 and T2.

For γn = λn = 0, the iterative scheme (1.17) reduces to that of (1.16) for

uniformly L-Lipschitzian, nonself generalized asymptotically quasi-nonexpansive

mappings and the following result is directly obtained by Theorem 4.1.1.

Theorem 3.1.5. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T1, T2 : C → X be two uniformly L−Lipschitzian, nonself generalized asymptot-

ically quasi-nonexpansive mappings of C satisfying condition A
′
with sequences

{k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n − 1) < ∞,∑∞

n=1 δ
(i)
n < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn} and {βn} are

real sequences in [ϵ, 1− ϵ] for some ϵ ∈ (0, 1). Then the sequences {xn} and {yn}

defined by the iterative scheme (1.16) converge strongly to a common fixed point

of T1 and T2.
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The following result follows from Theorem 4.1.3.

Theorem 3.1.6. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction.

Let T1, T2 : C → X be two nonself asymptotically nonexpansive mappings of

C satisfying condition A
′
with sequences {k(i)

n } ⊂ [1,∞) (i = 1, 2) such that∑∞
n=1(k

(i)
n − 1) < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn} and {βn}

are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1). Then the sequences {xn} and

{yn} defined by the iterative scheme (1.16) converge strongly to a common fixed

point of T1 and T2.

In the remainder of this section, we deal with the strong convergence of

the new iterative scheme (1.17) to a common fixed point of nonself generalized

asymptotically quasi-nonexpansive mappings in a real Banach space.

Theorem 3.1.7. Let X be a real Banach space and C a nonempty closed convex

nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →

X be two nonself generalized asymptotically quasi-nonexpansive mappings of C

with sequences {k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n −

1) < ∞,
∑∞

n=1 δ
(i)
n < ∞ and F = F (T1)∩F (T2) ̸= ∅ is closed. Suppose that {αn},

{βn} are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such

that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞ and {un}, {vn} are bounded sequences in C.

Then the sequence {xn} defined by the iterative scheme (1.17) converges strongly

to a common fixed point of T1 and T2 if and only if lim infn→∞ d(xn, F ) = 0, where

d(xn, F ) = infy∈F ∥xn − y∥, n ≥ 1.

Proof. The necessity of the conditions is obvious. Thus, we will only prove the

sufficiency. As in the proof of Lemma 3.1.1, by the arbitrariness of q ∈ F, we

have
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∥xn+1 − q∥ ≤ (1 + r(1)n + r(2)n + r(1)n r(2)n )∥xn − q∥+ ε(1)n ,

and so

d(xn+1, F ) ≤ (1 + r(1)n + r(2)n + r(1)n r(2)n )d(xn, F ) + ε(1)n ,

where ε
(1)
n = (1 + r

(1)
n )δ

(2)
n + (1 + r

(1)
n )γnM + δ

(1)
n + λnM. Since

∑∞
n=1(r

(1)
n +

r
(2)
n + r

(1)
n r

(2)
n ) < ∞ and

∑∞
n=1 ϵ

(1)
n < ∞, we obtained by Lemma 2.2.12 that

limn→∞ d(xn, F ) exists. Then, by hypothesis lim infn→∞ d(xn, F ) = 0, we have

limn→∞ d(xn, F ) = 0. From Theorem 4.1.1, it obtain that {xn} defined by (1.17) is

a Cauchy sequence in C. Let limn→∞ xn = u. Now limn→∞ d(xn, F ) = 0 gives that

d(u, F ) = 0. F is closed; therefore u ∈ F. This completes the proof of Theorem

4.1.5.
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3.2 A new two-step iteration method for G-nonexpansive mappings

in Banach spaces with a graph

Throughout the section, we let C be a nonempty closed convex subset of a Banach

space X endowed with a directed graph G such that V (G) = C and E(G) is

convex. We also suppose that the graph G is transitive. The mappings Ti (i =

1, 2) are G-nonexpansive from C to C with F = F (T1) ∩ F (T2) nonempty. For

an arbitrary x0 ∈ C, defined the sequence {xn} by (1.20)

We start with proving the following useful results.

