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ABSTRACT 

In this research, we introduce several types of subsets and of fuzzy sets of fully UP-semigroups, 

investigate the algebraic properties of fuzzy sets under the operations of intersection and union, and 

discuss the relation between t-characteristic fuzzy sets and sUP -subalgebras (resp., iUP -subalgebras, 

near sUP -filters, near iUP -filters, sUP -filters, iUP -filters, sUP -ideals, iUP -ideals, strongly sUP -ideals 

and strongly iUP -ideals). We introduce ten types of fuzzy soft sets over fully UP-semigroups, investigate 

the algebraic properties of fuzzy soft sets under the operations of (extended) intersection and (restricted) 

union, and discuss the relation between some conditions of fuzzy soft sets and fuzzy soft sUP -subalgebras 

(resp., fuzzy soft iUP -subalgebras, fuzzy soft near sUP -filters, fuzzy soft near iUP -filters, fuzzy soft sUP

-filters, fuzzy soft iUP -filters, fuzzy soft sUP -ideals, fuzzy soft iUP -ideals, fuzzy soft strongly sUP -

ideals, fuzzy soft strongly iUP -ideals). We apply distributivity laws of several fuzzy sets for any fuzzy sets 

and study distributivity laws with any fuzzy soft sets. We investigate properties of some operations for 

fuzzy soft sets and their interrelation with respect to different operations such as “(restricted) union”, 

“(extended) intersection”, “AND”, and “OR”. 
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CHAPTER I

INTRODUCTION

Among many algebraic structures, algebras of logic form important class

of algebras. Examples of these algebras are BCK-algebras [11], BCI-algebras

[12], B-algebras [26], UP-algebras [8] and so on. They are strongly connected

with some logic. For example, BCI-algebras introduced by Iséki [12] in 1966 have

connections with BCI-logic being the BCI-system in combinatory logic which has

application in the language of functional programming. BCK and BCI-algebras

are two classes of logical algebras. They were introduced by Imai and Iséki [11, 12]

in 1966 and have been extensively investigated by many researchers. It is known

that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

Several researches introduced a new class of algebras related to logical

algebras and semigroups such as: In 1993, Jun et al. [15] introduced the notion

of BCI-semigroups. In 1998, Jun et al. [20] renamed the BCI-semigroup as the

IS-algebra. In 2006, Kim [21] introduced the notion of KS-semigroups. In 2015,

Endam and Vilela [6] introduced the notion of JB-semigroups. In 2018, Iampan

[9] introduced the notion of fully UP-semigroups.

A fuzzy subset F of a set X is a function from X to a closed interval

[0,1]. The concept of a fuzzy subset of a set was first considered by Zadeh [36]

in 1965. The fuzzy set theories developed by Zadeh and others have found many

applications in the domain of mathematics and elsewhere. After the introduction

of the concept of fuzzy sets by Zadeh [36], several researches were conducted on

the generalizations of the notion of fuzzy set and application to many logical

algebras such as: In 1998, Jun et al. [14] applied the notion of fuzzy sets to

BCI-semigroups (it was renamed as an IS-algebra for the convenience of study),

and introduced the concept of fuzzy I-ideals. In 2000, Roh et al. [30] considered
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the fuzzification of an associative I-ideal of an IS-algebra. They proved that every

fuzzy associative I-ideal is a fuzzy I-ideal. By giving an appropriate example, they

verified that a fuzzy I-ideal may not be a fuzzy associative I-ideal. They gave a

condition for a fuzzy I-ideal to be a fuzzy associative I-ideal, and they investigated

some related properties. In 2003, Jun and Kondo [17] proved that some concepts

of BCK/BCI-algebras expressed by a certain formula can be naturally extended

to the fuzzy setting and that many results are obtained immediately with the

use of our method. Moreover, they proved that these results can be extended to

fuzzy IS-algebras. In 2003, Jianming and Dajing [13] introduced the concept of

intuitionistic fuzzy associative I-ideals of IS-algebras and they investigated some

related properties. In 2007, Prince Williams and Husain [35] studied fuzzy KS-

semigroups. In 2016, Endam and Manahon [5] introduced the notion of fuzzy

JB-semigroups and they investigated some of its properties.

In 1999, to solve complicated problems in economics, engineering, and

environment, we cannot successfully use classical methods because of various un-

certainties typical for those problems. Uncertainties cannot be handled using

traditional mathematical tools but may be dealt with using a wide range of ex-

isting theories such as the probability theory, the theory of (intuitionistic) fuzzy

sets, the theory of vague sets, the theory of interval mathematics, and the theory

of rough sets. However, all of these theories have their own difficulties which are

pointed out in [25]. In 2001, Maji et al. [24] introduced the concept of fuzzy soft

sets as a generalization of the standard soft sets, and presented an application

of fuzzy soft sets in a decision making problem. In 2010, Jun et al. [18] applied

fuzzy soft set for dealing with several kinds of theories in BCK/BCI-algebras.

The notions of fuzzy soft BCK/BCI-algebras, (closed) fuzzy soft ideals and fuzzy

soft p-ideals are introduced, and related properties are investigated. In 2013,

Rehman et al. [28] studied some operations of fuzzy soft sets and give fundamen-

tal properties of fuzzy soft sets. They discuss properties of fuzzy soft sets and
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their interrelation with respect to different operations such as union, intersection,

restricted union and extended intersection. Then, they illustrate properties of

OR, AND operations by giving counter examples. Also we prove that certain De

Morgan’s laws hold in fuzzy soft set theory with respect to different operations

on fuzzy soft sets.



 

 

 

CHAPTER II

REVIEW OF RELATED LITERATURE

AND RESEARCH

Two important classes of logical algebras, BCK and BCI-algebras were

introduced by Imai and Iséki [11, 12].

Definition 2.0.1 An algebra A = (A, ·, 0) is called a BCI-algebra if it satisfies

the following conditions:

(BCI-1) (∀x, y, z ∈ A)(((x · y) · (x · z) · (y · z)) = 0),

(BCI-2) (∀x, y ∈ A)((x · (x · y)) · y = x),

(BCI-3) (∀x ∈ A)(x · x = 0), and

(BCI-4) (∀x, y ∈ A)(x · y = 0, y · x = 0⇒ x = y).

A BCI-algebra A is called a BCK-algebra if it satisfies the following

identity:

(BCK) (∀x ∈ A)(0 · x = 0).

In 2002, Neggers and Kim [26] introduced the notion of B-algebras.

Definition 2.0.2 An algebra A = (A, ·, 0) of type (2, 0) is called a B-algebra if

it satisfies the following axioms:

(B-1) (∀x ∈ A)(x · x = 0),

(B-2) (∀x ∈ A)(x · 0 = x), and

(B-3) (∀x, y, z ∈ A)((x · y) · z = x · (z · (0 · y))).
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In 2017, Iampan [8] introduced the notion of UP-algebras.

Definition 2.0.3 An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra

where A is a nonempty set, · is a binary operation on A, and 0 is a fixed element

of A (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1) (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ A)(0 · x = x),

(UP-3) (∀x ∈ A)(x · 0 = 0), and

(UP-4) (∀x, y ∈ A)(x · y = 0, y · x = 0⇒ x = y).

In 1993, Jun et al. [15] introduced the notion of BCI-semigroups (it was

renamed as IS-algebras for the convenience of study).

Definition 2.0.4 An IS-algebra is a nonempty set A together with two binary

operations · and ∗ and a constant 0 satisfying the following:

(IS-1) (A, ·, 0) is a BCI-algebra,

(IS-2) (A, ∗) is a semigroup, and

(IS-3) The operation ∗ is left and right distributive over the operation ·.

In 2006, Kim [21] introduced the notion of KS-semigroups.

Definition 2.0.5 A KS-semigroup is a nonempty set A together with two binary

operations · and ∗ and a constant 0 satisfying the following:

(KS-1) (A, ·, 0) is a BCK-algebra,

(KS-2) (A, ∗) is a semigroup, and
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(KS-3) The operation ∗ is left and right distributive over the operation ·.

In 2015, Endam and Vilela [6] introduced the notion of JB-semigroups.

Definition 2.0.6 A JB-semigroup is a nonempty set A together with two binary

operations · and ∗ and a constant 0 satisfying the following:

(JB-1) (A, ·, 0) is a B-algebra,

(JB-2) (A, ∗) is a semigroup, and

(JB-3) The operation ∗ is left and right distributive over the operation ·.

In 2018, Iampan [9] introduced the notion of fully UP-semigroups (in

short, f -UP-semigroups).

Definition 2.0.7 An f -UP-semigroup is a nonempty set A together with two

binary operations · and ∗ and a constant 0 satisfying the following:

(fUP-1) (A, ·, 0) is a UP-algebra,

(fUP-2) (A, ∗) is a semigroup, and

(fUP-3) The operation ∗ is left and right distributive over the operation ·.

In 1965, Zadeh [36] introduced the concept of a fuzzy set for the first

time.

Definition 2.0.8 A fuzzy set F in a nonempty set U (or a fuzzy subset of U)

is described by its membership function fF. To every point x ∈ U , this func-

tion associates a real number fF(x) in the interval [0, 1]. The number fF(x) is

interpreted for the point as a degree of belonging x to the fuzzy set F, that is,
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F := {(u, fF(u)) | u ∈ U}. If A ⊆ U and t ∈ (0, 1], the t-characteristic function

[19] χt
A of U is a function of U into {0, t} defined as follows:

χt
A(x) =

 t if x ∈ A,

0 if x /∈ A.

By the definition of t-characteristic function, χt
A is a function of U into {0, t} ⊂

[0, 1]. We denote the fuzzy set Ft
A in U is described by its membership function

χt
A, is called the t-characteristic fuzzy set of A in U . We say that a fuzzy set F

in U is constant if its membership function fF is constant.

In 1999 - 2004, Jun et al. [29, 16] and Jianming and Dajing [13] applied

the notion of fuzzy sets to IS-algebras.

Definition 2.0.9 A fuzzy set F in a semigroup (A, ∗) is called a fuzzy stable if

(∀x, y ∈ A)(fF(x ∗ y) ≥ fF(y)).

Definition 2.0.10 A fuzzy set F in a BCI-algebra (A, ·, 0) is called a fuzzy sub-

algebra if (∀x, y ∈ A)(fF(x · y) ≥ min{fF(x), fF(y)}).

Definition 2.0.11 A fuzzy set F in a BCI-algebra (A, ·, 0) is called a fuzzy ideal

of A if it satisfies the following conditions:

(1) (∀x ∈ A)(fF(0) ≥ fF(x)), and

(2) (∀x, y ∈ A)(fF(x) ≥ min{fF(x · y), fF(y)}).

Definition 2.0.12 A fuzzy set F in an IS-algebra (A, ·, ∗, 0) is called a fuzzy

I-ideal of A if it satisfies the following conditions:

(1) F is a fuzzy stable, and

(2) F is a fuzzy ideal of a BCI-algebra A.



 

 

 
8

Definition 2.0.13 A fuzzy set F in an IS-algebra (A, ·, ∗, 0) is called a fuzzy

associative I-ideal of A if it satisfies the following conditions:

(1) F is a fuzzy stable, and

(2) (∀x, y, z ∈ A)(fF(x) ≥ min{fF((x · y) · z), fF(y · z)}).

In 2016, Endam and Manahon [5] applied the notion of fuzzy sets to

JB-semigroups.

Definition 2.0.14 A fuzzy JB-semigroup F of a JB-semigroup (A, ·, ∗, 0) is called

a fuzzy sub JB-semigroup of A if it satisfies the following conditions:

(1) (∀x, y ∈ A)(fF(x · y) ≥ min{fF(x), fF(y)}), and

(2) (∀x, y ∈ A)(fF(x ∗ y) ≥ min{fF(x), fF(y)}).

Definition 2.0.15 A fuzzy JB-semigroup F of a JB-semigroup (A, ·, ∗, 0) is called

a fuzzy JB-ideal of A if it satisfies the following conditions:

(1) (∀x, y, a, b ∈ A)(fF((x · a) · (y · b)) ≥ min{fF(x · y), fF(a · b)}), and

(2) (∀x, y ∈ A)(fF(x ∗ y) ≥ min{fF(x), fF(y)}).

Definition 2.0.16 A fuzzy JB-semigroup F of a JB-semigroup (A, ·, ∗, 0) is called

a fuzzy JBs-ideal of A if it satisfies the following conditions:

(1) (∀x, y, a, b ∈ A)(fF((x · a) · (y · b)) ≥ min{fF(x · y), fF(a · b)}), and

(2) (∀x, y ∈ A)(fF(x ∗ y) ≥ max{fF(x), fF(y)}).

In 2001, Maji et al. [24] introduced the notion of fuzzy soft sets, as a

generalization of the standard soft sets.
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Definition 2.0.17 Let U be an initial universe set and P be a set of parameters.

Let F(U) denote the set of all fuzzy sets in U . Then (F̃, E) is called a fuzzy soft

set over U where E ⊆ P and F̃ is a mapping given by F̃ : E → F(U).

In general, for every e ∈ E, a fuzzy set,

F̃[e] := {(u, fF̃[e](u)) | u ∈ U)}

in U is called fuzzy value set of parameter e.

In 2010, Jun et al. [18] applied the notion of fuzzy soft sets to BCK/BCI-

algebras.

Definition 2.0.18 Let (F̃, E) be a fuzzy soft set over a BCK/BCI-algebra (A, ·, 0)

where E is a subset of P . If there exists e ∈ E such that F̃[e] is a fuzzy BCK/BCI-

algebra in A, we say that (F̃, E) is a fuzzy soft BCK/BCI-algebra based on

a parameter e over A. If (F̃, E) is a fuzzy soft BCK/BCI-algebra based on a

parameter e over A for all e ∈ E, we say that (F̃, E) is a fuzzy soft BCK/BCI-

algebra over A.

Definition 2.0.19 Let (F̃, E) be a fuzzy soft set over a BCK/BCI-algebra (A, ·, 0)

where E is a subset of P . If there exists e ∈ E such that F̃[e] is a fuzzy ideal of

A, we say that (F̃, E) is a fuzzy soft ideal of A based on a parameter e. If (F̃, E)

is a fuzzy soft ideal of A based on all parameters, we say that (F̃, E) is a fuzzy

soft ideal of A.



 

 

 

CHAPTER III

PRELIMINARIES

Before we begin our study, we will introduce a UP-algebra. From [8], we

know that the notion of UP-algebras is a generalization of KU-algebras (see [27]).

On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A as

follows:

(∀x, y ∈ A)(x ≤ y ⇔ x · y = 0).

Example 3.0.20 [33] Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) =

{A ∈ P(X) | Ω ⊆ A}. Define a binary operation · on PΩ(X) by putting A · B =

B ∩ (A′ ∪ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ·,Ω) is a UP-algebra and we

shall call it the generalized power UP-algebra of type 1 with respect to Ω.

Example 3.0.21 [33] Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) =

{A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by putting

A ∗B = B ∪ (A′ ∩Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a UP-algebra

and we shall call it the generalized power UP-algebra of type 2 with respect to Ω.

In particular, we have (P(X), ·, ∅) is the power UP-algebra of type 1 and

(P(X), ∗, X) is the power UP-algebra of type 2.

Example 3.0.22 [4] Let N be the set of all natural numbers with two binary

operations ◦ and • defined by,

(∀x, y ∈ N)

x ◦ y =

 y if x < y,

0 otherwise

 ,
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and

(∀x, y ∈ N)

x • y =

 y if x > y or x = 0,

0 otherwise

 .

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.

For more examples of UP-algebras, see [3, 9, 32, 33].

In a UP-algebra A = (A, ·, 0), the following assertions are valid (see

[8, 9]).

(∀x ∈ A)(x · x = 0), (3.0.1)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0⇒ x · z = 0), (3.0.2)

(∀x, y, z ∈ A)(x · y = 0⇒ (z · x) · (z · y) = 0), (3.0.3)

(∀x, y, z ∈ A)(x · y = 0⇒ (y · z) · (x · z) = 0), (3.0.4)

(∀x, y ∈ A)(x · (y · x) = 0), (3.0.5)

(∀x, y ∈ A)((y · x) · x = 0⇔ x = y · x), (3.0.6)

(∀x, y ∈ A)(x · (y · y) = 0), (3.0.7)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (3.0.8)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (3.0.9)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0), (3.0.10)

(∀x, y, z ∈ A)(x · y = 0⇒ x · (z · y) = 0), (3.0.11)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and (3.0.12)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0). (3.0.13)

Definition 3.0.23 [8, 34, 7, 10] A nonempty subset S of a UP-algebra (A, ·, 0)

is called
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(1) a UP-subalgebra of A if (∀x, y ∈ S)(x · y ∈ S),

(2) a near UP-filter of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y ∈ A)(y ∈ S ⇒ x · y ∈ S),

(3) a UP-filter of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y ∈ A)(x · y ∈ S, x ∈ S ⇒ y ∈ S),

(4) a UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y, z ∈ A)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S),

(5) a strongly UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y, z ∈ A)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

We know that the notion of UP-subalgebras is a generalization of near

UP-filters, the notion of near UP-filters is a generalization of UP-filters, the notion

of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a

generalization of strongly UP-ideals. Moreover, they also proved that a UP-

algebra A is the only one strongly UP-ideal of itself.

Definition 3.0.24 A nonempty subset S of a semigroup (A, ∗) is called

(1) a subsemigroup of A if (∀x, y ∈ S)(x ∗ y ∈ S), and

(2) an ideal of A if (∀x ∈ A,∀s ∈ S)(x ∗ s, s ∗ x ∈ S).
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Clearly, an ideal is a subsemigroup.

Lemma 3.0.25 Let S be a nonempty subset of a UP-algebra (A, ·, 0) and t ∈

(0, 1]. Then the constant 0 of A is in S if and only if (∀x ∈ A)(χt
S(0) ≥ χt

S(x)).

Proof. Assume that 0 ∈ S. Then for all x ∈ A, χt
S(0) = t ≥ χt

S(x).

Conversely, assume that χt
S(0) ≥ χt

S(x) for all x ∈ A. Since S is a

nonempty subset of A, we have an element a in S, that is, χt
S(a) = t. Thus

t ≥ χt
S(0) ≥ χt

S(a) = t. So χt
S(0) = t, that is, 0 ∈ S.

Definition 3.0.26 ([34, 7]) A fuzzy set F in a UP-algebra A = (A, ·, 0) is called

(1) a fuzzy UP-subalgebra of A if (∀x, y ∈ A)(fF(x · y) ≥ min{fF(x), fF(y)}),

(2) a fuzzy UP-filter of A if

(i) (∀x ∈ A)(fF(0) ≥ fF(x)), and

(ii) (∀x, y ∈ A)(fF(y) ≥ min{fF(x · y), fF(x)}),

(3) a fuzzy UP-ideal of A if

(i) (∀x ∈ A)(fF(0) ≥ fF(x)), and

(ii) (∀x, y, z ∈ A)(fF(x · z) ≥ min{fF(x · (y · z)), fF(y)}),

(4) a fuzzy strongly UP-ideal of A if

(i) (∀x ∈ A)fF(0) ≥ fF(x), and

(ii) (∀x, y, z ∈ A)(fF(x) ≥ min{fF((z · y) · (z · x)), fF(y)}).

Now, we introduce the notion of fuzzy near UP-filters of UP-algebras as

follows:

Definition 3.0.27 A fuzzy set F in a UP-algebra A = (A, ·, 0) is called a fuzzy

near UP-filter of A if
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(i) (∀x ∈ A)(fF(0) ≥ fF(x)), and

(ii) (∀x, y ∈ A)(fF(x · y) ≥ fF(y)).