Proposition 3.2.1. Let z0 ∈ F be such that (x0, z0), (z0, x0) are in E(G). Then

(xn, z0), (yn, z0), (z0, xn), (z0, yn), (xn, yn) and (xn, xn+1) are in E(G).

Proof. We proceed by induction. Since T1 is edge-preserving and (x0, z0) ∈ E(G),

we have (T1x0, z0) ∈ E(G) and so (y0, z0) ∈ E(G), by E(G) is convex. Again,

by edge-preserving of T1 and (y0, z0) ∈ E(G), we have (T1y0, z0) ∈ E(G). Then,

since T2 is edge-preserving and (y0, z0) ∈ E(G), we get (T2y0, z0) ∈ E(G). By

the convexity of E(G) and (T1y0, z0, ), (T2y0, z0) ∈ E(G), we get (x1, z0) ∈ E(G).

Thus, by edge-preserving of T1, (T1x1, z0) ∈ E(G). Again, by the convexity

of E(G) and (T1x1, z0, ), (x1, z0) ∈ E(G), we have (y1, z0) ∈ E(G) and hence,

(T1y1, z0) and (T2y1, z0) ∈ E(G). Next, we assume that (xk, z0) ∈ E(G). Since

T1 is edge-preserving, we get (T1xk, z0) ∈ E(G) and hence, (yk, z0) ∈ E(G), since

E(G) is convex. Hence, by edge-preserving of T1 and (yk, z0) ∈ E(G), we have

(T1yk, z0) ∈ E(G). Since T2 is edge-preserving, we have (T2yk, z0) ∈ E(G). By

the convexity of E(G), we get (xk+1, z0) ∈ E(G). Hence, by edge-preserving

of T1, we obtain (T1xk+1, z0) ∈ E(G), and so (yk+1, z0) ∈ E(G), since E(G) is

convex. Therefore, (xn, z0), (yn, z0) ∈ E(G) for all n ≥ 1. Since T1 is edge-

preserving and (z0, x0) ∈ E(G), we have (z0, T1x0) ∈ E(G), and so (z0, y0) ∈
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E(G). Using a similar argument, we can show that (z0, xn), (z0, yn) ∈ E(G) under

the assumption that (z0, x0) ∈ E(G) and (z0, y0) ∈ E(G). By the transitivity of

G, we get (xn, yn), (xn, xn+1) ∈ E(G). This completes the proof.

Lemma 3.2.2. Let X be a uniformly convex Banach space. Suppose that {αn},

{βn} are real sequences in [δ, 1−δ] for some δ ∈ (0, 1) and (x0, z0), (z0, x0) ∈ E(G)

for arbitrary x0 ∈ C and z0 ∈ F. Then

(i) lim
n→∞

∥xn − z0∥ exists;

(ii) lim
n→∞

∥xn − T1xn∥ = 0 = lim
n→∞

∥xn − T2xn∥.

Proof. (i) Let z0 ∈ F . By Proposition 3.2.1, we have (xn, z0), (yn, z0) ∈ E(G).

Then, by G-nonexpansiveness of Ti(i = 1, 2) and using (1.20), we have

∥yn − z0∥ = ∥(1− βn)xn + βnT1xn − z0∥

= ∥(1− βn)(xn − z0) + βn(T1xn − z0)∥

≤ (1− βn)∥xn − z0∥+ βn∥T1xn − z0∥

≤ (1− βn)∥xn − z0∥+ βn∥xn − z0∥

= ∥xn − z0∥, (3.21)

and so

∥xn+1 − z0∥ = ∥(1− αn)T1yn + αnT2yn − z0∥

= ∥(1− αn)(T1yn − z0) + αn(T2yn − z0)∥

≤ (1− αn)∥T1yn − z0∥+ αn∥T2yn − z0∥

≤ (1− αn)∥yn − z0∥+ αn∥yn − z0∥

= ∥yn − z0∥

≤ ∥xn − z0∥. (3.22)
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It follows from Lemma 2.2.16 that lim
n→∞

∥xn − z0∥ exists. In particular, the se-

quence {xn} is bounded.

(ii) Assume that lim
n→∞

∥xn − z0∥ = c. If c = 0, then by G-nonexpansiveness of

Ti(i = 1, 2), we get

∥xn − Tixn∥ ≤ ∥xn − z0∥+ ∥z0 − Tixn∥

≤ ∥xn − z0∥+ ∥z0 − xn∥.

Therefore, the result follows. Suppose that c > 0. Taking the lim sup on both

sides in the inequality (3.21), we obtain

lim sup
n→∞

∥yn − z0∥ ≤ lim sup
n→∞

∥xn − z0∥ = c. (3.23)

In addition, by G-nonexpansiveness of Ti(i = 1, 2), we have ∥Tiyn − z0∥ ≤ ∥yn −

z0∥, taking the lim sup on both sides in this inequality and using (3.23), we obtain

lim sup
n→∞

∥Tiyn − z0∥ ≤ c. (3.24)

Since lim
n→∞

∥xn+1 − z0∥ = c. Letting n → ∞ in the inequality (3.22), we have

lim
n→∞

∥(1− αn)(T1yn − z0) + αn(T2yn − z0)∥ = c. (3.25)

By using (3.24), (3.25) and Lemma 2.2.17, we have

lim
n→∞

∥T1yn − T2yn∥ = 0. (3.26)

Note that ∥xn+1 − z0∥ ≤ ∥yn − z0∥ gives that

lim inf
n→∞

∥yn − z0∥ ≥ c. (3.27)
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From (3.23) and (3.27), we have

lim
n→∞

∥yn − z0∥ = c. (3.28)

From (3.21) and (3.28), we have

lim
n→∞

∥(1− βn)(xn − z0) + βn(T1xn − z0)∥ = c. (3.29)

In addition, lim sup
n→∞

∥T1xn−z0∥ ≤ lim sup
n→∞

∥xn−z0∥ = c, using (3.29) and Lemma

2.2.17, we have

lim
n→∞

∥T1xn − xn∥ = 0. (3.30)

Thus, it follows from (3.30) that

∥yn − xn∥ = ∥(1− βn)xn + βnT1xn − xn∥

≤ βn∥T1xn − xn∥

→ 0 (as n → ∞). (3.31)

Using (3.30), (3.31) together with G-nonexpansiveness of T1, we have

∥T1yn − yn∥ = ∥T1yn − T1xn + T1xn − yn∥

≤ ∥T1yn − T1xn∥+ ∥T1xn − yn∥

≤ ∥yn − xn∥+ ∥T1xn − xn∥+ ∥xn − yn∥

→ 0 (as n → ∞). (3.32)

Using (3.26), (3.31), (3.32) together with G-nonexpansiveness of T2, we have

∥T2xn − xn∥ = ∥T2xn − yn + yn − xn∥

≤ ∥T2xn − yn∥+ ∥yn − xn∥

= ∥T2xn − T2yn + T2yn − yn∥+ ∥yn − xn∥
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≤ ∥T2xn − T2yn∥+ ∥T2yn − yn∥+ ∥yn − xn∥

≤ ∥xn − yn∥+ ∥T2yn − T1yn∥+ ∥T1yn − yn∥+ ∥yn − xn∥

→ 0 (as n → ∞).

Therefore, we conclude lim
n→∞

∥xn−T1xn∥ = 0 = lim
n→∞

∥xn−T2xn∥. This completes

the proof.

We now prove the weak convergence of the sequence generated by the

new iteration process (1.20) for two G-nonexpansive mappings in a uniformly

convex Banach space satisfying Opial’s condition.

Theorem 3.2.3. Let X be a uniformly convex Banach space which satisfies

Opial’s condition and C has Property WG. Suppose that {αn} and {βn} are real

sequences in [δ, 1− δ] for some δ ∈ (0, 1). If (x0, z0), (z0, x0) ∈ E(G) for arbitrary

x0 ∈ C and z0 ∈ F, then {xn} converges weakly to a common fixed point of T1

and T2.