We know that the notion of fuzzy UP-subalgebras is a generalization of

fuzzy near UP-filters, the notion of fuzzy near UP-filters is a generalization of

fuzzy UP-filters, the notion of fuzzy UP-filters is a generalization of fuzzy UP-

ideals, and the notion of fuzzy UP-ideals is a generalization of fuzzy strongly

UP-ideals. Moreover, fuzzy strongly UP-ideals and constant fuzzy sets coincide

in UP-algebras.

Theorem 3.0.28 [7] Fuzzy strongly UP-ideals and constant fuzzy sets coincide

in UP-algebras.

Theorem 3.0.29 Let S be a nonempty subset of a UP-algebra A = (A, ·, 0) and

t ∈ (0, 1]. Then the following statements hold:

(1) S is a UP-subalgebra of A if and only if the t-characteristic fuzzy set Ft
S is

a fuzzy UP-subalgebra of A,

(2) S is a near UP-filter of A if and only if the t-characteristic fuzzy set Ft
S is

a fuzzy near UP-filter of A,

(3) S is a UP-filter of A if and only if the t-characteristic fuzzy set Ft
S is a

fuzzy UP-filter of A,

(4) S is a UP-ideal of A if and only if the t-characteristic fuzzy set Ft
S is a

fuzzy UP-ideal of A, and

(5) S is a strongly UP-ideal of A if and only if the t-characteristic fuzzy set Ft
S

is a fuzzy strongly UP-ideal of A.

Proof. (1) Assume that S is a UP-subalgebra of A. Let x, y ∈ A.
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Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y), so min{χt
S(x), χt

S(y)} = t.

Since S is a UP-subalgebra of A, we have x ·y ∈ S and so χt
S(x ·y) = t. Therefore,

χt
S(x · y) = t ≥ t = min{χt

S(x), χt
S(y)}.

Case 2: x /∈ S or y /∈ S. Then χt
S(x) = 0 or χt

S(y) = 0, so

min{χt
S(x), χt

S(y)} = 0.

Therefore, χt
S(x · y) ≥ 0 = min{χt

S(x), χt
S(y)}.

Hence, Ft
S is a fuzzy UP-subalgebra of A.

Conversely, assume that Ft
S is a fuzzy UP-subalgebra of A. Let x, y ∈

S. Then χt
S(y) = t = χt

S(y), so min{χt
S(x), χt

S(y)} = t. Since Ft
S is a fuzzy

UP-subalgebra of A, we have t ≥ χt
S(x · y) ≥ min{χt

S(x), χt
S(y)} = t. Thus

χt
S(x · y) = t, that is, x · y ∈ S. Hence, S is a UP-subalgebra of A.

(2) Assume that S is a near UP-filter of A. Since 0 ∈ S, it follows from

Lemma 3.0.25 that χt
S(0) ≥ χt

S(x) for all x ∈ A. Next, let x, y ∈ A.

Case 1: y ∈ S. Then χt
S(y) = t. Since S is a near UP-filter of A, we have

x · y ∈ S and so χt
S(x · y) = t. Therefore, χt

S(x · y) = t ≥ t = χt
S(y).

Case 2: y /∈ S. Then χt
S(y) = 0. Thus χt

S(x · y) ≥ 0 = χt
S(y).

Hence, Ft
S is a fuzzy near UP-filter of A.

Conversely, assume that Ft
S is a fuzzy near UP-filter of A. Since χt

S(0) ≥

χt
S(x) for all x ∈ A, it follows from Lemma 3.0.25 that 0 ∈ S. Next, let x, y ∈ A

be such that y ∈ S. Then χt
S(y) = t. Since Ft

S is a fuzzy near UP-filter of A, we

have t ≥ χt
S(x · y) ≥ χt

S(y) = t. Thus χt
S(x · y) = t, that is, x · y ∈ S. Hence, S is

a near UP-filter of A.

(3) Assume that S is a UP-filter of A. Since 0 ∈ S, it follows from Lemma
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3.0.25 that χt
S(0) ≥ χt

S(x) for all x ∈ A. Next, let x, y ∈ A.

Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y). Thus χt
S(y) = t ≥ χt

S(x ·y) =

min{χt
S(x · y), χt

S(x)}.

Case 2: x /∈ S or y /∈ S. If x /∈ S, then χt
S(x) = 0. Thus χt

S(y) ≥

0 = min{χt
S(x · y), χt

S(x)}. If y /∈ S, then χt
S(y) = 0. Since S is a UP-filter

of A, we have x · y /∈ S or x /∈ S and so χt
S(x · y) = 0 or χt

S(x) = 0. Thus

χt
S(y) = 0 ≥ 0 = min{χt

S(x · y), χt
S(x)}.

Hence, Ft
S is a fuzzy UP-filter of A.

Conversely, assume that Ft
S is a fuzzy UP-filter of A. Since χt

S(0) ≥ χt
S(x)

for all x ∈ A, it follows from Lemma 3.0.25 that 0 ∈ S. Next, let x, y ∈ A be such

that x·y ∈ S and x ∈ S. Then χt
S(x·y) = t = χt

S(x), so min{χt
S(x·y), χt

S(x)} = t.

Since Ft
S is a fuzzy UP-filter of A, we have t ≥ χt

S(y) ≥ min{χt
S(x ·y), χt

S(x)} = t.

Thus χt
S(y) = t, that is, y ∈ S. Hence, S is a UP-filter of A.

(4) Assume that S is a UP-ideal of A. Since 0 ∈ S, it follows from Lemma

3.0.25 that χt
S(0) ≥ χt

S(x) for all x ∈ A. Next, let x, y, z ∈ A.

Case 1: x ·(y ·z), y ∈ S. Then χt
S(x ·(y ·z)) = t = χt

S(y), so min{χt
S(x ·(y ·

z)), χt
S(y)} = t. Since S is a UP-ideal of A, we have x · z ∈ S and so χt

S(x · z) = t.

Thus χt
S(x · z) = t ≥ t = min{χt

S(x · (y · z)), χt
S(y)}.

Case 2: x · (y · z) /∈ S or y /∈ S. Then χt
S(x · (y · z)) = 0 or χt

S(y) = 0, so

min{χt
S(x · (y · z)), χt

S(y)} = 0. Thus χt
S(x · z) ≥ 0 = min{χt

S(x · (y · z)), χt
S(y)}.

Hence, Ft
S is a fuzzy UP-ideal of A.

Conversely, assume that Ft
S is a fuzzy UP-ideal of A. Since χt

S(0) ≥ χt
S(x)

for all x ∈ A, it follows from Lemma 3.0.25 that 0 ∈ S. Next, let x, y, z ∈ A

such that x · (y · z) ∈ S and y ∈ S. Then χt
S(x · (y · z)) = t = χt

S(y), so
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min{χt
S(x · (y · z)), χt

S(y)} = t. Since Ft
S is a fuzzy UP-ideal of A, we have

t ≥ χt
S(x · z) ≥ min{χt

S(x · (y · z)), χt
S(y)} = t. Thus χt

S(x · z) = t, that is,

x · z ∈ S. Hence, S is a UP-ideal of A.

(5) It is straightforward by Theorem 3.0.28, and A is the only one strongly

UP-ideal of itself.

Definition 3.0.30 [31] A fuzzy set F in a semigroup A = (A, ∗) is called

(1) a fuzzy subsemigroup of A if

(∀x, y ∈ A)(fF(x ∗ y) ≥ min{fF(x), fF(y)}), and

(2) a fuzzy ideal of A if for any x, y ∈ A,

(∀x, y ∈ A)(fF(x ∗ y) ≥ max{fF(x), fF(y)}).

Clearly, a fuzzy ideal is a fuzzy subsemigroup.

Theorem 3.0.31 Let S be a nonempty subset of a semigroup A = (A, ∗) and

t ∈ (0, 1]. Then the following statements hold:

(1) S is a subsemigroup of A if and only if the t-characteristic fuzzy set Ft
S is

a fuzzy subsemigroup of A, and

(2) S is an ideal of A if and only if the t-characteristic fuzzy set Ft
S is a fuzzy

ideal of A.

Proof. (1) Assume that S is a subsemigroup of A. Let x, y ∈ A.

Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y), so min{χt
S(x), χt

S(y)} = t.

Since S is a subsemigroup of A, we have x∗y ∈ S and so χt
S(x∗y) = t. Therefore,

χt
S(x ∗ y) = t ≥ t = min{χt

S(x), χt
S(y)}.
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Case 2: x /∈ S or y /∈ S. Then χt
S(x) = 0 or χt

S(y) = 0, so

min{χt
S(x), χt

S(y)} = 0.

Therefore, χt
S(x ∗ y) ≥ 0 = min{χt

S(x), χt
S(y)}.

Hence, Ft
S is a fuzzy subsemigroup of A.

Conversely, assume that Ft
S is a fuzzy subsemigroup of A. Let x, y ∈

S. Then χt
S(y) = t = χt

S(y), so min{χt
S(x), χt

S(y)} = t. Since Ft
S is a fuzzy

subsemigroup of A, we have t ≥ χt
S(x ∗ y) ≥ min{χt

S(x), χt
S(y)} = t. Thus

χt
S(x ∗ y) = t, that is, x ∗ y ∈ S. Hence, S is a subsemigroup of A.

(2) Assume that S is an ideal of A. Let x, y ∈ A.

Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y), so max{χt
S(x), χt

S(y)} = t.

Since S is an ideal of A, we have x ∗ y ∈ S and so χt
S(x ∗ y) = t. Therefore,

χt
S(x ∗ y) = t ≥ t = max{χt

S(x), χt
S(y)}.

Case 2: x /∈ S or y /∈ S. If x ∗ y ∈ S, then χt
S(x ∗ y) = t. Therefore,

χt
S(x∗y) = t ≥ max{χt

S(x), χt
S(y)}. If x∗y /∈ S, then x, y /∈ S. Thus χt

S(x∗y) = 0

and χt
S(x) = 0 = χt

S(y). Therefore, χt
S(x ∗ y) = 0 ≥ 0 = max{χt

S(x), χt
S(y)}.

Hence, Ft
S is a fuzzy ideal of A.

Conversely, assume that Ft
S is a fuzzy ideal of A. Let s ∈ S and x ∈ A.

Then χt
S(s) = t, so max{χt

S(s), χt
S(x)} = t. Since Ft

S is a fuzzy ideal of A, we have

t ≥ χt
S(s ∗x), χt

S(x ∗ s) ≥ max{χt
S(s), χt

S(x)} = t. Thus χt
S(s ∗x) = t = χt

S(x ∗ s),

that is s ∗ x, x ∗ s ∈ S. Hence, S is an ideal of A.

Definition 3.0.32 [23] Let {Fi}i∈I be a nonempty family of fuzzy sets in a

nonempty set U where I is an arbitrary index set. The intersection of Fi, de-

noted by
⋂

i∈I Fi, is described by its membership function f⋂
i∈I Fi

which defined



 

 

 
19

as follows:

(∀x ∈ U)(f⋂
i∈I Fi

(x) = inf{fFi(x)}i∈I).

The union of Fi, denoted by
⋃

i∈I Fi, is described by its membership function

f⋃
i∈I Fi

which defined as follows:

(∀x ∈ U)(f⋃
i∈I Fi

(x) = sup{fFi(x)}i∈I).

Definition 3.0.33 [23] Let F and G be fuzzy sets in a nonempty set U . Then

F ≤ G is defined by fF(x) ≤ fG(x) for all x ∈ U .

Definition 3.0.34 [22] Let F and G be fuzzy sets in a semigroup A = (A, ∗).

Then the product of F and G, denoted by F◦G, is described by their membership

function fF and fG, respectively which defined as follows: For all x ∈ A,

(fF ◦ fG)(x) =

 sup{min{fF(y), fG(z)}}x=y∗z if ∃y, z ∈ A such that x = y ∗ z,

0 otherwise.

Definition 3.0.35 [22] The semigroup A itself is a fuzzy set of A, denoted by A

such that fA(x) = 1 for all x ∈ A.

Lemma 3.0.36 [22] Let F be a fuzzy set in a semigroup A = (A, ∗). Then

(1) F is a fuzzy subsemigroup of A if and only if it satisfies the condition

F ◦ F ≤ F. (3.0.14)

(2) F is a fuzzy ideal of A if and only if it satisfies the condition

A ◦ F ≤ F and F ◦ A ≤ F. (3.0.15)

Theorem 3.0.37 Let Fi and F be fuzzy sets in a nonempty set X where I is a

nonempty set. Then the following properties hold:
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(1) F ∩ (
⋃

i∈I Fi) =
⋃

i∈I(F ∩ Fi),

(2) (
⋃

i∈I Fi) ∩ F =
⋃

i∈I(Fi ∩ F),

(3) F ∪ (
⋂

i∈I Fi) =
⋂

i∈I(F ∪ Fi), and

(4) (
⋂

i∈I Fi) ∪ F =
⋂

i∈I(Fi ∪ F).

Proof. Let x ∈ X. (1) First, we investigate left hand side of the equality. Assume

that
⋃

i∈I Fi = F∪. Then F ∩ (
⋃

i∈I Fi) = F ∩ F∪. Also,

fF∩F∪(x) = min{fF(x), fF∪(x)}

= min{fF(x), f⋃i∈I Fi
(x)}

= min{fF(x), sup{fFi(x)}i∈I}.

Consider the right hand side of the equality. Assume that F ∩ Fi = F∩i for all

i ∈ I. Then

f⋃
i∈I F∩i

(x) = sup{fF∩i (x)}i∈I

= sup{fF∩Fi
(x)}i∈I

= sup{min{fF(x), fFi
(x)}}i∈I .

It is clear that min{fF(x), sup{fFi(x)}i∈I} = sup{min{fF(x), fFi
(x)}}i∈I . There-

fore, F ∩ (
⋃

i∈I Fi) =
⋃

i∈I(F ∩ Fi).

(2) By using techniques as in (1), then (2) can is derived.

(3) First, we investigate left hand side of the equality. Assume that⋂
i∈I Fi = F∩. Then F ∪ (

⋂
i∈I Fi) = F ∪ F∩. Also,

fF∪F∩(x) = max{fF(x), fF∩(x)}

= max{fF(x), f⋂i∈I Fi
(x)}
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= max{fF(x), inf{fFi(x)}i∈I}.

Consider the right hand side of the equality. Assume that F ∪ Fi = F∪i for all

i ∈ I. Then

f⋂
i∈I F∪i

(x) = inf{fF∪i (x)}i∈I

= inf{fF∪Fi
(x)}i∈I

= inf{max{fF(x), fFi
(x)}}i∈I .

It is clear that max{fF(x), inf{fFi(x)}i∈I} = inf{max{fF(x), fFi
(x)}}i∈I . Therefore,

F ∪ (
⋂

i∈I Fi) =
⋂

i∈I(F ∪ Fi).

(4) By using techniques as in (3), then (4) can is derived.



 

 

 

CHAPTER IV

RESULTS

4.1 Special subsets of fully UP-semigroups

In this section, we introduce the notions of UPs-subalgebras, UPi-subalge-

bras, near UPs-filters, near UPi-filters, UPs-filters, UPi-filters, UPs-ideals, UPi-

ideals, strongly UPs-ideals, and strongly UPi-ideals of fully UP-semigroups, pro-

vide the necessary examples and prove its generalizations.

From now on, we shall let A be an f -UP-semigroup A = (A, ·, ∗, 0) unless

otherwise specified.

Definition 4.1.1 A subset S of an f -UP-semigroup A is called

(1) a UPs-subalgebra of A if S is a UP-subalgebra of (A, ·, 0), and S is a sub-

semigroup of (A, ∗), and

(2) a UPi-subalgebra of A if S is a UP-subalgebra of (A, ·, 0), and S is an ideal

of (A, ∗).

We have Theorem 4.1.2, 4.1.13, and 4.1.18 directly from Definition 3.0.24.

Theorem 4.1.2 Every UPi-subalgebra of A is a UPs-subalgebra of A.

Example 4.1.3 Let A = {0, 1, 2, 3} be a set with two binary operations · and ∗

defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

∗ 0 1 2 3

0 0 0 0 0

1 0 1 0 0

2 0 0 2 0

3 0 3 0 0
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Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1, 2}. Then S is a UPs-

subalgebra of A. Since 1 ∈ S and 3 ∈ A but 3 ∗ 1 = 3 /∈ S, we have S is not an

ideal of (A, ∗). Thus S is not a UPi-subalgebra of A.

Definition 4.1.4 A subset S of an f -UP-semigroup A = (A, ·, ∗, 0) is called

(1) a near UPs-filter of A if S is a near UP-filter of (A, ·, 0), and S is a sub-

semigroup of (A, ∗), and

(2) a near UPi-filter of A if S is a near UP-filter of (A, ·, 0), and S is an ideal

of (A, ∗).

We have Theorem 4.1.5, 4.1.7, 4.1.10, 4.1.12, 4.1.15, 4.1.17, 4.1.20, and

4.1.22 directly from a result quoted in Definition 3.0.23.

Theorem 4.1.5 Every near UPs-filter of A is a UPs-subalgebra of A.

Example 4.1.6 Let A = {0, 1, 2, 3} be a set with two binary operations · and ∗

defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 1 1 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 1

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 2}. Then S is a UPs-

subalgebra of A. Since 2 ∈ S but 3 · 2 = 1 /∈ S, we have S is not a near UP-filter

of (A, ·, 0). Thus S is not a near UPs-filter of A.

Theorem 4.1.7 Every near UPi-filter of A is a UPi-subalgebra of A.

In Example 4.1.6, we have S is a UPi-subalgebra of A. Since S is not a

near UP-filter of (A, ·, 0), we have S is not a near UPi-filter of A.
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Theorem 4.1.8 Every near UPi-filter of A is a near UPs-filter of A.

In Example 4.1.3, we have S is a near UPs-filter of A. Since S is not an

ideal of (A, ∗), we have S is not a near UPi-filter of A.

Definition 4.1.9 A subset S of an f -UP-semigroup A = (A, ·, ∗, 0) is called

(1) a UPs-filter of A if S is a UP-filter of (A, ·, 0), and S is a subsemigroup of

(A, ∗), and

(2) a UPi-filter of A if S is a UP-filter of (A, ·, 0), and S is an ideal of (A, ∗).

Theorem 4.1.10 Every UPs-filter of A is a near UPs-filter of A.

Example 4.1.11 Let A = {0, 1, 2, 3} be a set with two binary operations · and

∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 1

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 2}. Then S is a near

UPs-filter of A. Since 2 · 1 = 0 ∈ S and 2 ∈ S but 1 /∈ S, we have S is not a

UP-filter of (A, ·, 0). Thus S is not a UPs-filter of A.

Theorem 4.1.12 Every UPi-filter of A is a near UPi-filter of A.

In Example 4.1.11, we have S is a near UPi-filter of A. Since S is not a

UP-filter of (A, ·, 0), we have S is not a UPi-filter of A.

Theorem 4.1.13 Every UPi-filter of A is a UPs-filter of A.
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In Example 4.1.3, we have S is a UPs-filter of A. Since S is not an ideal

of (A, ∗), we have S is not a UPi-filter of A.

Definition 4.1.14 A subset S of an f -UP-semigroup A is called

(1) a UPs-ideal of A if S is a UP-ideal of (A, ·, 0), and S is a subsemigroup of

(A, ∗), and

(2) a UPi-ideal of A if S is a UP-ideal of (A, ·, 0), and S is an ideal of (A, ∗).

Theorem 4.1.15 Every UPs-ideal of A is a UPs-filter of A.

Example 4.1.16 Let A = {0, 1, 2, 3} be a set with two binary operations · and

∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1}. Then S is a UPs-

filter of A. Since 2 · (1 · 3) = 0 ∈ S and 1 ∈ S but 2 · 3 = 2 /∈ S, we have S is not

a UP-ideal of (A, ·, 0). Thus S is not a UPs-ideal of A.