Proof. Let z0 ∈ F be such that (x0, z0), (z0, x0) ∈ E(G). From Lemma 3.2.2 (i),

we have lim
n→∞

∥xn − z0∥ exists, so {xn} is bounded. It follows from Lemma 3.2.2

(ii) that lim
n→∞

∥xn − T1xn∥ = 0 = lim
n→∞

∥xn − T2xn∥. Since X is uniformly convex

and {xn} is bounded, we may assume that xn ⇀ u as n → ∞, without loss of

generality. By Lemma 2.2.15, we have u ∈ F. Suppose that subsequences {xnk
}

and {xnj
} of {xn} converge weakly to u and v, respectively. By Lemma 3.2.2

(ii), we obtain that ∥xnk
− Tixnk

∥ → 0 and ∥xnj
− Tixnj

∥ → 0 as k, j → ∞.

Using Lemma 2.2.15, we have u, v ∈ F. By Lemma 3.2.2 (i), lim
n→∞

∥xn − u∥ and

lim
n→∞

∥xn − v∥ exist. It follows from Lemma 2.2.18 that u = v. Therefore, {xn}

converges weakly to a common fixed point of T1 and T2.
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Note that the Opial’s condition has remained key to prove weak conver-

gence theorems. However, each lp (1 ≤ p < ∞) satisfies the Opial’s condition,

while all Lp do not have the property unless p = 2.

Next, we deal with the weak convergence of the sequence {xn} generated

by (1.3) for two G-nonexpansive mappings without assuming the Opial’s condition

in a uniformly convex Banach space with a directed graph.

We start with proving the following lemma for later use.

Lemma 3.2.4. Let C be a nonempty closed convex subset of a uniformly convex

Banach space X and suppose that C has property WG. Let T be a G-nonexpansive

mapping on C. Then I − T is G-demiclosed at 0.

Proof. Let {xn} be a sequence in C such that (xn, xn+1) ∈ E(G), xn ⇀ q ∈ C and

(I − T )xn → 0 as n → ∞. By property WG, there exists a subsequence {xnj
} of

{xn} such that (xnj
, q) ∈ E(G) for all j ∈ N. By Remark 2.2.14, (xn, q) ∈ E(G) for

all n ∈ N. Since {xn} weakly converges in a uniformly convex Banach space X, it

is bounded and hence there exists r ≥ 0 such that {xn} ⊂ D = C ∩B(0, r). Then

D is nonempty closed convex subset of C. Thus, T : D → C is G-nonexpansive

mapping. By Mazur’s theorem (see [51]), for each positive integer n, there exists

a convex combination yn =

m(n)∑
i=n

λixi with λi ≥ 0 and

m(n)∑
i=n

λi = 1 such that

∥yn − q∥ <
1

n
. (3.33)

Since E(G) is convex and (xi, q) ∈ E(G) for each i ∈ N, we must have that
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m(n)∑
i=n

λi(xi, q) = (

m(n)∑
i=n

λixi,

m(n)∑
i=n

λiq)

= (

m(n)∑
i=n

λixi, q)

= (yn, q) ∈ E(G).

It follows from lim
n→∞

∥xn − Txn∥ = 0 that for every ϵ > 0, there exists a positive

integer N such that

∥xn − Txn∥ < ϵ (3.34)

for every n > N. On the other hand, using Lemma 2.2.19 and (3.34), we have

∥Tyn − yn∥ = ∥Tyn −
m(n)∑
i=n

λiTxi +

m(n)∑
i=n

λiTxi −
m(n)∑
i=n

λixi∥

≤ ∥Tyn −
m(n)∑
i=n

λiTxi∥+ ∥
m(n)∑
i=n

λiTxi −
m(n)∑
i=n

λixi∥

≤ ∥Tyn −
m(n)∑
i=n

λiTxi∥+
m(n)∑
i=n

λi∥Txi − xi∥

≤ γ−1 max
n≤i,j≤m(n)

(∥xi − xj∥ − ∥Txi − Txj∥) + ϵ

≤ γ−1 max
n≤i,j≤m(n)

(∥xi − Txi∥+ ∥xj − Txj∥) + ϵ.

Therefore, from (3.33), (3.34), (3.35) and G-nonexpansiveness of T, we have

∥q − Tq∥ ≤ ∥q − yn∥+ ∥yn − Tyn∥+ ∥Tyn − Tq∥

≤ 2∥q − yn∥+ γ−1 max
n≤i,j≤m(n)

(∥xi − Txi∥+ ∥xj − Txj∥) + ϵ

≤ 2

n
+ γ−1(2ϵ) + ϵ,

for n > N. Taking lim sup on both sides in this inequality, we obtain
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∥q − Tq∥ ≤ γ−1(2ϵ) + ϵ. (3.35)

Since γ is monotonically increasing with γ(0) = 0 and ϵ is arbitrary, we must

have

∥q − Tq∥ = 0. (3.36)

Therefore, q = Tq. This completes the proof.

Theorem 3.2.5. Let X be a uniformly convex Banach space. Suppose that C has

Property WG, {αn}, {βn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1), F

is dominated by x0 and F dominates x0. If (x0, z0), (z0, x0) ∈ E(G) for arbitrary

x0 ∈ C and z0 ∈ F, then {xn} converges weakly to a common fixed point of T1

and T2.

Proof. Let z0 ∈ F be such that (x0, z0), (z0, x0) are in E(G). From Lemma 3.2.2

(i), we have lim
n→∞

∥xn− z0∥ exists, so {xn} is bounded in C. Since C is nonempty

closed convex subset of a uniformly convex Banach space X, it is weakly compact

and hence there exists a subsequence {xnj
} of the sequence {xn} such that {xnj

}

converges weakly to some point p ∈ C. By Lemma 3.2.2 (ii) we obtain that

lim
j→∞

∥xnj
− T1xnj

∥ = 0 = lim
j→∞

∥xnj
− T2xnj

∥. (3.37)

In addition, ∥T2yn − yn∥ ≤ ∥T2yn − T1yn∥+ ∥T1yn − yn∥, using (3.26) and (3.32),

we have

lim
n→∞

∥T2yn − yn∥ = 0. (3.38)

Using Lemma 3.2.4, we have I − T1 and I − T2 are G-demiclosed at 0 so that

p ∈ F. To complete the proof it suffices to show that {xn} converges weakly to p.
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To this end we need to show that {xn} satisfies the hypothesis of Lemma 2.2.20.

Let {xnj
} be a subsequence of {xn} which converges weakly to some q ∈ C. By

similar arguments as above q is in F. Now for each j ≥ 1, using (1.20), we have

xnj+1 = (1− αnj
)T1ynj

+ αnj
T2ynj

. (3.39)

It follows from (3.37) that

T1xnj
= (T1xnj

− xnj
) + xnj

⇀ q. (3.40)

Now from (1.20) and (3.40),

ynj
= (1− βnj

)xnj
+ βnj

T1xnj
⇀ q. (3.41)

Using (3.32) and (3.41), we have

T1ynj
= (T1ynj

− ynj
) + ynj

⇀ q. (3.42)

Also from (3.38) and (3.41), we have

T2ynj
= (T2ynj

− ynj
) + ynj

⇀ q. (3.43)

It follows from (3.39), (3.42) and (3.43) that

xnj+1 ⇀ q.

Therefore, the sequence {xn} satisfies the hypothesis of Lemma 2.2.20 which in

turn implies that {xn} weakly converges to q so that p = q. This completes the

proof.

In the remainder of this section, we deal with the strong convergence of

the sequence generated by the new iteration process (1.20) for two G-nonexpansive

mappings in a uniformly convex Banach space with a directed graph.
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Theorem 3.2.6. Let X be a uniformly convex Banach space. Suppose that {αn},

{βn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1), Ti(i = 1, 2) satisfy

condition (B), F is dominated by x0 and F dominates x0. Then {xn} converges

strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.2.2 (i), we have lim
n→∞

∥xn−q∥ exists and so lim
n→∞

d(xn, F ) exists

for any q ∈ F. Also by Lemma 3.2.2 (ii), lim
n→∞

∥xn−T1xn∥ = 0 = lim
n→∞

∥xn−T2xn∥.