Theorem 4.1.17 Every UPi-ideal of A is a UPi-filter of A.

In Example 4.1.16, we have S is a UPi-filter of A. Since S is not a

UP-ideal of (A, ·, 0), we have S is not a UPi-ideal of A.

Theorem 4.1.18 Every UPi-ideal of A is a UPs-ideal of A.

In Example 4.1.3, we have S is a UPs-ideal of A. Since S is not an ideal

of (A, ∗), we have S is not a UPi-ideal of A.
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Definition 4.1.19 A subset S of an f -UP-semigroup A is called

(1) a strongly UPs-ideal of A if S is a strongly UP-ideal of (A, ·, 0), and S is a

subsemigroup of (A, ∗), and

(2) a strongly UPi-ideal of A if S is a strongly UP-ideal of (A, ·, 0), and S is an

ideal of (A, ∗).

Theorem 4.1.20 Every strongly UPs-ideal of A is a UPs-ideal of A.

Example 4.1.21 Let A = {0, 1, 2, 3} be a set with two binary operations · and

∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1, 2}. Then S is a UPs-

ideal of A. Since S 6= A, we have S is not a strongly UP-ideal of (A, ·, 0). Thus

S is not a strongly UPs-ideal of A.

Theorem 4.1.22 Every strongly UPi-ideal of A is a UPi-ideal of A.

In Example 4.1.21, we have S is a UPi-ideal of A. Since S is not a

strongly UP-ideal of (A, ·, 0), we have S is not a strongly UPi-ideal of A.

Theorem 4.1.23 Strongly UPs-ideals and strongly UPi-ideals coincide in A and

it is only A.

Proof. It is straightforward by A is the only one strongly UP-ideal of itself.
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4.2 Fuzzy sets in fully UP-semigroups

In this section, we introduce the notions of fuzzy UPs-subalgebras, fuzzy

UPi-subalgebras, fuzzy UPs-filters, fuzzy UPi-filters, fuzzy UPs-ideals, fuzzy UPi-

ideals, fuzzy strongly UPs-ideals, and fuzzy strongly UPi-ideals of fully UP-

semigroups, provide the necessary examples, prove its generalizations and inves-

tigate the algebraic properties of fuzzy sets under the operations of intersection

and union.

Definition 4.2.1 A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-subalgebra of A if F is a fuzzy UP-subalgebra of (A, ·, 0) and a

fuzzy subsemigroup of (A, ∗), and

(2) a fuzzy UPi-subalgebra of A if F is a fuzzy UP-subalgebra of (A, ·, 0) and a

fuzzy ideal of (A, ∗).

Clearly, a fuzzy UPi-subalgebra is a fuzzy UPs-subalgebra.

In Example 4.1.21, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-subalgebra of A. Since fF(2 ∗ 3) = fF(1) = 0.4 � 0.5 =

max{0.5, 0.2} = max{fF(2), fF(3)}, we have F is not a fuzzy UPi-subalgebra of A.

Theorem 4.2.2 The intersection of any nonempty family of fuzzy UPs-subalgebras

of A is also a fuzzy UPs-subalgebra of A.

Proof. Let Fi be a fuzzy UPs-subalgebra of A for all i ∈ I. Then

f⋂
i∈I Fi

(x · y) = inf{fFi(x · y)}i∈I



 

 

 
28

≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)} and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPs-subalgebra of A.

In Example 4.1.21, we define two membership functions fF1 and fF2 as

follows:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3

fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-subalgebras of A. Since fF1∪F2(3∗2) = fF1∪F2(1) =

0.5 � 0.6 = min{0.6, 0.7} = min{fF1∪F2(3), fF1∪F2(2)}, we have F1 ∪ F2 is not a

fuzzy UPs-subalgebra of A.

Theorem 4.2.3 A nonempty subset S of A is a UPs-subalgebra of A if and only

if the t-characteristic fuzzy set Ft
S is a fuzzy UPs-subalgebra of A.

Proof. It is straightforward by Theorem 3.0.31 (1) and Theorem 3.0.29 (1).

Theorem 4.2.4 The intersection of any nonempty family of fuzzy UPi-subalgebras

of A is also a fuzzy UPi-subalgebra of A.

Proof. Let Fi be a fuzzy UPi-subalgebra of A for all i ∈ I. Then

f⋂
i∈I Fi

(x · y) = inf{fFi(x · y)}i∈I
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≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)} and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{max{fFi(x), fFi(y)}}i∈I

≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= max{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPi-subalgebra of A.

In Example 4.1.16, we define two membership functions fF1 and fF2 as

follows:

A 0 1 2 3

fF1 0.9 0.7 0.1 0.1

fF2 0.8 0.4 0.5 0.6

Then F1 and F2 are fuzzy UPi-subalgebras of A. Since fF1∪F2(1 · 3) = fF1∪F2(2) =

0.5 � 0.6 = min{0.7, 0.6} = min{fF1∪F2(1), fF1∪F2(3)}, we have F1 ∪ F2 is not a

fuzzy UPi-subalgebra of A.

Theorem 4.2.5 A nonempty subset S of A is a UPi-subalgebra of A if and only

if the t-characteristic fuzzy set Ft
S is a fuzzy UPi-subalgebra of A.

Proof. It is straightforward by Theorem 3.0.31 (2) and Theorem 3.0.29 (1).

Definition 4.2.6 A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy near UPs-filter of A if F is a fuzzy near UP-filter of (A, ·, 0) and a

fuzzy subsemigroup of (A, ∗), and

(2) a fuzzy near UPi-filter of A if F is a fuzzy near UP-filter of (A, ·, 0) and a

fuzzy ideal of (A, ∗).
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Clearly, a fuzzy near UPi-filter is a fuzzy near UPs-filter.

In Example 4.1.21, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy near UPs-filter of A. Since fF(2 ∗ 3) = fF(1) = 0.4 � 0.5 =

max{0.5, 0.2} = max{fF(2), fF(3)}, we have F is not a fuzzy near UPi-fiter of A.

Theorem 4.2.7 The intersection of any nonempty family of fuzzy near UPs-

filters of an f -UP-semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPs-filter.

Proof. Let Fi be a fuzzy near UPs-filter of an f -UP-semigroup A = (A, ·, ∗, 0) for

all i ∈ I. Then

f⋂
i∈I Fi

(0) = inf{fFi(0)}i∈I

≥ inf{fFi(x)}i∈I

= f⋂
i∈I Fi

(x),

f⋂
i∈I Fi

(x · y) = inf{fFi(x · y)}i∈I

≥ inf{fFi(y)}i∈I

= f⋂
i∈I Fi

(y), and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy near UPs-filter of A.

In Example 4.1.21, we define two membership functions fF1 and fF2 as
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follows:

A 0 1 2 3

fF1 1 0.7 1 0.5

fF2 1 0.5 0.3 0.8

Then F1 and F2 are fuzzy near UPs-filters of A but F1 ∪ F2 is not a fuzzy near

UPs-filter of A. Indeed, fF1∪F2(3 ∗ 2) = fF1∪F2(1) = 0.7 � 0.8 = min{0.8, 1} =

min{fF1∪F2(3), fF1∪F2(2)}.

Theorem 4.2.8 A nonempty subset S of A is a near UPs-filter of A if and only

if the t-characteristic fuzzy set Ft
S is a fuzzy near UPs-filter of A.

Proof. It is straightforward by Theorem 3.0.31 (1) and Theorem 3.0.29 (2).

Theorem 4.2.9 The intersection of any nonempty family of fuzzy near UPi-

filters of an f -UP-semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPi-filter.

Proof. Let Fi be a fuzzy near UPi-filter of an f -UP-semigroup A = (A, ·, ∗, 0) for

all i ∈ I. Then, by the proof of Theorem 4.2.7, we have f⋂
i∈I Fi

(0) ≥ f⋂
i∈I Fi

(x)

and f⋂
i∈I Fi

(x · y) ≥ f⋂
i∈I Fi

(y). Thus

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{max{fFi(x), fFi(y)}}i∈I

≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= max{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy near UPi-filter of A.

Theorem 4.2.10 The union of any nonempty family of fuzzy near UPi-filters of

an f -UP-semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPi-filter.

Proof. Let Fi be a fuzzy near UPi-filter of an f -UP-semigroup A = (A, ·, ∗, 0) for
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all i ∈ I. Then

f⋃
i∈I Fi

(0) = sup{fFi(0)}i∈I

≥ sup{fFi(x)}i∈I

= f⋃
i∈I Fi

(x),

f⋃
i∈I Fi

(x · y) = sup{fFi(x · y)}i∈I

≥ sup{fFi(y)}i∈I

= f⋃
i∈I Fi

(y), and

f⋃
i∈I Fi

(x ∗ y) = sup{fFi(x ∗ y)}i∈I

≥ sup{max{fFi(x), fFi(y)}}i∈I

= max{sup{fFi(x)}i∈I , sup{fFi(y)}i∈I}

= max{f⋃
i∈I Fi

(x), f⋃
i∈I Fi

(y)}.

Hence,
⋃

i∈I Fi is a fuzzy near UPi-filter of A.

Theorem 4.2.11 A nonempty subset S of A is a near UPi-filter of A if and only

if the t-characteristic fuzzy set Ft
S is a fuzzy near UPi-filter of A.

Proof. It is straightforward by Theorem 3.0.31 (2) and Theorem 3.0.29 (2).

We have Theorem 4.2.12, 4.2.13, 4.2.20, 4.2.22, 4.2.28, 4.2.29, and 4.2.36

directly from a result quoted in Definition 3.0.26.

Theorem 4.2.12 Every fuzzy near UPs-filter of an f -UP-semigroup is a fuzzy

UPs-subalgebra.

In Example 4.1.6, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.8, fF(2) = 0.9, and fF(3) = 0.7.
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Then F is a fuzzy UPs-subalgebra of A. Since fF(1·2) = fF(1) = 0.8 � 0.9 = fF(2),

we have F is not a fuzzy near UPs-filter of A.

Theorem 4.2.13 Every fuzzy near UPi-filter of an f -UP-semigroup is a fuzzy

UPi-subalgebra.

In Example 4.1.6, we define a membership function fF as follows:

fF(0) = 0.8, fF(1) = 0.4, fF(2) = 0.8, and fF(3) = 0.3.

Then F is a fuzzy UPi-subalgebra of A. Since fF(1·2) = fF(1) = 0.4 � 0.8 = fF(2),

we have F is not a fuzzy near UPi-filter of A.

Definition 4.2.14 A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-filter of A if F is a fuzzy UP-filter of (A, ·, 0) and a fuzzy

subsemigroup of (A, ∗), and

(2) a fuzzy UPi-filter of A if F is a fuzzy UP-filter of (A, ·, 0) and a fuzzy ideal

of (A, ∗).

Clearly, a fuzzy UPi-filter is a fuzzy UPs-filter.

In Example 4.1.21, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-filter of A. SincefF(2 ∗ 3) = fF(1) = 0.4 � 0.5 =

max{0.5, 0.2} = max{fF(2), fF(3)}, we have F is not a fuzzy UPi-filter of A.

Theorem 4.2.15 The intersection of any nonempty family of fuzzy UPs-filters

of A is also a fuzzy UPs-filter of A.
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Proof. Let Fi be a fuzzy UPs-filter of A for all i ∈ I. Then

f⋂
i∈I Fi

(0) = inf{fFi(0)}i∈I

≥ inf{fFi(x)}i∈I

= f⋂
i∈I Fi

(x),

f⋂
i∈I Fi

(y) = inf{fFi(y)}i∈I

≥ inf{min{fFi(x · y), fFi(x)}}i∈I

= min{inf{fFi(x · y)}i∈I , inf{fFi(x)}i∈I}

= min{f⋂
i∈I Fi

(x · y), f⋂
i∈I Fi

(x)}, and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPs-filter of A.

In Example 4.1.21, we define two membership functions fF1 and fF2 as

follows:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3

fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-filters of A. Since fF1∪F2(2∗3) = fF1∪F2(1) = 0.5 �

0.6 = min{0.7, 0.6} = min{fF1∪F2(2), fF1∪F2(3)}, we have F1 ∪ F2 is not a fuzzy

UPs-filter of A.

Theorem 4.2.16 A nonempty subset S of A is a UPs-filter of A if and only if

the t-characteristic fuzzy set Ft
S is a fuzzy UPs-filter of A.

Proof. It is straightforward by Theorem 3.0.31 (1) and Theorem 3.0.29 (3).
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Theorem 4.2.17 The intersection of any nonempty family of fuzzy UPi-filters

of A is also a fuzzy UPi-filter of A.

Proof. Let Fi be a fuzzy UPi-filter of A for all i ∈ I. Then

f⋂
i∈I Fi

(0) = inf{fFi(0)}i∈I

≥ inf{fFi(x)}i∈I

= f⋂
i∈I Fi

(x),

f⋂
i∈I Fi

(y) = inf{fFi(y)}i∈I

≥ inf{min{fFi(x · y), fFi(x)}}i∈I

= min{inf{fFi(x · y)}i∈I , inf{fFi(x)}i∈I}

= min{f⋂
i∈I Fi

(x · y), f⋂
i∈I Fi

(x)}, and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{max{fFi(x), fFi(y)}}i∈I

≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= max{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPi-filter of A.

Example 4.2.18 Let A = {0, 1, 2, 3} be a set with two binary operations · and

∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 1

3 0 0 0 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. We define two membership functions
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fF1 and fF2 as follows:

A 0 1 2 3

fF1 0.9 0.9 0.5 0.5

fF2 1 0.5 0.6 0.5

Then F1 and F2 are fuzzy UPi-filters of A. Since fF1∪F2(3) = 0.5 � 0.6 =

min{0.9, 0.6} = min{fF1∪F2(1), fF1∪F2(2)} = min{fF1∪F2(2 · 3), fF1∪F2(2)}, we have

F1 ∪ F2 is not a fuzzy UPi-filter of A.

Theorem 4.2.19 A nonempty subset S of A is a UPi-filter of A if and only if

the t-characteristic fuzzy set Ft
S is a fuzzy UPi-filter of A.

Proof. It is straightforward by Theorem 3.0.31 (2) and Theorem 3.0.29 (3).

Theorem 4.2.20 Every fuzzy UPs-filter of an f -UP-semigroup is a fuzzy near

UPs-filter.

The following example shows that the converse of Theorem 4.2.20 is not

true.

Example 4.2.21 Let A = {0, 1, 2, 3} be a set with two binary operations · and

∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

∗ 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 2

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. We define a membership function fF

as follows:

fF(0) = 1, fF(1) = 0.7, fF(2) = 0.9, and fF(3) = 0.8.
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Then F is a fuzzy near UPs-filter of A. Since fF(1) = 0.7 � 0.8 = min{1, 0.8} =

min{fF(0), fF(3)} = min{fF(3 · 1), fF(3)}, we have F is not a fuzzy UPs-filter of A.

Theorem 4.2.22 Every fuzzy UPi-filter of an f -UP-semigroup is a fuzzy near

UPi-filter.

In Example 4.2.21, we have F is a fuzzy near UPi-filter of A but it is not

a fuzzy UPi-filter of A.

Definition 4.2.23 A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-ideal of A if F is a fuzzy UP-ideal of (A, ·, 0) and a fuzzy

subsemigroup of (A, ∗), and

(2) a fuzzy UPi-ideal of A if F is a fuzzy UP-ideal of (A, ·, 0) and a fuzzy ideal

of (A, ∗).

Clearly, a fuzzy UPi-ideal is a fuzzy UPs-ideal.

In Example 4.1.21, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-ideal of A. Since fF(3 ∗ 2) = fF(1) = 0.4 � 0.5 =

max{0.2, 0.5} = max{fF(3), fF(2)}, we have F is not a fuzzy UPi-ideal of A.

Theorem 4.2.24 The intersection of any nonempty family of fuzzy UPs-ideals

of A is also a fuzzy UPs-ideal of A.

Proof. Let Fi be a fuzzy UPs-ideal of A for all i ∈ I. Then

f⋂
i∈I Fi

(0) = inf{fFi(0)}i∈I
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≥ inf{fFi(x)}i∈I

= f⋂
i∈I Fi

(x),

f⋂
i∈I Fi

(x · z) = inf{fFi(x · z)}i∈I

≥ inf{min{fFi(x · (y · z)), fFi(y)}}i∈I

= min{inf{fFi(x · (y · z))}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x · (y · z)), f⋂
i∈I Fi

(y)}, and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{min{fFi(x), fFi(y)}}i∈I

= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPs-ideal of A.

In Example 4.1.21, we define two membership functions fF1 and fF2 as

follows:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3

fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-ideals of A. Since fF1∪F2(3∗2) = fF1∪F2(1) = 0.5 �

0.6 = min{0.6, 0.7} = min{fF1∪F2(3), fF1∪F2(2)}, we have F1 ∪ F2 is not a fuzzy

UPs-ideal of A.

Theorem 4.2.25 A nonempty subset S of A is a UPs-ideal of A if and only if

the t-characteristic fuzzy set Ft
S is a fuzzy UPs-ideal of A.

Proof. It is straightforward by Theorem 3.0.31 (1) and Theorem 3.0.29 (4).

Theorem 4.2.26 The intersection of any nonempty family of fuzzy UPi-ideals

of A is also a fuzzy UPi-ideal of A.
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Proof. Let Fi be a fuzzy UPi-ideal of A for all i ∈ I. Then

f⋂
i∈I Fi

(0) = inf{fFi(0)}i∈I

≥ inf{fFi(x)}i∈I

= f⋂
i∈I Fi

(x),

f⋂
i∈I Fi

(x · z) = inf{fFi(x · z)}i∈I

≥ inf{min{fFi(x · (y · z)), fFi(y)}}i∈I

= min{inf{fFi(x · (y · z))}i∈I , inf{fFi(y)}i∈I}

= min{f⋂
i∈I Fi

(x · (y · z)), f⋂
i∈I Fi

(y)}, and

f⋂
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I

≥ inf{max{fFi(x), fFi(y)}}i∈I

≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}

= max{f⋂
i∈I Fi

(x), f⋂
i∈I Fi

(y)}.

Hence,
⋂

i∈I Fi is a fuzzy UPi-ideal of A.

In Example 4.2.18, we define two membership functions fF1 and fF2 as

follows:

A 0 1 2 3

fF1 0.7 0.3 0.4 0.3

fF2 0.8 0.5 0.2 0.2

Then F1 and F2 are fuzzy UPi-ideals of A. Since fF1∪F2(0 · 3) = fF1∪F2(3) = 0.3 �

0.4 = min{0.4, 0.5} = min{fF1∪F2(2), fF1∪F2(1)} = min{fF1∪F2(0·(1·3)), fF1∪F2(1)},

we have F1 ∪ F2 is not a fuzzy UPi-ideal of A.

Theorem 4.2.27 A nonempty subset S of A is a UPi-ideal of A if and only if

the t-characteristic fuzzy set Ft
S is a fuzzy UPi-ideal of A.

Proof. It is straightforward by Theorem 3.0.31 (2) and Theorem 3.0.29 (4).
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Theorem 4.2.28 Every fuzzy UPs-ideal of A is a fuzzy UPs-filter of A.

In Example 4.1.16, we define a membership function fF as follows:

fF(0) = 0.8, fF(1) = 0.6, fF(2) = 0.3, and fF(3) = 0.3.

Then F is a fuzzy UPs-filter of A. Since fF(2 · 3) = fF(2) = 0.3 � 0.6 =

min{0.8, 0.6} = min{fF(0), fF(1)} = min{fF(2 · (1 · 3)), fF(1)}, we have F is not a

fuzzy UPs-ideal of A.

Theorem 4.2.29 Every fuzzy UPi-ideal of A is a fuzzy UPi-filter of A.