It follows from condition (B) that lim
n→∞

f(d(xn, F )) = 0. Since f : [0,∞) → [0,∞)

is a nondecreasing function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), we

obtain that lim
n→∞

d(xn, F ) = 0. Hence, we can find a subsequence {xnj
} of {xn}

and a sequence {uj} ⊂ F such that ∥xnj
− uj∥ ≤ 1

2j
. Put nj+1 = nj + k for some

k ≥ 1. Then

∥xnj+1
− uj∥ ≤ ∥xnj+k−1 − uj∥ ≤ ∥xnj

− uj∥ ≤ 1

2j
.

We obtain that ∥uj+1−uj∥ ≤ 3
2j+1 , so {uj} is a Cauchy sequence. We assume that

uj → q0 ∈ C as j → ∞. Since F is closed, we get q0 ∈ F. So we have xnj
→ q0

as j → ∞. Since lim
n→∞

∥xn − q0∥ exists, we obtain xn → q0. This completes the

proof.

Theorem 3.2.7. Let X be a uniformly convex Banach space. Suppose that C

has Property SG, {αn}, {βn} are real sequences in [δ, 1− δ] for some δ ∈ (0, 1), F

is dominated by x0 and F dominates x0. If one of Ti(i = 1, 2) is semi-compact,

then {xn} converges strongly to a common fixed point of T1 and T2.

Proof. It follows from Lemma 3.2.2 that {xn} is bounded and lim
n→∞

∥xn−T1xn∥ =

0 = lim
n→∞

∥xn − T2xn∥. Since one of T1 and T2 is semi-compact, then there exists

a subsequence {xnj
} of {xn} such that xnj

→ q ∈ C as j → ∞. Since C has

Property SG and transitivity of graph G, we obtain (xnj
, q) ∈ E(G). Notice that,
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for each i ∈ {1, 2}, lim
j→∞

∥xnj
− Tixnj

∥ = 0. Then

∥q − Tiq∥ ≤ ∥q − xnj
∥+ ∥xnj

− Tixnj
∥+ ∥Tixnj

− Tiq∥

≤ ∥q − xnj
∥+ ∥xnj

− Tixnj
∥+ ∥xnj

− q∥

→ 0 (as j → ∞).

Hence q ∈ F . Thus lim
n→∞

d(xn, F ) exists by Theorem 3.2.6. We note that

d(xnj
, F ) ≤ d(xnj

, q) → 0 as j → ∞, hence lim
n→∞

d(xn, F ) = 0. It follows, as

in the proof of Theorem 3.2.6, that {xn} converges strongly to a common fixed

point of T1 and T2. This completes the proof.

Now we are ready to discuss an example as well as the numerical exper-

iments for supporting our main theorem. The following definitions will be useful

in this context.

In 1976, Rhoades [33] gave the idea how to compare the rate of conver-

gence between two iterative methods as follows:

Definition 3.2.8. [33] Let C be a nonempty closed convex subset of a Banach

space X and T : C → C be a mapping. Suppose that {xn} and {zn} are two

iterations which converge to a fixed point q of T. Then {xn} is said to converge

faster than {zn} if

∥xn − q∥ ≤ ∥zn − q∥

for all n ≥ 1.

In 2011, Phuengrattana and Suantai [31] showed that the Ishikawa iter-

ation converges faster than the Mann iteration for a class of continuous functions

on the closed interval in a real line.

In order to study, the order of convergence of a real sequence {an} con-

verging to a, we usually use the well-known terminology in numerical analysis,
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see [10], for example.

Definition 3.2.9. [10] Suppose {an} is a sequence that converges to a, with

an ̸= a for all n. If positive constants λ and α exist with

lim
n→∞

|an+1 − a|
|an − a|α

= λ,

then {an} converges to a of order α, with asymptotic error constant λ. If α = 1

(and λ < 1), the sequence is linearly convergent and if α = 2, the sequence is

quadratically convergent. Berinde [7] employed above concept for comparing the

rate of convergence between the two iterative methods as follows:

Definition 3.2.10. [7] Let {an} and {bn} be two sequences of positive numbers

that converge to a and b, respectively. Assume that there exists

lim
n→∞

|an − a|
|bn − b|

= l.

(i) If l = 0, then it is said that the sequence {an} converges to a faster than the

sequence {bn} to b.

(ii) If 0 < l < ∞, then we say that the sequence {an} and {bn} have the same

rate of convergence.