In Example 4.1.16, we define a membership function fF as follows:

fF(0) = 0.8, fF(1) = 0.6, fF(2) = 0.3, and fF(3) = 0.3.

Then F is a fuzzy UPi-filter of A. Since fF(2 · 3) = fF(2) = 0.3 � 0.6 =

max{0.8, 0.6} = max{fF(0), fF(1)} = max{fF(2 · (1 · 3)), fF(1)}, we have F is

not a fuzzy UPi-ideal of A.

Definition 4.2.30 A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy strongly UPs-ideal of A if F is a fuzzy strongly UP-ideal of (A, ·, 0)

and a fuzzy subsemigroup of (A, ∗), and

(2) a fuzzy strongly UPi-ideal of A if F is a fuzzy strongly UP-ideal of (A, ·, 0)

and a fuzzy ideal of (A, ∗).

Theorem 4.2.31 Fuzzy strongly UPs-ideals, fuzzy strongly UPi-ideals, and con-

stant fuzzy sets coincide in A.

Proof. It is straightforward by Theorem 3.0.28.
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If a fuzzy set Fi is constant for all i ∈ I, then we see that the fuzzy sets⋂
i∈I Fi and

∨
i∈I Fi are constant. From this, we have Theorem 4.2.32 and 4.2.33.

Theorem 4.2.32 The intersection and union of any nonempty family of fuzzy

strongly UPs-ideals of A are also a fuzzy strongly UPs-ideal of A.

Theorem 4.2.33 The intersection and union of any nonempty family of fuzzy

strongly UPi-ideals of A are also a fuzzy strongly UPi-ideal of A.

Theorem 4.2.34 A nonempty subset S of A is a strongly UPs-ideal of A if and

only if the t-characteristic fuzzy set Ft
S is a fuzzy strongly UPs-ideal of A.

Proof. It is straightforward by Theorem 3.0.31 (1) and Theorem 3.0.29 (5).

Theorem 4.2.35 A nonempty subset S of A is a strongly UPi-ideal of A if and

only if the t-characteristic fuzzy set Ft
S is a fuzzy strongly UPi-ideal of A.

Proof. It is straightforward by Theorem 3.0.31 (2) and Theorem 3.0.29 (5).

Theorem 4.2.36 Every fuzzy strongly UPs-ideal (fuzzy strongly UPi-ideal) of A

is a fuzzy UPs-ideal and a fuzzy UPi-ideal of A.

In Example 4.1.3, we define a membership function fF as follows:

fF(0) = 0.7, fF(1) = 0.5, fF(2) = 0.3, and fF(3) = 0.6.

Then F is a fuzzy UPi-ideal of A. Since F is not constant, we have F is not a

fuzzy strongly UPs-ideal and a fuzzy strongly UPi-ideal of A.

Then we get the diagram of generalization of fuzzy sets in fully UP-

semigroups as shown in Figure 4.2 below.
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Fuzzy Near UPs-Filter

Fuzzy UPs-Filter

Fuzzy UPs-Ideal

Fuzzy Strongly UPs-Ideal

Constant Fuzzy Set

Fuzzy Near UPi-Filter

Fuzzy UPi-Filter

Fuzzy UPi-Ideal

Fuzzy Strongly UPi-Ideal

Fuzzy UPs-Subalgebra

Fuzzy UPi-Subalgebra

Figure 1: Fuzzy sets in fully UP-semigroups

4.3 Properties of fuzzy sets in UP-algebras

In this section, we shall let A be a UP-algebra A = (A, ·, 0) and find

some properties of fuzzy sets in UP-algebras.

Proposition 4.3.1 [34] If F is a fuzzy UP-subalgebra of A, then

(∀x ∈ A)(fF(0) ≥ fF(x)). (4.3.1)

Proposition 4.3.2 If F is a fuzzy UP-filter of A, then

(∀x, y ∈ A)(x ≤ y ⇒ fF(x) ≤ fF(y)). (4.3.2)

Proposition 4.3.3 If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(z ≤ x⇒ fF(x · y) ≥ min{fF(z), fF(y)}), (4.3.3)

then F is a fuzzy UP-subalgebra of A.

Proof. Let x, y ∈ A. By (3.0.1), we have x ≤ x. It follows from (4.3.3) that

fF(x · y) ≥ min{fF(x), fF(y)}. Hence, F is a fuzzy UP-subalgebra of A.
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Theorem 4.3.4 If F is a fuzzy set in A satisfying the condition (4.3.3), then F

satisfies the condition (4.3.1).

Proof. It is straightforward by Proposition 4.3.3.

The following example shows that the converse of Theorem 4.3.4 is not

true.

Example 4.3.5 Let A = {0, 1, 2, 3} be a set with a binary operation · defined by

the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as

follows:

fF(0) = 1, fF(1) = 0.6, fF(2) = 0.2, and fF(3) = 0.9.

Then F satisfies the condition (4.3.1) but it does not satisfy the condition (4.3.3).

Indeed, 1 ≤ 1 but fF(1·3) = fF(2) = 0.2 � 0.6 = min{0.6, 0.9} = min{fF(1), fF(3)}.

It is clear that we have the following proposition.

Proposition 4.3.6 If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(fF(x · y) ≥ min{fF(z), fF(y)}), (4.3.4)

then F satisfies the condition (4.3.3).

The following example shows that the converse of Proposition 4.3.6 is

not true.
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Example 4.3.7 Let A = {0, 1, 2, 3} be a set with a binary operation · defined by

the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 1 0 0

3 0 1 2 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as

follows:

fF(0) = 1, fF(1) = 0.1, fF(2) = 0.8, and fF(3) = 0.2.

Then F satisfies the condition (4.3.3) but it does not satisfy the condition (4.3.4).

Indeed, fF(1 · 2) = fF(3) = 0.2 � 0.8 = min{1, 0.8} = min{fF(0), fF(2)}.

Proposition 4.3.8 If F is a fuzzy set in A satisfying the condition (4.3.2), then

F is a fuzzy near UP-filter of A.

Proof. Let x, y ∈ A. By (UP-3), we have x ≤ 0. It follows from (4.3.2) that

fF(0) ≥ fF(x). By (3.0.5), we have y ≤ x ·y. It follows from (4.3.2) that fF(x ·y) ≥

fF(y). Hence, F is a fuzzy near UP-filter of A.

Theorem 4.3.9 If F is a fuzzy set in A satisfying the condition (4.3.2), then F

satisfies the condition (4.3.4).

Proof. Let x, y, z ∈ A. By (3.0.5), we have y ≤ x · y. It follows from (4.3.2) that

fF(x · y) ≥ fF(y) ≥ min{fF(z), fF(y)}. Hence, F satisfies (4.3.4).

The following example shows that the converse of Theorem 4.3.9 is not

true.
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Example 4.3.10 Let A = {0, 1, 2, 3} be a set with a binary operation · defined

by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as

follows:

fF(0) = 1, fF(1) = 0.1, fF(2) = 0.7, and fF(3) = 0.8.

Then F satisfies the condition (4.3.4) but it does not satisfy the condition (4.3.2).

Indeed, 3 ≤ 2 but fF(2) = fF(1) = 0.7 � 0.8 = fF(3).

Theorem 4.3.11 If F is a fuzzy UP-subalgebra of A satisfying the condition

(∀x, y ∈ A)(x · y 6= 0⇒ fF(x) ≥ fF(y)), (4.3.5)

then F is a fuzzy near UP-filter of A.

Proof. Let x, y ∈ A. If x ·y = 0, then by (4.3.1), we have fF(x ·y) = fF(0) ≥ fF(y).

If x · y 6= 0, then by (4.3.5), we have fF(x · y) ≥ min{fF(x), fF(y)} = fF(y). Hence,

F is a fuzzy near UP-filter of A.

Proposition 4.3.12 A fuzzy set F in A satisfies the condition

(∀x, y, z ∈ A)(z ≤ x · y ⇒ fF(y) ≥ min{fF(z), fF(x)}) (4.3.6)

if and only if F is a fuzzy UP-filter of A.
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Proof. Let x ∈ A. By (UP-3), we have x ≤ x · 0. It follows from (4.3.6) that

fF(0) ≥ min{fF(x), fF(x)} = fF(x). Let x, y ∈ A. By (3.0.1), we have x · y ≤ x · y.

It follows from (4.3.6) that fF(y) ≥ min{fF(x · y), fF(x)}. Hence, F is a fuzzy

UP-filter of A.

Conversely, let x, y, z ∈ A be such that z ≤ x · y. Then z · (x · y) = 0, so

fF(x · y) ≥ min{fF(z · (x · y)), fF(z)} = min{fF(0), fF(z)} = fF(z).

Thus fF(y) ≥ min{fF(x · y), fF(x)} ≥ min{fF(z), fF(x)}. Hence, F satisfies (4.3.6).

Theorem 4.3.13 If F is a fuzzy set in A satisfying the condition (4.3.6), then F

satisfies the condition (4.3.2).

Proof. Let x, y ∈ A such that x ≤ y. By (3.0.11), we have x ≤ x · y. It follows

from (4.3.6) that fF(y) ≥ min{fF(x), fF(x)} = fF(x). Hence, F satisfies (4.3.2).

The following example shows that the converse of Theorem 4.3.13 is not

true.

Example 4.3.14 Let A = {0, 1, 2, 3} be a set with a binary operation · defined

by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 1

3 0 0 0 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as
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follows:

fF(0) = 0.9, fF(1) = 0.3, fF(2) = 0.6, and fF(3) = 0.2.

Then F satisfies the condition (4.3.2) but it does not satisfy the condition (4.3.6).

Indeed, 1 ≤ 2 · 3 but fF(3) = 0.2 � 0.3 = min{0.3, 0.6} = min{fF(1), fF(2)}.

Theorem 4.3.15 If F is a fuzzy near UP-filter of A satisfying the condition

(∀x, y ∈ A)(fF(x · y) = fF(y)), (4.3.7)

then F is a fuzzy UP-filter of A.

Proof. Let x, y ∈ A. By (4.3.7), we have fF(y) ≥ min{fF(y), fF(x)} = min{fF(x ·

y), fF(x)}. Hence, F is a fuzzy UP-filter of A.

Proposition 4.3.16 A fuzzy set F in A satisfies the condition

(∀a, x, y, z ∈ A)(a ≤ x · (y · z)⇒ fF(x · z) ≥ min{fF(a), fF(y)}) (4.3.8)

if and only if F is a fuzzy UP-ideal of A.

Proof. Let x ∈ A. By (UP-3), we have x ≤ x · (x · 0). By (UP-3) and (4.3.8), we

have

fF(0) = fF(x · 0) ≥ min{fF(x), fF(x)} = fF(x).

Let x, y, z ∈ A. By (3.0.1), we have x · (y · z) ≤ x · (y · z). It follows from (4.3.8)

that

fF(x · z) ≥ min{fF(x · (y · z)), fF(y)}.

Hence, F is a fuzzy UP-ideal of A.
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Conversely, let a, x, y, z ∈ A be such that a ≤ x · (y · z). By Proposition

4.3.2, we have fF(a) ≤ fF(x · (y · z)). Thus

fF(x · z) ≥ min{fF(x · (y · z)), fF(y)} ≥ min{fF(a), fF(y)}.

Hence, F satisfies (4.3.8).

Proposition 4.3.17 If F is a fuzzy UP-ideal of A, then

(∀a, x, y, z ∈ A)(a ≤ x · (y · z)⇒ fF(a · z) ≥ min{fF(x), fF(y)}). (4.3.9)

Proof. Let a, x, y, z ∈ A be such that a ≤ x · (y · z). Then a · (x · (y · z)) = 0, so

fF(a · (y · z)) ≥ min{fF(a · (x · (y · z))), fF(x)} = min{fF(0), fF(x)} = fF(x).

Thus

fF(a · z) ≥ min{fF(a · (y · z)), fF(y)} ≥ min{fF(x), fF(y)}.

Corollary 4.3.18 If F is a fuzzy set in A satisfying the condition (4.3.8), then

F satisfies the condition (4.3.9).

Proof. It is straightforward by Propositions 4.3.16 and 4.3.17.

Theorem 4.3.19 Let A be a UP-algebra satisfying the condition

(∀x, y, z ∈ A)(z · (y · x) = y · (z · x)). (4.3.10)

If F is a fuzzy set in A satisfying the condition (4.3.9), then F satisfies the con-

dition (4.3.8).

Proof. Let a, x, y, z ∈ A such that a ≤ x · (y · z). By (4.3.10), we have 0 =
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a · (x · (y · z)) = x · (a · (y · z)), that is, x ≤ a · (y · z). It follows from (4.3.9) that

fF(x · z) ≥ min{fF(a), fF(y)}. Hence, F satisfies (4.3.8).

Theorem 4.3.20 If F is a fuzzy set in A satisfying the condition (4.3.9), then F

satisfies the condition (4.3.6).

Proof. Let x, y, z ∈ A be such that z ≤ x · y. By (3.0.1) and (3.0.3), we have

0 = z · z ≤ z · (x · y). By (UP-2) and (4.3.9), we have fF(y) = fF(0 · y) ≥

min{fF(z), fF(x)}. Hence, F satisfies (4.3.6).

Corollary 4.3.21 If F is a fuzzy set in A satisfying the condition (4.3.8), then

F satisfies the condition (4.3.6).

Proof. It is straightforward by Corollary 4.3.18 and Theorem 4.3.20.

The following example shows that the converse of Theorem 4.3.20 is not

true.

Example 4.3.22 Let A = {0, 1, 2, 3} be a set with a binary operation · defined

by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 3 3

2 0 1 0 0

3 0 1 2 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as

follows:

fF(0) = 1, fF(1) = 0.9, fF(2) = 0.1, and fF(3) = 0.1.

Then F satisfies the condition (4.3.6) but it does not satisfy the condition (4.3.9).

Indeed, 3 ≤ 1 · (1 ·2) but fF(3 ·2) = fF(2) = 0.1 � 0.9 = fF(1) = min{fF(1), fF(1)}.
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The following example shows that fuzzy set in a UP-algebra which sat-

isfies the condition (4.3.8) is not constant.

Example 4.3.23 Let A = {0, 1, 2, 3} be a set with a binary operation · defined

by the following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

Then A = (A, ·, 0) is a UP-algebra. We define a membership function fF as

follows:

fF(0) = 0.7, fF(1) = 0.5, fF(2) = 0.4, and fF(3) = 0.4.

Then F satisfies the condition (4.3.8) but it is not constant.

Theorem 4.3.24 If F is a fuzzy UP-filter of A satisfying the condition

(∀x, y, z ∈ A)(fF(y · (x · z)) = fF(x · (y · z))), (4.3.11)

then F is a fuzzy UP-ideal of A.

Proof. Let x, y, z ∈ A. By (4.3.11), we have

fF(x · z) ≥ min{fF(y · (x · z)), fF(y)} = min{fF(x · (y · z)), fF(y)}.

Hence, F is a fuzzy UP-ideal of A.

Proposition 4.3.25 A fuzzy set F in A satisfies the condition

(∀a, x, y, z ∈ A)(a ≤ (z · y) · (z · x)⇒ fF(x) ≥ min{fF(a), fF(y)}) (4.3.12)
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if and only if F is a fuzzy strongly UP-ideal of A.

Proof. Let x ∈ A. By (UP-3), we have x ≤ 0 = x · 0 = (0 ·x) · (0 · 0). By (4.3.12),

we have fF(0) ≥ min{fF(x), fF(x)} = fF(x). Let x, y, z ∈ A. By (3.0.1), we have

(z · y) · (z · x) ≤ (z · y) · (z · x). By (4.3.12), we have fF(x) ≥ min{fF((z · y) · (z ·

x)), fF(y)}. Hence, F is a fuzzy strongly UP-ideal of A.

The converse is obvious because F is constant.

Theorem 4.3.26 If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(z ≤ x · y ⇒ fF(z) ≥ min{fF(x), fF(y)}), (4.3.13)

then F satisfies the condition (4.3.3).

Proof. Let x, y, z ∈ A be such that z ≤ x. By (3.0.4), we have x · y ≤ z · y. By

(4.3.13), we have fF(x · y) ≥ min{fF(z), fF(y)}. Hence, F satisfies (4.3.3).

Proposition 4.3.27 A fuzzy set F in A satisfies the condition (4.3.13) if and

only if F is a fuzzy strongly UP-ideal of A.

Proof. Let x ∈ A. By (UP-3), we have x ≤ 0 = 0 · 0. By (4.3.13), we have

fF(x) ≥ min{fF(0), fF(0)} = fF(0). By Theorem 4.3.26 and Proposition 4.3.3, we

have fF(0) ≥ fF(x). Thus fF(x) = fF(0) for all x ∈ A, so F is constant. Hence, F

a fuzzy strongly UP-ideal of A.

The converse is obvious because F is constant.

Theorem 4.3.28 If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(z ≤ x · y ⇒ fF(z) ≥ fF(y)), (4.3.14)

then F satisfies the condition (4.3.3).
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Proof. Let x, y, z ∈ A be such that z ≤ x. By (3.0.4), we have x · y ≤ z · y. It

follows from (4.3.14) that fF(x · y) ≥ fF(y) ≥ min{fF(z), fF(y)}. Hence, F satisfies

(4.3.3).

Proposition 4.3.29 A fuzzy set F in A satisfies the condition (4.3.14) if and

only if F is a fuzzy strongly UP-ideal of A.

Proof. Let x ∈ A. By (UP-3), we have x ≤ 0 = 0 · 0. By (4.3.14), we have

fF(x) ≥ fF(0). By Theorem 4.3.28 and Proposition 4.3.3, we have fF(0) ≥ fF(x).

Thus fF(x) = fF(0) for all x ∈ A, so F is constant. Hence, F is a fuzzy strongly

UP-ideal of A.

The converse is obvious because F is constant.

We have provided various important properties of fuzzy sets in various

types in UP-algebras which will be used in the next section. We get the diagram

of the properties of fuzzy sets in UP-algebras as shown in Figure 4.3 below.

Fuzzy Near UP-Filter

Fuzzy UP-Filter

Fuzzy UP-Ideal

Fuzzy Strongly UP-Ideal Constant Fuzzy Set

Fuzzy UP-Subalgebra

(4.3.9)

(4.3.3)

(4.3.4)

(4.3.2)

(4.3.6)

(4.3.12)

(4.3.1)

(4.3.14)

(4.3.8)

(4.3.13)

Figure 2: Properties of fuzzy sets in UP-algebras
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4.4 Fuzzy soft sets over fully UP-semigroups

From now on, we shall let A be an f -UP-semigroup A = (A, ·, ∗, 0) and

P be a set of parameters. Let F(A) denotes the set of all fuzzy sets in A. A

subset E of P is called a set of statistics.

Definition 4.4.1 Let E ⊆ P . A pair (F̃, E) is called a fuzzy soft set over A if F̃

is a mapping given by F̃ : E → F(A), that is, a fuzzy soft set is a statistic family

of fuzzy sets in A. In general, for every e ∈ E, F̃[e] := {(x, fF̃[e](x)) | x ∈ A} is a

fuzzy set in A and it is called a fuzzy value set of statistic e.

Definition 4.4.2 Let (F̃, E1) and (G̃, E2) be two fuzzy soft sets over a common

universe U . The union [24] of (F̃, E1) and (G̃, E2) is defined to be the fuzzy soft

set (F̃, E1) ∪ (G̃, E2) = (H̃, E) satisfying the following conditions:

(i) E = E1 ∪ E2 and

(ii) for all e ∈ E,

H̃[e] =


F̃[e] if e ∈ E1 \ E2

G̃[e] if e ∈ E2 \ E1

F̃[e] ∪ G̃[e] if e ∈ E1 ∩ E2.

The restricted union [28] of (F̃, E1) and (G̃, E2) is defined to be the fuzzy soft set

(F̃, E1) d (G̃, E2) = (H̃, E) satisfying the following conditions:

(i) E = E1 ∩ E2 6= ∅ and

(ii) H̃[e] = F̃[e] ∪ G̃[e] for all e ∈ E.

Definition 4.4.3 Let (F̃, E1) and (G̃, E2) be two fuzzy soft sets over a common

universe U . The extended intersection [28] of (F̃, E1) and (G̃, E2) is defined to be

the fuzzy soft set (F̃, E1) ∩ (G̃, E2) = (H̃, E) satisfying the following conditions:
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(i) E = E1 ∪ E2 and

(ii) for all e ∈ E,

H̃[e] =


F̃[e] if e ∈ E1 \ E2

G̃[e] if e ∈ E2 \ E1

F̃[e] ∩ G̃[e] if e ∈ E1 ∩ E2.

The intersection [2] of (F̃, E1) and (G̃, E2) is defined to be the fuzzy soft set

(F̃, E1) e (G̃, E2) = (H̃, E) satisfying the following conditions:

(i) E = E1 ∩ E2 6= ∅ and

(ii) H̃[e] = F̃[e] ∩ G̃[e] for all e ∈ E.

Definition 4.4.4 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPs-

subalgebra based on e ∈ E (we shortly call an e-fuzzy soft UPs-subalgebra) of

A if a fuzzy set F̃[e] in A is a fuzzy UPs-subalgebra of A. If (F̃, E) is an e-

fuzzy soft UPs-subalgebra of A for all e ∈ E, we say that (F̃, E) is a fuzzy soft

UPs-subalgebra of A.

In the next theorem, we give necessary condition for fuzzy soft UPs-

subalgebras of f -UP-semigroups.

Theorem 4.4.5 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.3) and (3.0.14), then (F̃, E) is a

fuzzy soft UPs-subalgebra of A.

Proof. It is straightforward by Proposition 4.3.3 and Lemma 3.0.36 (1).

The proof of the following theorem can be verified easily.

Theorem 4.4.6 If (F̃, E) is a fuzzy soft UPs-subalgebra of A and ∅ 6= E∗ ⊆ E,

then (F̃|E∗ , E∗) is a fuzzy soft UPs-subalgebra of A.
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The following example shows that there exists a nonempty subset E∗ of

E such that (F̃|E∗ , E∗) is a fuzzy soft UPs-subalgebra of A, but (F̃, E) is not a

fuzzy soft UPs-subalgebra of A.

Example 4.4.7 Let A be the set of four series of the iPhone, that is,

A = {5, 6, 7, X}.

Define two binary operations · and ∗ on A as the following Cayley tables:

· X 7 6 5

X X 7 6 5

7 X X 6 5

6 X 7 X 5

5 X 7 6 X

∗ X 7 6 5

X X X X X

7 X X X X

6 X X X 7

5 X X 7 X

Then A = (A, ·, ∗,X) is an f -UP-semigroup. Let (F̃, E) be a fuzzy soft set over

A where

E := {price, beauty, specifications, stability}

with F̃[price], F̃[beauty], F̃[specifications], and F̃[stability] are fuzzy sets in A de-

fined as follows:

F̃ X 7 6 5

price 0.8 0.3 0.7 0.1

beauty 0.5 0.3 0.2 0.4

specifications 0.9 0.8 0.5 0.6

stability 1 0.4 0.7 0.6

Then F̃[stability] is not a fuzzy UPs-subalgebra of A. Indeed,

fF̃[stability](5 ∗ 6) = fF̃[stability](7) = 0.4 � 0.6 = min{0.6, 0.7} =

min{fF̃[stability](5), fF̃[stability](6)}.
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Hence, (F̃, E) is not a fuzzy soft UPs-subalgebra of A. We take

E∗ := {price, beauty, specifications}.

Thus (F̃|E∗ , E∗) is a fuzzy soft UPs-subalgebra of A.

Theorem 4.4.8 The extended intersection of two fuzzy soft UPs-subalgebras of

A is also a fuzzy soft UPs-subalgebra. Moreover, the intersection of two fuzzy soft

UPs-subalgebras of A is also a fuzzy soft UPs-subalgebra.

Proof. Let (F̃, E1) and (G̃, E2) be two fuzzy soft UPs-subalgebras of A. Assume

that (F̃, E1) ∩ (G̃, E2) = (H̃, E) with E = E1 ∪ E2. Let e ∈ E.

Case 1: e ∈ E1 \ E2 (resp., e ∈ E2 \ E1). Then H̃[e] = F̃[e] (resp.,

H̃[e] = G̃[e]) is a fuzzy soft UPs-subalgebra of A.

Case 2: e ∈ E1 ∩ E2. By Theorem 4.2.2, we have H̃[e] = F̃[e] ∩ G̃[e] is a

fuzzy soft UPs-subalgebra.

Thus (H̃, E) is an e-fuzzy soft UPs-subalgebra of A for all e ∈ E. Hence,

(H̃, E) is a fuzzy soft UPs-subalgebra of A.

Theorem 4.4.9 The union of two fuzzy soft UPs-subalgebras of A is also a fuzzy

soft UPs-subalgebra if sets of statistics of two fuzzy soft UPs-subalgebras are dis-

joint.

Proof. Let (F̃, E1) and (G̃, E2) be two fuzzy soft UPs-subalgebras of A such that

E1 ∩ E2 = ∅. Assume that (F̃, E1) ∪ (G̃, E2) = (H̃, E) with E = E1 ∪ E2. Let

e ∈ E. Since E1 ∩ E2 = ∅, we have e ∈ E1 \ E2 or e ∈ E2 \ E1.

Case 1: e ∈ E1 \ E2. Then H̃[e] = F̃[e] is a fuzzy soft UPs-subalgebra of

A.
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Case 2: e ∈ E2 \ E1. Then H̃[e] = G̃[e] is a fuzzy soft UPs-subalgebra of

A.

Thus (H̃, E) is an e-fuzzy soft UPs-subalgebra of A for all e ∈ E. Hence,

(H̃, E) is a fuzzy soft UPs-subalgebra of A.

The following example shows that Theorem 4.4.9 is not valid if sets of

statistics of two fuzzy soft UPs-subalgebras are not disjoint.

Example 4.4.10 By Cayley tables in Example 4.4.7, we know thatA = (A, ·, ∗,X)

is an f -UP-semigroup. Let (G̃1, E1) and (G̃2, E2) be two fuzzy soft sets over A

where

E1 := {price, beauty, specifications} and E2 := {price, stability}

with G̃1[price], G̃1[beauty], G̃1[specifications], G̃2[price], and G̃2[stability] are fuzzy

sets in A defined as follows:

G̃1 X 7 6 5

price 0.9 0.7 0.9 0.2

beauty 1 0.8 0.3 0.2

specifications 0.6 0.5 0.3 0.4

G̃2 X 7 6 5

price 0.9 0.3 0.2 0.8

stability 0.7 0.2 0.5 0.2

Then (G̃1, E1) and (G̃2, E2) are two fuzzy soft UPs-subalgebras of A. Since price ∈

E1 ∩ E2, we have

(fG̃1[price]∪G̃2[price])(6 ∗ 5) = (fG̃1[price]∪G̃2[price])(7)
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= 0.7

� 0.8

= min{0.9, 0.8}

= min{(fG̃1[price]∪G̃2[price])(6), (fG̃1[price]∪G̃2[price])(5)}.

Thus G̃1[price]∪ G̃2[price] is not a fuzzy UPs-subalgebra of A, that is, (G̃1, E1)∪

(G̃2, E2) is not a price-fuzzy soft UPs-subalgebra of A. Hence, (G̃1, E1)∪ (G̃2, E2)

is not a fuzzy soft UPs-subalgebra of A. Moreover, (G̃1, E1) d (G̃2, E2) is not a

fuzzy soft UPs-subalgebra of A.

Definition 4.4.11 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPi-

subalgebra based on e ∈ E (we shortly call an e-fuzzy soft UPi-subalgebra) of A if

a fuzzy set F̃[e] in A is a fuzzy UPi-subalgebra of A. If (F̃, E) is an e-fuzzy soft

UPi-subalgebra of A for all e ∈ E, we say that (F̃, E) is a fuzzy soft UPi-subalgebra

of A.

In the next theorem, we give necessary condition for fuzzy soft UPi-

subalgebras of f -UP-semigroups.

Theorem 4.4.12 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.3) and (3.0.15), then (F̃, E) is a

fuzzy soft UPi-subalgebra of A.

Proof. It is straightforward by Proposition 4.3.3 and Lemma 3.0.36 (2).

Theorem 4.4.13 Every e-fuzzy soft UPi-subalgebra of A is an e-fuzzy soft UPs-

subalgebra. Moreover, every fuzzy soft UPi-subalgebra of A is a fuzzy soft UPs-

subalgebra.

The following example shows that the converse of Theorem 4.4.13 is not

true.
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Example 4.4.14 In Example 4.4.7, we know that (F̃, E) is a price-fuzzy soft

UPs-subalgebra of A but F̃[price] is not a fuzzy UPi-subalgebra of A. Indeed,

fF̃[price](6 ∗ 5) = fF̃[price](7) = 0.3 � 0.7 = max{0.7, 0.1} =

max{fF̃[price](6), fF̃[price](5)}.

Hence, (F̃, E) is not a price-fuzzy soft UPi-subalgebra of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.15 If (F̃, E) is a fuzzy soft UPi-subalgebra of A and ∅ 6= E∗ ⊆ E,

then (F̃|E∗ , E∗) is a fuzzy soft UPi-subalgebra of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.

Theorem 4.4.16 The extended intersection of two fuzzy soft UPi-subalgebras of

A is also a fuzzy soft UPi-subalgebra. Moreover, the intersection of two fuzzy soft

UPi-subalgebras of A is also a fuzzy soft UPi-subalgebra.

Theorem 4.4.17 The union of two fuzzy soft UPi-subalgebras of A is also a

fuzzy soft UPi-subalgebra if sets of statistics of two fuzzy soft UPi-subalgebras are

disjoint.

The following example shows that Theorem 4.4.17 is not valid if sets of

statistics of two fuzzy soft UPi-subalgebras are not disjoint.

Example 4.4.18 Let A be the set of four types of a music, that is,

A = {pop, rock, classic, disco}.
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Define two binary operations · and ∗ on A as the following Cayley tables:

· pop rock disco classic

pop pop rock disco classic

rock pop pop disco disco

disco pop rock pop disco

classic pop rock pop pop

∗ pop rock disco classic

pop pop pop pop pop

rock pop pop pop pop

disco pop pop pop pop

classic pop pop pop pop

Then A = (A, ·, ∗, pop) is an f -UP-semigroup. Let (G̃1, E1) and (G̃2, E2) be two

fuzzy soft sets over A where

E1 := {sorrow, modernity} and E2 := {modernity, enjoyment}

with G̃1[sorrow], G̃1[modernity], G̃2[modernity], and G̃2[enjoyment] are fuzzy sets

in A defined as follows:

G̃1 pop rock disco classic

sorrow 0.7 0.7 0.5 0.5

modernity 0.9 0.8 0.3 0.3

G̃2 pop rock disco classic

modernity 0.8 0.3 0.4 0.5

enjoyment 1 0.9 0.1 0.1

Then (G̃1, E1) and (G̃2, E2) are two fuzzy soft UPi-subalgebras of A. Since
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modernity ∈ E1 ∩ E2, we have

(fG̃1[modernity]∪G̃2[modernity])(rock · classic)

= (fG̃1[modernity]∪G̃2[modernity])(disco)

= 0.4

� 0.5

= min{0.8, 0.5}

= min{(fG̃1[modernity]∪G̃2[modernity])(rock), (fG̃1[modernity]∪G̃2[modernity])(classic)}.

Thus G̃1[modernity]∪ G̃2[modernity] is not a fuzzy UPi-subalgebra of A, that is,

(G̃1, E1) ∪ (G̃2, E2) is not a modernity-fuzzy soft UPi-subalgebra of A. Hence,

(G̃1, E1)∪ (G̃2, E2) is not a fuzzy soft UPi-subalgebra of A. Moreover, (G̃1, E1)d

(G̃2, E2) is not a fuzzy soft UPi-subalgebra of A.

Definition 4.4.19 A fuzzy soft set (F̃, E) over A is called a fuzzy soft near UPs-

filter based on e ∈ E (we shortly call an e-fuzzy soft near UPs-filter) of A if a

fuzzy set F̃[e] in A is a fuzzy near UPs-filter of A. If (F̃, E) is an e-fuzzy soft near

UPs-filter of A for all e ∈ E, we say that (F̃, E) is a fuzzy soft near UPs-filter of

A.

In the next theorem, we give necessary condition for fuzzy soft near UPs-

filters of f -UP-semigroups.

Theorem 4.4.20 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.2) and (3.0.14), then (F̃, E) is a

fuzzy soft near UPs-filter of A.

Proof. It is straightforward by Proposition 4.3.8 and Lemma 3.0.36 (1).

Theorem 4.4.21 Every e-fuzzy soft near UPs-filter of A is an e-fuzzy soft UPs-
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subalgebra. Moreover, every fuzzy soft near UPs-filter of A is a fuzzy soft UPs-

subalgebra.

The following example shows that the converse of Theorem 4.4.21 is not

true.

Example 4.4.22 Let A be a set of four foods, that is,

A = {apple, banana, meat, rice}.

Define two binary operations · and ∗ on A as the following Cayley tables:

· rice apple banana meat

rice rice apple banana meat

apple rice rice apple meat

banana rice rice rice meat

meat rice apple apple rice

∗ rice apple banana meat

rice rice rice rice rice

apple rice rice rice rice

banana rice rice rice rice

meat rice rice rice apple

Then A = (A, ·, ∗, rice) is an f -UP-semigroup. Let (F̃, E) be a fuzzy soft set over

A where

E := {pig, monkey, chicken}
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with F̃[pig], F̃[monkey], and F̃[chicken] are fuzzy sets in A defined as follows:

F̃ rice apple banana meat

pig 1 0.8 0.9 0.3

monkey 0.8 0.4 0.8 0.3

chicken 0.7 0.4 0.3 0.2

Then (F̃, E) is a pig-fuzzy soft UPs-subalgebra of A. But (F̃, E) is not a pig-fuzzy

soft near UPs-filter of A since

fF̃[pig](meat · banana) = fF̃[pig](apple)

= 0.8

� 0.9

= fF̃[pig](banana),

that is, F̃[pig] is not a fuzzy near UPs-filter of A.

In the next theorem, we give necessary condition for fuzzy soft UPs-

subalgebras as fuzzy soft near UPs-filters of f -UP-semigroups.

Theorem 4.4.23 If (F̃, E) is a fuzzy soft UPs-subalgebra of A such that for all

e ∈ E, a fuzzy set F̃[e] in A satisfies the condition (4.3.5), then (F̃, E) is a fuzzy

soft near UPs-filter of A.

Proof. It is straightforward by Theorem 4.3.11.

The proof of the following theorem can be verified easily.

Theorem 4.4.24 If (F̃, E) is a fuzzy soft near UPs-filter of A and ∅ 6= E∗ ⊆ E,

then (F̃|E∗ , E∗) is a fuzzy soft near UPs-filter of A.
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The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.

Theorem 4.4.25 The extended intersection of two fuzzy soft near UPs-filters of

A is also a fuzzy soft near UPs-filter. Moreover, the intersection of two fuzzy soft

near UPs-filters of A is also a fuzzy soft near UPs-filter.

Theorem 4.4.26 The union of two fuzzy soft near UPs-filters of A is also a

fuzzy soft near UPs-filter if sets of statistics of two fuzzy soft near UPs-filters are

disjoint.

The following example shows that Theorem 4.4.26 is not valid if sets of

statistics of two fuzzy soft near UPs-filters are not disjoint.

Example 4.4.27 In Example 4.4.10, we have (G̃1, E1) and (G̃2, E2) are two fuzzy

soft near UPs-filters of A. Since price ∈ E1 ∩ E2, we have

(fG̃1[price]∪G̃2[price])(6 ∗ 5) = (fG̃1[price]∪G̃2[price])(7)

= 0.7

� 0.8

= min{0.9, 0.8}

= min{(fG̃1[price]∪G̃2[price])(6), (fG̃1[price]∪G̃2[price])(5)}.

Thus G̃1[price] ∪ G̃2[price] is not a fuzzy near UPs-filter of A, that is, (G̃1, E1) ∪

(G̃2, E2) is not a price-fuzzy soft near UPs-filter of A. Hence, (G̃1, E1)∪ (G̃2, E2)

is not a fuzzy soft near UPs-filter of A. Moreover, (G̃1, E1) d (G̃2, E2) is not a

fuzzy soft near UPs-filter of A.

Definition 4.4.28 A fuzzy soft set (F̃, E) over A is called a fuzzy soft near UPi-

filter based on e ∈ E (we shortly call an e-fuzzy soft near UPi-filter) of A if a

fuzzy set F̃[e] in A is a fuzzy near UPi-filter of A. If (F̃, E) is an e-fuzzy soft near
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UPi-filter of A for all e ∈ E, we say that (F̃, E) is a fuzzy soft near UPi-filter of

A.

In the next theorem, we give necessary condition for fuzzy soft near UPi-

filters of f -UP-semigroups.

Theorem 4.4.29 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.2) and (3.0.15), then (F̃, E) is a

fuzzy soft near UPi-filter of A.

Proof. It is straightforward by Proposition 4.3.8 and Lemma 3.0.36 (2).

Theorem 4.4.30 Every e-fuzzy soft near UPi-filter of A is an e-fuzzy soft near

UPs-filter. Moreover, every fuzzy soft near UPi-filter of A is a fuzzy soft near

UPs-filter.

Theorem 4.4.31 Every e-fuzzy soft near UPi-filter of A is an e-fuzzy soft UPi-

subalgebra. Moreover, every fuzzy soft near UPi-filter of A is a fuzzy soft UPi-

subalgebra.

The following two examples show that the converse of Theorems 4.4.30

and 4.4.31 is not true.

Example 4.4.32 In Example 4.4.7, we know that (F̃, E) is a price-fuzzy soft

near UPs-filter of A but F̃[price] is not a fuzzy near UPi-filter of A. Indeed,

fF̃[price](6 ∗ 5) = fF̃[price](7) = 0.3 � 0.7 = max{0.7, 0.1} =

max{fF̃[price](6), fF̃[price](5)}.

Hence, (F̃, E) is not a price-fuzzy soft near UPi-filter of A.

Example 4.4.33 In Example 4.4.22, we know that (F̃, E) is a monkey-fuzzy soft

UPi-subalgebra of A but F̃[monkey] is not a fuzzy near UPi-filter of A. Indeed,
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fF̃[monkey](apple · banana) = fF̃[monkey](apple) = 0.4 � 0.8 = fF̃[monkey](banana).

Hence, (F̃, E) is not a monkey-fuzzy soft near UPi-filter of A.

In the next theorem, we give necessary condition for fuzzy soft UPi-

subalgebras as fuzzy soft near UPi-filters of f -UP-semigroups.

Theorem 4.4.34 If (F̃, E) is a fuzzy soft UPi-subalgebra of A such that for all

e ∈ E, a fuzzy set F̃[e] in A satisfies the condition (4.3.5), then (F̃, E) is a fuzzy

soft near UPi-filter of A.

Proof. It is straightforward by Theorem 4.3.11.

The proof of the following theorem can be verified easily.

Theorem 4.4.35 If (F̃, E) is a fuzzy soft near UPi-filter of A and ∅ 6= E∗ ⊆ E,

then (F̃|E∗ , E∗) is a fuzzy soft near UPi-filter of A.

By using Theorem 4.2.10, we can obtain the following two theorems in

the same way as Theorems 4.4.8 and 4.4.9.