Example 3.2.11. Let X = R and C = [0, 2]. Let G = (V (G), E(G)) be a directed

graph defined by V (G) = C and (x, y) ∈ E(G) if and only if 0.50 ≤ x, y ≤ 1.70.

Define a mapping T1, T2 : C → C by

T1x =
2

3
arcsin(x− 1) + 1,
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T2x =
√
x,

for any x ∈ C. It is easy to show that T1, T2 are G-nonexpansive but T1, T2 are

not nonexpansive because

|T1x− T1y| > 0.50 = |x− y|
and

|T2u− T2v| > 0.45 = |u− v|

when x = 1.95, y = 1.45, u = 0.5 and v = 0.05. Let

αn =
n+ 1

5n+ 3

and

βn =
n+ 2

8n+ 5
.

Choose z0 = y0 = x0 = 1.35. We note that x = 1 is a common fixed point

of T1 and T2. Let {xn} be a sequence generated by (1.20) and {yn}, {zn} be

sequences generated by modified S-iteration and Ishikawa iteration, respectively.

By computing, we obtain the following numerical experiments for common fixed

point of T1 and T2 and rate of convergence of {xn}, {yn} and {zn}.



 

 

 
48

Figure 1: Numerical experiment of Example 3.2.11 by using Ishikawa iteration, modified
S-iteration and the proposed method.

Figure 1 presents the three comparative methods consist of Ishikawa

iteration, modified S-iteration and the proposed method converge to the solutions

of the numerical experiment.
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Figure 2: Convergence comparison of sequence generated by Ishikawa iteration, modified
S-iteration and the proposed method for Example 3.2.11

Figure 2 shows the convergence comparison between two sequences {an}

and {bn} that converge to the same limit results from the parameter ln = |an−1|
|bn−1|

lead from Definition 3.2.10. The diamond plot shows the convergence comparison

between two sequences generated by modified S-iteration and Ishikawa iteration,

the circle plot shows the convergence comparison between two sequences gener-

ated by proposed method and Ishikawa iteration and the plus sign plot shows

the convergence comparison between two sequences generated by the proposed

method and modified S-iteration. It can be seen from this figure that both dia-

mond and circle plot tends to zero while the plus sign plot tends to some constant.

It was interpreted that both modified S-iteration and proposed methods are con-

verged faster than Ishikawa iteration methods. The proposed method has the

same convergence rate as compared with modified S-iteration method. However,

the presented method still converged faster than modified S-iteration since the
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ratio of |xn − 1| and |yn − 1| in each iteration step is always less than one (see

Definition 3.2.8).
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Table 1: Comparative sequences generated by Ishikawa iteration, modified S-
iteration and the proposed iteration for numerical experiment of Example 3.2.11

Comparative sequences Rate of convergence between

Proposed Modified Ishikawa two generated sequences

iteration S-iteration iteration

n xn yn zn
|xn − 1|
|zn − 1|

|yn − 1|
|zn − 1|

|xn − 1|
|yn − 1|

1 1.1982 1.2157 1.2994 6.622e− 01 7.204e− 01 9.192e− 01

2 1.1151 1.1335 1.2604 4.419e− 01 5.126e− 01 8.621e− 01

3 1.0677 1.0829 1.2282 2.967e− 01 3.633e− 01 8.166e− 01

4 1.0401 1.0516 1.2008 2.000e− 01 2.571e− 01 7.779e− 01

5 1.0239 1.0322 1.1773 1.352e− 01 1.818e− 01 7.438e− 01

...
...

...
...

...
...

...

10 1.0019 1.0031 1.0975 1.949e− 02 3.193e− 02 6.102e− 01

...
...

...
...

...
...

...

20 1.0000 1.0000 1.0310 4.151e− 04 9.615e− 04 4.317e− 01

...
...

...
...

...
...

...

30 1.0000 1.0000 1.0101 8.919e− 06 2.852e− 05 3.126e− 01

...
...

...
...

...
...

...

40 1.0000 1.0000 1.0033 1.925e− 07 8.418e− 07 2.287e− 01

...
...

...
...

...
...

...

50 1.0000 1.0000 1.0011 4.173e− 09 2.478e− 08 1.683e− 01

...
...