Theorem 4.4.36 The extended intersection of two fuzzy soft near UPi-filters of

A is also a fuzzy soft near UPi-filter. Moreover, the intersection of two fuzzy soft

near UPi-filters of A is also a fuzzy soft near UPi-filter.

Theorem 4.4.37 The union of two fuzzy soft near UPi-filters of A is also a

fuzzy soft near UPi-filter. Moreover, the restricted union of two fuzzy soft near

UPi-filters of A is also a fuzzy soft near UPi-filter.

Definition 4.4.38 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPs-filter

based on e ∈ E (we shortly call an e-fuzzy soft UPs-filter) of A if a fuzzy set F̃[e]

in A is a fuzzy UPs-filter of A. If (F̃, E) is an e-fuzzy soft UPs-filter of A for all

e ∈ E, we say that (F̃, E) is a fuzzy soft UPs-filter of A.
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In the next theorem, we give necessary condition for fuzzy soft UPs-filters

of f -UP-semigroups.

Theorem 4.4.39 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.6) and (3.0.14), then (F̃, E) is a

fuzzy soft UPs-filter of A.

Proof. It is straightforward by Proposition 4.3.12 and Lemma 3.0.36 (1).

Theorem 4.4.40 Every e-fuzzy soft UPs-filter of A is an e-fuzzy soft near UPs-

filter. Moreover, every fuzzy soft UPs-filter of A is a fuzzy soft near UPs-filter.

The following example shows that the converse of Theorem 4.4.40 is not

true.

Example 4.4.41 Let A be a set of four coffees, that is,

A = {Mocha(M), Americano(A), Cappuccino(C), Latte(L)}.

Define two binary operations · and ∗ on A as the following Cayley tables:

· L A M C

L L A M C

A L L M C

M L L L C

C L L L L

· L A M C

L L L L L

A L L L L

M L L L L

C L L L M

Then A = (A, ·, ∗,Latte) is an f -UP-semigroup. Let (F̃, E) be a fuzzy soft set

over A where

E := {sweetness, strong, aroma}
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with F̃[sweetness], F̃[strong], and F̃[aroma] are fuzzy sets in A defined as follows:

F̃ L A M C

sweetness 0.8 0.1 0.6 0.6

strong 0.7 0.7 0.6 0.5

aroma 0.5 0.3 0.4 0.1

Then (F̃, E) is a sweetness-fuzzy soft near UPs-filter of A but F̃[sweetness] is not

a fuzzy UPs-filter of A. Indeed,

fF̃[sweetness](A) = 0.1 � 0.6 = min{0.8, 0.6} =

min{fF̃[sweetness](L), fF̃[sweetness](M)} = min{fF̃[sweetness](M · A), fF̃[sweetness](M)}

Hence, (F̃, E) is not a sweetness-fuzzy soft UPs-filter of A.

In the next theorem, we give necessary condition for fuzzy soft near UPs-

filters as fuzzy soft UPs-filters of f -UP-semigroups.

Theorem 4.4.42 If (F̃, E) is a fuzzy soft near UPs-filter of A such that for all

e ∈ E, a fuzzy set F̃[e] in A satisfies the condition (4.3.7), then (F̃, E) is a fuzzy

soft UPs-filter of A.

Proof. It is straightforward by Theorem 4.3.15.

The proof of the following theorem can be verified easily.

Theorem 4.4.43 If (F̃, E) is a fuzzy soft UPs-filter of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPs-filter of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.
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Theorem 4.4.44 The extended intersection of two fuzzy soft UPs-filters of A is

also a fuzzy soft UPs-filter. Moreover, the intersection of two fuzzy soft UPs-filters

of A is also a fuzzy soft UPs-filter.

Theorem 4.4.45 The union of two fuzzy soft UPs-filters of A is also a fuzzy soft

UPs-filter if sets of statistics of two fuzzy soft UPs-filters are disjoint.

The following example shows that Theorem 4.4.45 is not valid if sets of

statistics of two fuzzy soft UPs-filters are not disjoint.

Example 4.4.46 In Example 4.4.10, we have (G̃1, E1) and (G̃2, E2) are two fuzzy

soft UPs-filters of A. Since price ∈ E1 ∩ E2, we have

(fG̃1[price]∪G̃2[price])(6 ∗ 5) = (fG̃1[price]∪G̃2[price])(7) = 0.7 � 0.8 = min{0.9, 0.8} =

min{(fG̃1[price]∪G̃2[price])(6), (fG̃1[price]∪G̃2[price])(5)}.

Thus G̃1[price]∪G̃2[price] is not a fuzzy UPs-filter of A, that is, (G̃1, E1)∪(G̃2, E2)

is not a price-fuzzy soft UPs-filter of A. Hence, (G̃1, E1)∪ (G̃2, E2) is not a fuzzy

soft UPs-filter of A. Moreover, (G̃1, E1) d (G̃2, E2) is not a fuzzy soft UPs-filter

of A.

Definition 4.4.47 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPi-filter

based on e ∈ E (we shortly call an e-fuzzy soft UPi-filter) of A if a fuzzy set F̃[e]

in A is a fuzzy UPi-filter of A. If (F̃, E) is an e-fuzzy soft UPi-filter of A for all

e ∈ E, we say that (F̃, E) is a fuzzy soft UPi-filter of A.

In the next theorem, we give necessary condition for fuzzy soft UPi-filters

of f -UP-semigroups.

Theorem 4.4.48 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.6) and (3.0.15), then (F̃, E) is a

fuzzy soft UPi-filter of A.
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Proof. It is straightforward by Proposition 4.3.12 and Lemma 3.0.36 (2).

Theorem 4.4.49 Every e-fuzzy soft UPi-filter of A is an e-fuzzy soft UPs-filter.

Moreover, every fuzzy soft UPi-filter of A is a fuzzy soft UPs-filter.

Theorem 4.4.50 Every e-fuzzy soft UPi-filter of A is an e-fuzzy soft near UPi-

filter. Moreover, every fuzzy soft UPi-filter of A is a fuzzy soft near UPi-filter.

The following two examples show that the converse of Theorems 4.4.49

and 4.4.50 is not true.

Example 4.4.51 In Example 4.4.7, we know that (F̃, E) is a beauty-fuzzy soft

UPs-filter of A but F̃[beauty] is not a fuzzy UPi-filter of A. Indeed,

fF̃[beauty](6 ∗ 5) = fF̃[beauty](7) = 0.3 � 0.4 = max{0.2, 0.4} =

max{fF̃[beauty](6), fF̃[beauty](5)}.

Hence, (F̃, E) is not a beauty-fuzzy soft UPi-filter of A.

Example 4.4.52 In Example 4.4.41, we know that (F̃, E) is a aroma-fuzzy soft

near UPi-filter of A but F̃[aroma] is not a fuzzy UPi-filter of A. Indeed,

fF̃[aroma](A) = 0.3 � 0.4 = min{0.5, 0.4} = min{fF̃[aroma](L), fF̃[aroma](M)} =

min{fF̃[aroma](M · A), fF̃[aroma](M)}.

Hence, (F̃, E) is not a aroma-fuzzy soft UPi-filter of A.

In the next theorem, we give necessary condition for fuzzy soft near UPi-

filters as fuzzy soft UPi-filters of f -UP-semigroups.

Theorem 4.4.53 If (F̃, E) is a fuzzy soft near UPi-filter of A such that for all

e ∈ E, a fuzzy set F̃[e] in A satisfies the condition (4.3.7), then (F̃, E) is a fuzzy

soft UPi-filter of A.
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Proof. It is straightforward by Theorem 4.3.15.

The proof of the following theorem can be verified easily.

Theorem 4.4.54 If (F̃, E) is a fuzzy soft UPi-filter of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPi-filter of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.

Theorem 4.4.55 The extended intersection of two fuzzy soft UPi-filters of A is

also a fuzzy soft UPi-filter. Moreover, the intersection of two fuzzy soft UPi-filters

of A is also a fuzzy soft UPi-filter.

Theorem 4.4.56 The union of two fuzzy soft UPi-filters of A is also a fuzzy soft

UPi-filter if sets of statistics of two fuzzy soft UPi-filters are disjoint.

The following example shows that Theorem 4.4.56 is not valid if sets of

statistics of two fuzzy soft UPi-filters are not disjoint.

Example 4.4.57 Let A be a set of four colors, that is,

A = {blue, green, cyan, black}.

Define two binary operations · and ∗ on A as the following Cayley tables:

· black cyan blue green

black black cyan blue green

cyan black black blue blue

blue black cyan black cyan

green black black black black
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∗ black cyan blue green

black black black black black

cyan black black black black

blue black black black black

green black black black black

Then A = (A, ·, ∗, black) is an f -UP-semigroup. Let (G̃1, E1) and (G̃2, E2) be two

fuzzy soft sets over A where

E1 := {endurance, beauty} and E2 := {endurance, warmth}

with G̃1[endurance], G̃1[beauty], G̃2[endurance], and G̃2[warmth] are fuzzy sets in

A defined as follows:

G̃1 black cyan blue green

endurance 1 0.5 0.7 0.5

beauty 0.4 0.3 0.2 0.2

G̃2 black cyan blue green

endurance 1 0.6 0.5 0.5

warmth 0.9 0.4 0.5 0.4

Then (G̃1, E1) and (G̃2, E2) are two fuzzy soft UPi-filters of A. Since endurance ∈

E1 ∩ E2, we have

(fG̃1[endurance]∪G̃2[endurance])(green) = 0.5 � 0.6 = min{0.6, 0.7} =

min{(fG̃1[endurance]∪G̃2[endurance])(cyan), (fG̃1[endurance]∪G̃2[endurance])(blue)} =

min{(fG̃1[endurance]∪G̃2[endurance])(blue · green), (fG̃1[endurance]∪G̃2[endurance])(blue)}.

Thus G̃1[endurance] ∪ G̃2[endurance] is not a fuzzy UPi-filter of A, that is,

(G̃1, E1)∪(G̃2, E2) is not a endurance-fuzzy soft UPi-filter of A. Hence, (G̃1, E1)∪



 

 

 
73

(G̃2, E2) is not a fuzzy soft UPi-filter of A. Moreover, (G̃1, E1) d (G̃2, E2) is not

a fuzzy soft UPi-filter of A.

Definition 4.4.58 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPs-ideal

based on e ∈ E (we shortly call an e-fuzzy soft UPs-ideal) of A if a fuzzy set F̃[e]

in A is a fuzzy UPs-ideal of A. If (F̃, E) is an e-fuzzy soft UPs-ideal of A for all

e ∈ E, we say that (F̃, E) is a fuzzy soft UPs-ideal of A.

In the next theorem and corollary, we give necessary condition for fuzzy

soft UPs-ideals of f -UP-semigroups.

Theorem 4.4.59 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.8) and (3.0.14), then (F̃, E) is a

fuzzy soft UPs-ideal of A.

Proof. It is straightforward by Proposition 4.3.16 and Lemma 3.0.36 (1).

Corollary 4.4.60 Let A be an f -UP-semigroup satisfying the condition (4.3.10).

If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e] in A

satisfies the conditions (4.3.9) and (3.0.14), then (F̃, E) is a fuzzy soft UPs-ideal

of A.

Proof. It is straightforward by Theorems 4.4.59 and 4.3.19.

Theorem 4.4.61 Every e-fuzzy soft UPs-ideal of A is an e-fuzzy soft UPs-filter.

Moreover, every fuzzy soft UPs-ideal of A is a fuzzy soft UPs-filter.

The following example shows that the converse of Theorem 4.4.61 is not

true.

Example 4.4.62 By Cayley tables in Example 4.4.18, we know that A =

(A, ·, ∗, pop) is an f -UP-semigroup. Let (F̃, E) be a fuzzy soft set over A where

E := {sorrow, relaxation, enjoyment}
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with F̃[sorrow], F̃[modernity], and F̃[enjoyment] are fuzzy sets in A defined as

follows:

F̃ pop rock disco classic

sorrow 0.6 0.2 0.1 0.1

modernity 1 0.5 0.5 0.5

enjoyment 0.7 0.5 0.2 0.2

Then (F̃, E) is a sorrow-fuzzy soft UPs-filter of A but F̃[sorrow] is not a fuzzy

UPs-ideal of A. Indeed,

fF̃[sorrow](disco · classic) = fF̃[sorrow](disco) = 0.1 � 0.2 = min{0.6, 0.2} =

min{fF̃[sorrow](pop), fF̃[sorrow](rock)} =

min{fF̃[sorrow](disco · (rock · classic)), fF̃[sorrow](rock)}.

Hence, (F̃, E) is not a sorrow-fuzzy soft UPs-ideal of A.

In the next theorem, we give necessary condition for fuzzy soft UPs-filters

as fuzzy soft UPs-ideals of f -UP-semigroups.

Theorem 4.4.63 If (F̃, E) is a fuzzy soft UPs-filter of A such that for all e ∈ E,

a fuzzy set F̃[e] in A satisfies the condition (4.3.11), then (F̃, E) is a fuzzy soft

UPs-ideal of A.

Proof. It is straightforward by Theorem 4.3.24.

The proof of the following theorem can be verified easily.

Theorem 4.4.64 If (F̃, E) is a fuzzy soft UPs-ideal of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPs-ideal of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.
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Theorem 4.4.65 The extended intersection of two fuzzy soft UPs-ideals of A is

also a fuzzy soft UPs-ideal. Moreover, the intersection of two fuzzy soft UPs-ideals

of A is also a fuzzy soft UPs-ideal.

Theorem 4.4.66 The union of two fuzzy soft UPs-ideals of A is also a fuzzy soft

UPs-ideal if sets of statistics of two fuzzy soft UPs-ideals are disjoint.

The following example shows that Theorem 4.4.66 is not valid if sets of

statistics of two fuzzy soft UPs-ideals are not disjoint.

Example 4.4.67 In Example 4.4.10, we have (G̃1, E1) and (G̃2, E2) are two fuzzy

soft UPs-ideals of A. Since price ∈ E1 ∩ E2, we have

(fG̃1[price]∪G̃2[price])(6 ∗ 5) = (fG̃1[price]∪G̃2[price])(7) = 0.7 � 0.8 = min{0.9, 0.8} =

min{(fG̃1[price]∪G̃2[price])(6), (fG̃1[price]∪G̃2[price])(5)}.

Thus G̃1[price]∪G̃2[price] is not a fuzzy UPs-ideal of A, that is, (G̃1, E1)∪(G̃2, E2)

is not a price-fuzzy soft UPs-ideal of A. Hence, (G̃1, E1)∪ (G̃2, E2) is not a fuzzy

soft UPs-ideal of A. Moreover, (G̃1, E1) d (G̃2, E2) is not a fuzzy soft UPs-ideal

of A.

Definition 4.4.68 A fuzzy soft set (F̃, E) over A is called a fuzzy soft UPi-ideal

based on e ∈ E (we shortly call an e-fuzzy soft UPi-ideal) of A if a fuzzy set F̃[e]

in A is a fuzzy UPi-ideal of A. If (F̃, E) is an e-fuzzy soft UPi-ideal of A for all

e ∈ E, we say that (F̃, E) is a fuzzy soft UPi-ideal of A.

In the next theorem and corollary, we give necessary condition for fuzzy

soft UPi-ideals of f -UP-semigroups.

Theorem 4.4.69 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.8) and (3.0.15), then (F̃, E) is a

fuzzy soft UPi-ideal of A.
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Proof. It is straightforward by Proposition 4.3.16 and Lemma 3.0.36 (2).

Corollary 4.4.70 Let A be an f -UP-semigroup satisfying the condition (4.3.10).

If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e] in A

satisfies the conditions (4.3.9) and (3.0.15), then (F̃, E) is a fuzzy soft UPi-ideal

of A.

Proof. It is straightforward by Theorems 4.4.69 and 4.3.19.

Theorem 4.4.71 Every e-fuzzy soft UPi-ideal of A is an e-fuzzy soft UPs-ideal.

Moreover, every fuzzy soft UPi-ideal of A is a fuzzy soft UPs-ideal.

Theorem 4.4.72 Every e-fuzzy soft UPi-ideal of A is an e-fuzzy soft UPi-filter.

Moreover, every fuzzy soft UPi-ideal of A is a fuzzy soft UPi-filter.

The following two examples show that the converse of Theorems 4.4.71

and 4.4.72 is not true.

Example 4.4.73 In Example 4.4.7, we know that (F̃, E) is a price-fuzzy soft

UPs-ideal of A but F̃[price] is not a fuzzy UPi-ideal of A. Indeed,

fF̃[price](5 ∗ 6) = fF̃[price](7) = 0.3 � 0.7 = max{0.1, 0.7} =

max{fF̃[price](5), fF̃[price](6)}.

Hence, (F̃, E) is not a price-fuzzy soft UPi-ideal of A.

Example 4.4.74 In Example 4.4.62, we know that (F̃, E) is a enjoyment-fuzzy

soft UPi-filter of A but F̃[enjoyment] is not a fuzzy UPi-ideal of A. Indeed,

fF̃[enjoyment](disco · classic) = fF̃[enjoyment](disco) = 0.2 � 0.5 = min{0.7, 0.5} =

min{fF̃[enjoyment](pop), fF̃[enjoyment](rock)} =

min{fF̃[enjoyment](disco · (rock · classic)), fF̃[enjoyment](rock)}.
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Hence, (F̃, E) is not a enjoyment-fuzzy soft UPi-ideal of A.

In the next theorem, we give necessary condition for fuzzy soft UPi-filters

as fuzzy soft UPi-ideals of f -UP-semigroups.

Theorem 4.4.75 If (F̃, E) is a fuzzy soft UPi-filter of A such that for all e ∈ E,

a fuzzy set F̃[e] in A satisfies the condition (4.3.11), then (F̃, E) is a fuzzy soft

UPi-ideal of A.

Proof. It is straightforward by Theorem 4.3.24.

The proof of the following theorem can be verified easily.

Theorem 4.4.76 If (F̃, E) is a fuzzy soft UPi-ideal of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPi-ideal of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 4.4.9.

Theorem 4.4.77 The extended intersection of two fuzzy soft UPi-ideals of A is

also a fuzzy soft UPi-ideal. Moreover, the intersection of two fuzzy soft UPi-ideals

of A is also a fuzzy soft UPi-ideal.

Theorem 4.4.78 The union of two fuzzy soft UPi-ideals of A is also a fuzzy soft

UPi-ideal if sets of statistics of two fuzzy soft UPi-ideals are disjoint.

The following example shows that the converse of Theorem 4.4.78 is not

true.

Example 4.4.79 In Example 4.4.57, we have (G̃1, E1) and (G̃2, E2) are two fuzzy

soft UPi-ideals of A. Since endurance ∈ E1 ∩ E2, we have
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(fG̃1[endurance]∪G̃2[endurance])(black · green) = (fG̃1[endurance]∪G̃2[endurance])(green) =

0.5 � 0.6 = min{0.6, 0.7} =

min{(fG̃1[endurance]∪G̃2[endurance])(cyan), (fG̃1[endurance]∪G̃2[endurance])(blue)} =

min{(fG̃1[endurance]∪G̃2[endurance])(black · (blue ·

green)), (fG̃1[endurance]∪G̃2[endurance])(blue)}.

Thus G̃1[endurance] ∪ G̃2[endurance] is not a fuzzy UPi-ideal of A, that is,

(G̃1, E1)∪(G̃2, E2) is not a endurance-fuzzy soft UPi-ideal of A. Hence, (G̃1, E1)∪

(G̃2, E2) is not a fuzzy soft UPi-ideal of A. Moreover, (G̃1, E1) d (G̃2, E2) is not

a fuzzy soft UPi-ideal of A.

Definition 4.4.80 A fuzzy soft set (F̃, E) over A is called a fuzzy soft strongly

UPs-ideal based on e ∈ E (we shortly call an e-fuzzy soft strongly UPs-ideal)

of A if a fuzzy set F̃[e] in A is a fuzzy strongly UPs-ideal of A. If (F̃, E) is an

e-fuzzy soft strongly UPs-ideal of A for all e ∈ E, we say that (F̃, E) is a fuzzy

soft strongly UPs-ideal of A.

Definition 4.4.81 A fuzzy soft set (F̃, E) over A is called a constant fuzzy soft

set based on e ∈ E (we shortly call an e-constant fuzzy soft set) of A if a fuzzy

set F̃[e] in A is constant. If (F̃, E) is an e-constant fuzzy soft set over A for all

e ∈ E, we say that (F̃, E) is a constant fuzzy soft set over A.

Theorem 4.4.82 Every e-fuzzy soft strongly UPs-ideal of A is an e-fuzzy soft

UPs-ideal. Moreover, every fuzzy soft strongly UPs-ideal of A is a fuzzy soft UPs-

ideal.

Theorem 4.4.83 e-fuzzy soft strongly UPs-ideals and e-constant fuzzy soft sets

coincide in A. Moreover, fuzzy soft strongly UPs-ideals and constant fuzzy soft

sets coincide in A.

In the next theorem, we give necessary condition for fuzzy soft strongly

UPs-ideals of f -UP-semigroups.
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Theorem 4.4.84 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.12) (or (4.3.13) or (4.3.14)) and

(3.0.14), then (F̃, E) is a fuzzy soft strongly UPs-ideal of A.

Proof. It is straightforward by Propositions 4.3.25 (or 4.3.27 or 4.3.29) and Lemma

3.0.36 (1).

The following example shows that the converse of Theorem 4.4.82 is not

true.

Example 4.4.85 Let A be a set of four brands of a pick-up truck, that is,

A = {Toyota Hilux(TH), Mitsubishi Triton(MT), Ford Ranger(FR),

Isuzu D-Max(ID)}.

Define two binary operations · and ∗ on A as the following Cayley tables:

· MT FR ID TH

MT MT FR ID TH

FR MT MT ID TH

ID MT FR MT TH

TH MT FR ID MT

∗ MT FR ID TH

MT MT MT MT MT

FR MT FR MT MT

ID MT MT ID MT

TH MT TH MT MT

Then A = (A, ·, ∗,Mitsubishi Triton) is an f -UP-semigroup. Let (F̃, E) be a

fuzzy soft set over A where

E := {displacement, horse power, torque}

with F̃[displacement], F̃[horse power], and F̃[torque] are fuzzy sets in A defined
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as follows:

F̃ MT FR ID TH

displacement 1 0.6 0.4 0.7

horse power 0.9 0.6 0.5 0.5

torque 0.9 0.7 0.6 0.5

Then (F̃, E) is a torque-fuzzy soft UPs-ideal of A but F̃[torque] is not a fuzzy

strongly UPs-ideal of A. Indeed,

fF̃[torque](ID) = 0.6 � 0.7 = min{0.9, 0.7} = min{fF̃[torque](MT), fF̃[torque](FR)} =

min{fF̃[torque]((ID · FR) · (ID · ID)), fF̃[torque](FR)}.

Hence, (F̃, E) is not a torque-fuzzy soft strongly UPs-ideal of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.86 If (F̃, E) is a fuzzy soft strongly UPs-ideal of A and ∅ 6= E∗ ⊆

E, then (F̃|E∗ , E∗) is a fuzzy soft strongly UPs-ideal of A.

By using Theorem 4.2.32, we can obtain the following two theorems in

the same way as Theorems 4.4.8 and 4.4.9.

Theorem 4.4.87 The extended intersection of two fuzzy soft strongly UPs-ideals

of A is also a fuzzy soft strongly UPs-ideal. Moreover, the intersection of two

fuzzy soft strongly UPs-ideals of A is also a fuzzy soft strongly UPs-ideal.

Theorem 4.4.88 The union of two fuzzy soft strongly UPs-ideals is also a fuzzy

soft strongly UPs-ideal. Moreover, the restricted union of two fuzzy soft strongly

UPs-ideals of A is also a fuzzy soft strongly UPs-ideal.

Definition 4.4.89 A fuzzy soft set (F̃, E) over A is called a fuzzy soft strongly

UPi-ideal based on e ∈ E (we shortly call an e-fuzzy soft strongly UPi-ideal)
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of A if a fuzzy set F̃[e] in A is a fuzzy strongly UPi-ideal of A. If (F̃, E) is an

e-fuzzy soft strongly UPi-ideal of A for all e ∈ E, we say that (F̃, E) is a fuzzy

soft strongly UPi-ideal of A.

Theorem 4.4.90 Every e-fuzzy soft strongly UPi-ideal of A is an e-fuzzy soft

UPi-ideal. Moreover, every fuzzy soft strongly UPi-ideal of A is a fuzzy soft UPi-

ideal.

Theorem 4.4.91 e-fuzzy soft strongly UPi-ideals and e-constant fuzzy soft sets

coincide in A. Moreover, fuzzy soft strongly UPi-ideals and constant fuzzy soft

sets coincide in A.

Corollary 4.4.92 e-fuzzy soft strongly UPs-ideals, e-fuzzy soft strongly UPi-

ideals, and e-constant fuzzy soft sets coincide in A. Moreover, fuzzy soft strongly

UPs-ideals, fuzzy soft strongly UPi-ideals and constant fuzzy soft sets coincide in

A.

Proof. It is straightforward by Theorems 4.4.83 and 4.4.91.

In the next theorem, we give necessary condition for fuzzy soft strongly

UPi-ideals of f -UP-semigroups.

Theorem 4.4.93 If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the conditions (4.3.12) (or (4.3.13) or (4.3.14)) and

(3.0.15), then (F̃, E) is a fuzzy soft strongly UPi-ideal of A.

Proof. It is straightforward by Proposition 4.3.25 (or 4.3.27 or 4.3.29) and Lemma

3.0.36 (2).

The following example shows that the converse of Theorem 4.4.90 is not

true.
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Example 4.4.94 In Example 4.4.85, we know that (F̃, E) is a displacement-fuzzy

soft UPi-ideal of A but F̃[displacement] is not a fuzzy strongly UPi-ideal of A.

Indeed,

fF̃[displacement](ID) = 0.4 � 0.6 = min{1, 0.6} =

min{fF̃[displacement](MT), fF̃[displacement](FR)} =

min{fF̃[displacement]((ID · FR) · (ID · ID)), fF̃[displacement](FR)}.

Hence, (F̃, E) is not a displacement-fuzzy soft strongly UPi-ideal of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.95 If (F̃, E) is a fuzzy soft strongly UPi-ideal of A and ∅ 6= E∗ ⊆

E, then (F̃|E∗ , E∗) is a fuzzy soft strongly UPi-ideal of A.

By using Theorem 4.2.33, we can obtain the following two theorems in

the same way as Theorems 4.4.8 and 4.4.9.

Theorem 4.4.96 The extended intersection of two fuzzy soft strongly UPi-ideals

of A is also a fuzzy soft strongly UPi-ideal. Moreover, the intersection of two

fuzzy soft strongly UPi-ideals of A is also a fuzzy soft strongly UPi-ideal.

Theorem 4.4.97 The union of two fuzzy soft strongly UPi-ideals of A is also

a fuzzy soft strongly UPs-ideal. Moreover, the restricted union of two fuzzy soft

strongly UPi-ideals of A is also a fuzzy soft strongly UPi-ideal.

Then, we get the diagram of generalization of fuzzy soft sets over fully

UP-semigroups as shown in Figure 4.4 below.
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Fuzzy Soft Near UPs-Filter

Fuzzy Soft UPs-Filter

Fuzzy Soft UPs-Ideal

Fuzzy Soft Strongly UPs-Ideal

Constant Fuzzy Soft Set

Fuzzy Soft Near UPi-Filter

Fuzzy Soft UPi-Filter

Fuzzy Soft UPi-Ideal

Fuzzy Soft Strongly UPi-Ideal

Fuzzy Soft UPs-Subalgebra

Fuzzy Soft UPi-Subalgebra

Figure 3: Fuzzy soft sets over fully UP-semigroups

4.5 Properties of operations for fuzzy soft sets over

fully UP-semigroups

From now on, we shall let A be an f -UP-semigroup A = (A, ·, ∗, 0) and

P be a set of parameters. Let F(A) denotes the set of all fuzzy sets in A. A

subset E of P is called a set of statistics.

Definition 4.5.1 [24] Let (F̃, E1) and (G̃, E2) be two fuzzy soft sets over a com-

mon universe U . The OR of (F̃, E1) and (G̃, E2) is defined to be the fuzzy soft

set (F̃, E1) ∨ (G̃, E2) = (H̃, E) satisfying the following conditions:

(i) E = E1 × E2 and

(ii) H̃[e1, e2] = F̃[e1] ∪ G̃[e2] for all (e1, e2) ∈ E.

Definition 4.5.2 [24] Let (F̃, E1) and (G̃, E2) be two fuzzy soft sets over a com-

mon universe U . The AND of (F̃, E1) and (G̃, E2) is defined to be the fuzzy soft

set (F̃, E1) ∧ (G̃, E2) = (H̃, E) satisfying the following conditions:

(i) E = E1 × E2 and

(ii) H̃[e1, e2] = F̃[e1] ∩ G̃[e2] for all (e1, e2) ∈ E.
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We will introduce the notions of the restricted union, the union, the

intersection, the extended intersection, the AND, and the OR of any fuzzy soft

sets and apply to f -UP-semigroups.

Definition 4.5.3 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The restricted union

of (F̃i, Ei) is defined to be the fuzzy soft set di∈I(F̃i, Ei) = (F̃, E) satisfying the

following conditions:

(i) E =
⋂

i∈I Ei 6= ∅ and

(ii) F̃[e] =
⋃

i∈I F̃i[e] for all e ∈ E.

Theorem 4.5.4 The restricted union of family of fuzzy soft near UPi-filters of

A is also a fuzzy soft near UPi-filter.

Proof. Let (F̃i, Ei) be a fuzzy soft near UPi-filters of A for all i ∈ I. Assume

that di∈I(F̃i, Ei) = (F̃, E) be the restricted union of (F̃i, Ei) for all i ∈ I. Then

E =
⋂

i∈I Ei 6= ∅. Let e ∈ E. By Theorem 4.2.10, we have F̃[e] =
⋃

i∈I F̃i[e] is a

fuzzy near UPi-filter of A. Therefore, (F̃, E) is an e-fuzzy soft near UPi-filter of

A. But since e is an arbitrary statistic of E, we have (F̃, E) is a fuzzy soft near

UPi-filter of A.

In the same way as Theorem 4.5.4, we can use Theorems 4.2.32 (resp.,

4.2.33) to prove that the restricted union of family of fuzzy soft strongly UPs-

ideals (resp., fuzzy soft strongly UPi-ideals) of A is also a fuzzy soft strongly

UPs-ideal (resp., fuzzy soft strongly UPi-ideal).

Definition 4.5.5 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The union of (F̃i, Ei)

is defined to be the fuzzy soft set
⋃

i∈I(F̃i, Ei) = (F̃, E) satisfying the following

conditions:
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(i) E =
⋃

i∈I Ei and

(ii) F̃[e] =
⋃

j∈J F̃j[e] for all e ∈ E with e ∈
⋂

j∈J Ej −
⋃

k∈I−J Ek where ∅ 6=

J ⊆ I.

Theorem 4.5.6 The union of family of fuzzy soft near UPi-filters of A is also a

fuzzy soft near UPi-filter.

Proof. Let (F̃i, Ei) be a fuzzy soft near UPi-filters of A for all i ∈ I. Assume that⋂
i∈I(F̃i, Ei) = (F̃, E) be the union of (F̃i, Ei) for all i ∈ I. Then E =

⋃
i∈I Ei.

Let e ∈ E.

Case 1: |J | = |I|. By Theorem 4.5.4, we have F̃[e] =
⋂

i∈I F̃i[e] is a fuzzy

near UPi-filter of A.

Case 2: |J | = 1, that is, J is a singleton set. Then F̃[e] =
⋂

j∈{j} F̃j[e] =

F̃j[e] is a fuzzy near UPi-filter of A.

Case 3: 1 < |J | < |I|. Then F̃[e] =
⋂

j∈J F̃j[e]. Since e ∈ Ej for all j ∈ J

and e /∈ Ek for some k ∈ I − J and by same Case 1, we have F̃[e] is a fuzzy near

UPi-filter of A.

Therefore, (F̃, E) is an e-fuzzy soft near UPi-filter of A. But since e is an

arbitrary statistic of E, we have (F̃, E) is a fuzzy soft near UPi-filter of A.

In the same way as Theorem 4.5.6, we can prove that the union of family

of fuzzy soft strongly UPs-ideals (resp., fuzzy soft strongly UPi-ideals) of A is

also a fuzzy soft strongly UPs-ideal (resp., fuzzy soft strongly UPi-ideal).

In section 4.4, we show that the union of two fuzzy soft UPs-subalgebras

(resp., fuzzy soft UPi-subalgebras, fuzzy soft near UPs-filters, fuzzy soft UPs-

filters, fuzzy soft UPi-filters, fuzzy soft UPs-ideals, fuzzy soft UPi-ideals) of A is

not fuzzy soft UPs-subalgebra (resp., fuzzy soft UPi-subalgebra, fuzzy soft near
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UPs-filter, fuzzy soft UPs-filter, fuzzy soft UPi-filter, fuzzy soft UPs-ideal, fuzzy

soft UPi-ideal).

Definition 4.5.7 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The intersection

of (F̃i, Ei) is defined to be the fuzzy soft set ei∈I(F̃i, Ei) = (F̃, E) satisfying the

following conditions:

(i) E =
⋂

i∈I Ei 6= ∅ and

(ii) F̃[e] =
⋂

i∈I F̃i[e] for all e ∈ E.

Theorem 4.5.8 The intersection of family of fuzzy soft UPs-subalgebras of A is

also a fuzzy soft UPs-subalgebra.

Proof. Let (F̃i, Ei) be a fuzzy soft UPs-subalgebras of A for all i ∈ I. Assume

that ei∈I(F̃i, Ei) = (F̃, E) is the intersection of (F̃i, Ei) for all i ∈ I. Then

E =
⋂

i∈I Ei 6= ∅. Let e ∈ E. By Theorem 4.2.2, we have F̃[e] =
⋂

i∈I F̃i[e] is a

fuzzy UPs-subalgebra of A. Therefore, (F̃, E) is an e-fuzzy soft UPs-subalgebra

of A. But since e is an arbitrary statistic of E, we have (F̃, E) is a fuzzy soft

UPs-subalgebra of A.

In the same way as Theorem 4.5.8, we can use Theorems 4.2.4 (resp.,

4.2.7, 4.2.9, 4.2.15, 4.2.17, 4.2.24, 4.2.26, 4.2.32, 4.2.33) to prove that the inter-

section of family of fuzzy soft UPi-subalgebras (resp., fuzzy soft near UPs-filters,

fuzzy soft near UPi-filters, fuzzy soft UPs-filters, fuzzy soft UPi-filters, fuzzy

soft UPs-ideals, fuzzy soft UPi-ideals, fuzzy soft strongly UPs-ideals, fuzzy soft

strongly UPi-ideals) of A is also a fuzzy soft UPi-subalgebra (resp., fuzzy soft near

UPs-filter, fuzzy soft near UPi-filter, fuzzy soft UPs-filter, fuzzy soft UPi-filter,

fuzzy soft UPs-ideal, fuzzy soft UPi-ideal, fuzzy soft strongly UPs-ideal, fuzzy soft

strongly UPi-ideal).



 

 

 
87

Definition 4.5.9 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The extended

intersection of (F̃i, Ei) is defined to be the fuzzy soft set
⋂

i∈I(F̃i, Ei) = (F̃, E)

satisfying the following conditions:

(i) E =
⋃

i∈I Ei and

(ii) F̃[e] =
⋂

j∈J F̃j[e] for all e ∈ E with e ∈
⋂

j∈J Ej −
⋃

k∈I−J Ek where ∅ 6=

J ⊆ I.

Theorem 4.5.10 The extended intersection of family of fuzzy soft UPs-subalgebras

of A is also a fuzzy soft UPs-subalgebra.

Proof. Let (F̃i, Ei) be a fuzzy soft UPs-subalgebras of A for all i ∈ I. Assume

that
⋂

i∈I(F̃i, Ei) = (F̃, E) is the extended intersection of (F̃i, Ei) for all i ∈ I.

Then E =
⋃

i∈I Ei. Let e ∈ E.

Case 1: |J | = |I|. By Theorem 4.5.8, we have F̃[e] =
⋂

i∈I F̃i[e] is a fuzzy

UPs-subalgebra of A.

Case 2: |J | = 1, that is, J is a singleton set. Then F̃[e] =
⋂

j∈{j} F̃j[e] =

F̃j[e] is a fuzzy UPs-subalgebra of A.

Case 3: 1 < |J | < |I|. Then F̃[e] =
⋂

j∈J F̃j[e]. Since e ∈ Ej for all j ∈ J

and e /∈ Ek for some k ∈ I − J and by same Case 1, we have F̃[e] is a fuzzy

UPs-subalgebra of A.

Therefore, (F̃, E) is an e-fuzzy soft UPs-subalgebra of A. But since e

is an arbitrary statistic of E, we have (F̃, E) is a fuzzy soft UPs-subalgebra of

A.

In the same way as Theorem 4.5.10, we can prove that the extended

intersection of family of fuzzy soft UPi-subalgebras (resp., fuzzy soft near UPs-
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filters, fuzzy soft near UPi-filters, fuzzy soft UPs-filters, fuzzy soft UPi-filters,

fuzzy soft UPs-ideals, fuzzy soft UPi-ideals, fuzzy soft strongly UPs-ideals, fuzzy

soft strongly UPi-ideals) of A is also a fuzzy soft UPi-subalgebra (resp., fuzzy soft

near UPs-filter, fuzzy soft near UPi-filter, fuzzy soft UPs-filter, fuzzy soft UPi-

filter, fuzzy soft UPs-ideal, fuzzy soft UPi-ideal, fuzzy soft strongly UPs-ideal,

fuzzy soft strongly UPi-ideal).

Definition 4.5.11 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The AND of (F̃i, Ei)

is defined to be the fuzzy soft set
∧

i∈I(F̃i, Ei) = (F̃, E) satisfying the following

conditions:

(i) E =
∏

i∈I Ei and

(ii) F̃[(ei)i∈I ] =
⋂

i∈I F̃i[ei] for all (ei)i∈I ∈ E.

Theorem 4.5.12 The AND of family of fuzzy soft UPs-subalgebras of A is also

a fuzzy soft UPs-subalgebra.

Proof. Let (F̃i, Ei) be a fuzzy soft UPs-subalgebras of A for all i ∈ I. By means

of Definition 4.5.11, we assume that
∧

i∈I(F̃i, Ei) = (F̃, E) such that E =
∏

i∈I Ei

and F̃[(ei)i∈I ] =
⋂

i∈I F̃i[ei] for all (ei)i∈I ∈ E. Assume that e = (ei)i∈I ∈ E and

let x, y ∈ A. Then

fF̃[e](x · y) = f⋂
i∈I F̃i[ei]

(x · y)

= inf{fF̃i[ei]
(x · y)}i∈I

≥ inf{min{fF̃i[ei]
(x), fF̃i[ei]

(y)}}i∈I

= min{inf{fF̃i[ei]
(x)}i∈I , inf{fF̃i[ei]

(y)}i∈I}

= min{f⋂
i∈I F̃i[ei]

(x), f⋂
i∈I F̃i[ei]

(y)}

= min{fF̃[e](x), fF̃[e](y)}, and
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fF̃[e](x ∗ y) = f⋂
i∈I F̃i[ei]

(x ∗ y)

= inf{fF̃i[ei]
(x ∗ y)}i∈I

≥ inf{min{fF̃i[ei]
(x), fF̃i[ei]

(y)}}i∈I

= min{inf{fF̃i[ei]
(x)}i∈I , inf{fF̃i[ei]

(y)}i∈I}

= min{f⋂
i∈I F̃i[ei]

(x), f⋂
i∈I F̃i[ei]

(y)}

= min{fF̃[e](x), fF̃[e](y)}.