...
...

...
...

...

60 1.0000 1.0000 1.0003 9.084e− 11 7.291e− 10 1.245e− 01

Table 1 also shows the numerical experiment for supporting our main

results and comparing rate of convergence of the proposed method with Ishikawa

iteration and modified S-iteration.



 

 

 

CHAPTER IV

CONCLUSION

4.1 Conclusion

The following results are all main theorems of this thesis:

Theorem 4.1.1. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T1, T2 : C → X be two uniformly L−Lipschitzian, nonself generalized asymptot-

ically quasi-nonexpansive mappings of C satisfying condition A
′
with sequences

{k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n − 1) < ∞,∑∞

n=1 δ
(i)
n < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn} are

real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such that∑∞
n=1 γn < ∞,

∑∞
n=1 λn < ∞ and {un}, {vn} are bounded sequences in C. Then

the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge

strongly to a common fixed point of T1 and T2.

Theorem 4.1.2. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction.

Let T1, T2 : C → X be two nonself asymptotically nonexpansive mappings of

C satisfying condition A
′
with sequences {k(i)

n } ⊂ [1,∞) (i = 1, 2) such that∑∞
n=1(k

(i)
n − 1) < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn}, {βn}

are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such

that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞ and {un}, {vn} are bounded sequences in C.

Then the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge

strongly to a common fixed point of T1 and T2.

Theorem 4.1.3. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let
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T1, T2 : C → X be two uniformly L−Lipschitzian, nonself generalized asymptot-

ically quasi-nonexpansive mappings of C satisfying condition A
′
with sequences

{k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n − 1) < ∞,∑∞

n=1 δ
(i)
n < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn} and {βn} are

real sequences in [ϵ, 1− ϵ] for some ϵ ∈ (0, 1). Then the sequences {xn} and {yn}

defined by the iterative scheme (1.16) converge strongly to a common fixed point

of T1 and T2.

Theorem 4.1.4. Let X be a real uniformly convex Banach space and C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction.

Let T1, T2 : C → X be two nonself asymptotically nonexpansive mappings of

C satisfying condition A
′
with sequences {k(i)

n } ⊂ [1,∞) (i = 1, 2) such that∑∞
n=1(k

(i)
n − 1) < ∞ and F = F (T1) ∩ F (T2) ̸= ∅. Suppose that {αn} and {βn}

are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1). Then the sequences {xn} and

{yn} defined by the iterative scheme (1.16) converge strongly to a common fixed

point of T1 and T2.

Theorem 4.1.5. Let X be a real Banach space and C a nonempty closed convex

nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →

X be two nonself generalized asymptotically quasi-nonexpansive mappings of C

with sequences {k(i)
n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∑∞
n=1(k

(i)
n −

1) < ∞,
∑∞

n=1 δ
(i)
n < ∞ and F = F (T1)∩F (T2) ̸= ∅ is closed. Suppose that {αn},

{βn} are real sequences in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such

that
∑∞

n=1 γn < ∞,
∑∞

n=1 λn < ∞ and {un}, {vn} are bounded sequences in C.

Then the sequence {xn} defined by the iterative scheme (1.17) converges strongly

to a common fixed point of T1 and T2 if and only if lim infn→∞ d(xn, F ) = 0, where

d(xn, F ) = infy∈F ∥xn − y∥, n ≥ 1.

Theorem 4.1.6. Let X be a uniformly convex Banach space which satisfies

Opial’s condition and C has Property WG. Suppose that {αn} and {βn} are real



 

 

 

sequences in [δ, 1− δ] for some δ ∈ (0, 1). If (x0, z0), (z0, x0) ∈ E(G) for arbitrary

x0 ∈ C and z0 ∈ F, then {xn} converges weakly to a common fixed point of T1

and T2.

Theorem 4.1.7. Let X be a uniformly convex Banach space. Suppose that C has

Property WG, {αn}, {βn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1), F

is dominated by x0 and F dominates x0. If (x0, z0), (z0, x0) ∈ E(G) for arbitrary

x0 ∈ C and z0 ∈ F, then {xn} converges weakly to a common fixed point of T1

and T2.
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