Therefore, F̃[e] is a fuzzy UPs-subalgebra of A, that is, (F̃, E) is an e-fuzzy soft

UPs-subalgebra of A. But since e is an arbitrary statistic of E, we have (F̃, E) is

a fuzzy soft UPs-subalgebra of A.

In the same way as Theorem 4.5.12, we can prove that the AND of family

of fuzzy soft UPi-subalgebras (resp., fuzzy soft near UPs-filters, fuzzy soft near

UPi-filters, fuzzy soft UPs-filters, fuzzy soft UPi-filters, fuzzy soft UPs-ideals,

fuzzy soft UPi-ideals, fuzzy soft strongly UPs-ideals, fuzzy soft strongly UPi-

ideals) of A is also a fuzzy soft UPi-subalgebra (resp., fuzzy soft near UPs-filter,

fuzzy soft near UPi-filter, fuzzy soft UPs-filter, fuzzy soft UPi-filter, fuzzy soft

UPs-ideal, fuzzy soft UPi-ideal, fuzzy soft strongly UPs-ideal, fuzzy soft strongly

UPi-ideal).

Definition 4.5.13 Let {(F̃i, Ei) | i ∈ I} be a nonempty family of fuzzy soft sets

over a common universe U where I is an arbitrary index set. The OR of (F̃i, Ei)

is defined to be the fuzzy soft set
∨

i∈I(F̃i, Ei) = (F̃, E) satisfying the following

conditions:

(i) E =
∏

i∈I Ei and

(ii) F̃[(ei)i∈I ] =
⋃

i∈I F̃i[ei] for all (ei)i∈I ∈ E.
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Theorem 4.5.14 The OR of family of fuzzy soft near UPi-filters of A is also a

fuzzy soft near UPi-filter.

Proof. Let (F̃i, Ei) be a fuzzy soft near UPi-filters of A for all i ∈ I. By means

of Definition 4.5.13, we assume that
∨

i∈I(F̃i, Ei) = (F̃, E) such that E =
∏

i∈I Ei

and F̃[(ei)i∈I ] =
⋃

i∈I F̃i[ei] for all (ei)i∈I ∈ E. Assume that e = (ei)i∈I ∈ E and

let x, y ∈ A. Then

fF̃[e](0) = f⋃
i∈I F̃i[ei]

(0)

= sup{fF̃i[ei]
(0)}i∈I

≥ sup{fF̃i[ei]
(x)}i∈I

= f⋃
i∈I F̃i[ei]

(x)

= fF̃[e](x),

fF̃[e](x · y) = f⋃
i∈I F̃i[ei]

(x · y)

= sup{fF̃i[ei]
(x · y)}i∈I

≥ sup{fF̃i[ei]
(y)}i∈I

= f⋃
i∈I F̃i[ei]

(y)

= fF̃[e](y), and

fF̃[e](x ∗ y) = f⋃
i∈I F̃i[ei]

(x ∗ y)

= sup{fF̃i[ei]
(x ∗ y)}i∈I

≥ sup{max{fF̃i[ei]
(x), fF̃i[ei]

(y)}}i∈I

= max{sup{fF̃i[ei]
(x)}i∈I , sup{fF̃i[ei]

(y)}i∈I}

= max{f⋂
i∈I F̃i[ei]

(x), f⋂
i∈I F̃i[ei]

(y)}

= max{fF̃[e](x), fF̃[e](y)}.

Therefore, F̃[e] is a fuzzy near UPi-filter of A, that is, (F̃, E) is an e-fuzzy soft

near UPi-filter of A. But since e is an arbitrary statistic of E, we have (F̃, E) is
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a fuzzy soft near UPi-filter of A.

In the same way as Theorem 4.5.14, we can prove that the OR of family

of fuzzy soft strongly UPs-ideals (resp., fuzzy soft strongly UPi-ideals) of A is

also a fuzzy soft strongly UPs-ideal (resp., fuzzy soft strongly UPi-ideal).

The following example shows that the OR of two fuzzy soft UPs-subalge-

bras of A are not fuzzy soft UPs-subalgebra.

Example 4.5.15 By Cayley tables in Example 4.4.7, we know thatA = (A, ·, ∗,X)

is an f -UP-semigroup. Let (F̃1, E1) and (F̃2, E2) be two fuzzy soft sets over A

where

E1 := {price, beauty, specifications} and E2 := {price, stability}

with F̃1[price], F̃1[beauty], F̃1[specifications], F̃2[price], and F̃2[stability] are fuzzy

sets in A defined as follows:

F̃1 X 7 6 5

price 0.9 0.7 0.9 0.2

beauty 1 0.8 0.3 0.2

specifications 0.6 0.5 0.3 0.4

F̃2 X 7 6 5

price 0.9 0.3 0.2 0.8

stability 0.7 0.2 0.5 0.2

Then (F̃1, E1) and (F̃2, E2) are two fuzzy soft UPs-subalgebras of A. Since

(price, price) ∈ E1 × E2, we have

(fF̃1[price]∪F̃2[price])(5 ∗ 6) = (fF̃1[price]∪F̃2[price])(7)

= 0.7

� 0.8

= min{0.8, 0.9}
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= min{(fF̃1[price]∪F̃2[price])(5), (fF̃1[price]∪F̃2[price])(6)}.

Thus F̃1[price] ∪ F̃2[price] is not a fuzzy UPs-subalgebra of A, that is, (F̃1, E1) ∪

(F̃2, E2) is not a (price, price)-fuzzy soft UPs-subalgebra of A. Hence, (F̃1, E1) ∪

(F̃2, E2) is not a fuzzy soft UPs-subalgebra of A. Moreover, (F̃1, E1)∨ (F̃2, E2) is

not a fuzzy soft UPs-subalgebra of A.

We can apply this example for check that the OR of two fuzzy soft UPi-

subalgebras (resp., fuzzy soft near UPs-filters, fuzzy soft UPs-filters, fuzzy soft

UPi-filters, fuzzy soft UPs-ideals, fuzzy soft UPi-ideals) of A are not fuzzy soft

UPi-subalgebra (resp., fuzzy soft near UPs-filter, fuzzy soft UPs-filter, fuzzy soft

UPi-filter, fuzzy soft UPs-ideal, fuzzy soft UPi-ideal).

We prove that certain distributive laws hold in fuzzy soft set theory with

respect to the restricted union, the union, the intersection, and the extended

intersection on any fuzzy soft sets.

Theorem 4.5.16 Let (F̃i, Ei) and (F̃, E) be fuzzy soft sets over a common uni-

verse U where I is a nonempty set. Then the following properties hold:

(1) (F̃, E) e (
⋃

i∈I(F̃i, Ei)) =
⋃

i∈I((F̃, E) e (F̃i, Ei)),

(2) (
⋃

i∈I(F̃i, Ei)) e (F̃, E) =
⋃

i∈I((F̃i, Ei) e (F̃, E)),

(3) (F̃, E) d (
⋂

i∈I(F̃i, Ei)) =
⋂

i∈I((F̃, E) d (F̃i, Ei)),

(4) (
⋂

i∈I(F̃i, Ei)) d (F̃, E) = (F̃i, Ei)) d
⋂

i∈I((F̃, E),

(5) (F̃, E) ∩ (di∈I(F̃i, Ei)) =di∈I((F̃, E) ∩ (F̃i, Ei)),

(6) (di∈I(F̃i, Ei)) ∩ (F̃, E) =di∈I((F̃i, Ei) ∩ (F̃, E)),

(7) (F̃, E) ∪ (ei∈I(F̃i, Ei)) =ei∈I((F̃, E) ∪ (F̃i, Ei)),
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(8) (ei∈I(F̃i, Ei)) ∪ (F̃, E) =ei∈I((F̃i, Ei) ∪ (F̃, E)),

(9) (F̃, E) e (di∈I(F̃i, Ei)) =di∈I((F̃, E) e (F̃i, Ei)),

(10) (di∈I(F̃i, Ei)) e (F̃, E) =di∈I((F̃i, Ei) e (F̃, E)),

(11) (F̃, E) d (ei∈I(F̃i, Ei)) =ei∈I((F̃, E) d (F̃i, Ei)), and

(12) (ei∈I(F̃i, Ei)) d (F̃, E) =ei∈I((F̃i, Ei) d (F̃, E)).

Proof. (1) First, we investigate left hand side of the equality. Suppose that⋃
i∈I(F̃i, Ei) = (G̃, EU) is the union of (F̃i, Ei) for all i ∈ I. Then EU =

⋃
i∈I Ei

and for any e ∈ EU , G̃[e] =
⋃

j∈J F̃j[e] with e ∈
⋂

j∈J Ej −
⋃

k∈I−J Ek where

∅ 6= J ⊆ I. Thus (F̃, E) e (
⋃

i∈I(F̃i, Ei)) = (F̃, E) e (G̃, EU) = (H̃, EUI). For any

e ∈ EUI = E ∩ EU 6= ∅, H̃[e] = F̃[e] ∩ G̃[e] where E ∩ EU = E ∩ (
⋃

i∈I Ei) =⋃
i∈I(E ∩ Ei). By considering G̃ as piecewise defined function, we have H̃[e] =

F̃[e] ∩ (
⋃

j∈J F̃j[e]) with e ∈
⋂

j∈J(E ∩ Ej)−
⋃

k∈I−J(E ∩ Ek) where ∅ 6= J ⊆ I.

Consider the right hand side of the equality. Suppose that (F̃, E) e

(F̃i, Ei) = (̃Ii, E
I
i ) is the intersection of (F̃, E) and (F̃i, Ei) for all i ∈ I. Then EI

i =

E∩Ei 6= ∅ and for any e ∈ EI
i , Ĩi[e] = F̃[e]∩ F̃i[e]. Now,

⋃
i∈I((F̃, E)e (F̃i, Ei)) =⋃

i∈I (̃Ii, E
I
i ) = (J̃, EIU), where EIU =

⋃
i∈I E

I
i =

⋃
i∈I(E ∩Ei). For any e ∈ EIU ,

J̃[e] =
⋃

j∈J Ĩj[e] with e ∈
⋂

j∈J E
I
j −

⋃
k∈I−J E

I
k where ∅ 6= J ⊆ I. Considering

Ĩi as piecewise functions for all i ∈ I, we have J̃[e] =
⋃

j∈J(F̃[e] ∩ F̃j[e]) with

e ∈
⋂

j∈J(E∩Ej)−
⋃

k∈I−J(E∩Ek) where ∅ 6= J ⊆ I. By Theorem 3.0.37(1), it is

clear that H̃ and J̃ are same set-valued mapping. Hence, (F̃, E)e(
⋃

i∈I(F̃i, Ei)) =⋃
i∈I((F̃, E) e (F̃i, Ei)).

(2) By using techniques as in (1) and by Theorem 3.0.37(2), then (2) can

is derived.

(3) By using techniques as in (1) and by Theorem 3.0.37(3), then (3) can

is derived.
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(4) By using techniques as in (1) and by Theorem 3.0.37(4), then (4) can

is derived.

(5) First, we investigate left hand side of the equality. Suppose that

di∈I(F̃i, Ei) = (G̃, ERU) is the restricted union of (F̃i, Ei) for all i ∈ I. Then

ERU =
⋂

i∈I Ei 6= ∅ and for any e ∈ ERU , G̃[e] =
⋃

i∈I F̃i[e]. Thus (F̃, E) ∩

(di∈I(F̃i, Ei)) = (F̃, E)∩(G̃, ERU) = (H̃, ERUEI). For any e ∈ ERUEI = E∪ERU ,

we have

H̃[e] =


F̃[e] if e ∈ E \ ERU

G̃[e] if e ∈ ERU \ E

F̃[e] ∩ G̃[e] if e ∈ E ∩ ERU .

By taking into account the definition of G̃ along with H̃, we can write

H̃[e] =


F̃[e] if e ∈ E \ (

⋂
i∈I Ei)⋃

i∈I F̃i[e] if e ∈ (
⋂

i∈I Ei) \ E

F̃[e] ∩ (
⋃

i∈I F̃i[e]) if e ∈ E ∩ (
⋂

i∈I Ei).

Consider the right hand side of the equality. Suppose that (F̃, E) ∩

(F̃i, Ei) = (̃Ii, E
EI
i ) is the extended intersection of (F̃, E) and (F̃i, Ei) for all

i ∈ I. Then for any e ∈ EEI
i = E ∪ Ei, we have

Ĩi[e] =


F̃[e] if e ∈ E \ Ei

F̃i[e] if e ∈ Ei \ E

F̃[e] ∩ F̃i[e] if e ∈ E ∩ Ei.

Now,di∈I((F̃, E)∩(F̃i, Ei))=di∈I (̃Ii, E
EI
i ) = (J̃, EEIRU) where EEIRU =

⋂
i∈I E

I
i

=
⋂

i∈I(E ∪ Ei) = E ∪ (
⋂

i∈I Ei) 6= ∅. For any e ∈ EEIRU , J̃[e] =
⋃

i∈I Ĩi[e]. By

taking into account the properties of operations in set theory and considering Ĩi
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as piecewise defined functions for all i ∈ I, we have

J̃[e] =


⋃

i∈I F̃[e] if e ∈ E \ (
⋂

i∈I Ei)⋃
i∈I F̃i[e] if e ∈ (

⋂
i∈I Ei) \ E⋃

i∈I(F̃[e] ∩ F̃i[e]) if e ∈ E ∩ (
⋂

i∈I Ei).

And so

J̃[e] =


F̃[e] if e ∈ E \ (

⋂
i∈I Ei)⋃

i∈I F̃i[e] if e ∈ (
⋂

i∈I Ei) \ E⋃
i∈I(F̃[e] ∩ F̃i[e]) if e ∈ E ∩ (

⋂
i∈I Ei).

By Theorem 3.0.37(1), it is clear that H̃ and J̃ are same set-valued mapping.

Hence, (F̃, E) ∩ (di∈I(F̃i, Ei)) =di∈I((F̃, E) ∩ (F̃i, Ei)).

(6) By using techniques as in (5) and by Theorem 3.0.37(2), then (6) can

is derived.

(7) By using techniques as in (5) and by Theorem 3.0.37(3), then (7) can

is derived.

(8) By using techniques as in (5) and by Theorem 3.0.37(4), then (8) can

is derived.

(9) First, we investigate left hand side of the equality. Suppose that

di∈I(F̃i, Ei) = (G̃, ERU) is the restricted union of (F̃i, Ei) for all i ∈ I. Then

ERU =
⋂

i∈I Ei 6= ∅ and for any e ∈ ERU , G̃[e] =
⋃

i∈I F̃i[e]. Thus (F̃, E) e

(di∈I(F̃i, Ei)) = (F̃, E)e (G̃, ERU) = (H̃, ERUI). For any e ∈ ERUI = E∩ERU =

E ∩ (
⋂

i∈I Ei) 6= ∅, we have H̃[e] = F̃[e] ∩ G̃[e] = F̃[e] ∩ (
⋃

i∈I F̃i[e]).

Consider the right hand side of the equality. Suppose that (F̃, E) e

(F̃i, Ei) = (̃Ii, E
I
i ) is the intersection of (F̃, E) and (F̃i, Ei) for all i ∈ I. Then EI

i =

E∩Ei 6= ∅ and for any e ∈ EI
i , Ĩi[e] = F̃[e]∩ F̃i[e]. Now, di∈I((F̃, E)e(F̃i, Ei)) =

di∈I (̃Ii, E
I
i ) = (J̃, EIRU), where EIRU =

⋂
i∈I E

I
i =

⋂
i∈I(E∩Ei) 6= ∅. For any e ∈
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EIRU , J̃[e] =
⋃

j∈J Ĩj[e] =
⋃

j∈J(F̃[e]∩ F̃i[e]). Since
⋂

i∈I(E ∩Ei) = E ∩ (
⋂

i∈I Ei),

we have EIRU = ERUI . By Theorem 3.0.37(1), it is clear that H̃ and J̃ are same

set-valued mapping. Hence, (F̃, E) e (di∈I(F̃i, Ei)) =di∈I((F̃, E) e (F̃i, Ei)).

(10) By using techniques as in (9) and by Theorem 3.0.37(2), then (10)

can is derived.

(11) By using techniques as in (9) and by Theorem 3.0.37(3), then (11)

can is derived.

(12) By using techniques as in (9) and by Theorem 3.0.37(4), then (12)

can is derived.



 

 

 

CHAPTER V

CONCLUSIONS

From the study, we get the following results.

1. Every UPi-subalgebra of A is a UPs-subalgebra of A.

2. Every near UPs-filter of A is a UPs-subalgebra of A.

3. Every near UPi-filter of A is a UPi-subalgebra of A.

4. Every near UPi-filter of A is a near UPs-filter of A.

5. Every UPs-filter of A is a near UPs-filter of A.

6. Every UPi-filter of A is a near UPi-filter of A.

7. Every UPi-filter of A is a UPs-filter of A.

8. Every UPs-ideal of A is a UPs-filter of A.

9. Every UPi-ideal of A is a UPi-filter of A.

10. Every UPi-ideal of A is a UPs-ideal of A.

11. Every strongly UPs-ideal of A is a UPs-ideal of A.

12. Every strongly UPi-ideal of A is a UPi-ideal of A.

13. Strongly UPs-ideals and strongly UPi-ideals coincide in A and it is only A.

14. The intersection of any nonempty family of fuzzy UPs-subalgebras of A is

also a fuzzy UPs-subalgebra of A.

15. A nonempty subset S of A is a UPs-subalgebra of A if and only if the

t-characteristic fuzzy set Ft
S is a fuzzy UPs-subalgebra of A.
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16. The intersection of any nonempty family of fuzzy UPi-subalgebras of A is

also a fuzzy UPi-subalgebra of A.

17. A nonempty subset S of A is a UPi-subalgebra of A if and only if the

t-characteristic fuzzy set Ft
S is a fuzzy UPi-subalgebra of A.

18. The intersection of any nonempty family of fuzzy near UPs-filters of an

f -UP-semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPs-filter.

19. A nonempty subset S of A is a near UPs-filter of A if and only if the

t-characteristic fuzzy set Ft
S is a fuzzy near UPs-filter of A.

20. The intersection of any nonempty family of fuzzy near UPi-filters of an

f -UP-semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPi-filter.

21. The union of any nonempty family of fuzzy near UPi-filters of an f -UP-

semigroup A = (A, ·, ∗, 0) is also a fuzzy near UPi-filter.

22. A nonempty subset S of A is a near UPi-filter of A if and only if the t-

characteristic fuzzy set Ft
S is a fuzzy near UPi-filter of A.

23. Every fuzzy near UPs-filter of an f -UP-semigroup is a fuzzy UPs-subalgebra.

24. Every fuzzy near UPi-filter of an f -UP-semigroup is a fuzzy UPi-subalgebra.

25. The intersection of any nonempty family of fuzzy UPs-filters of A is also a

fuzzy UPs-filter of A.

26. A nonempty subset S ofA is a UPs-filter ofA if and only if the t-characteristic

fuzzy set Ft
S is a fuzzy UPs-filter of A.

27. The intersection of any nonempty family of fuzzy UPi-filters of A is also a

fuzzy UPi-filter of A.

28. A nonempty subset S ofA is a UPi-filter ofA if and only if the t-characteristic

fuzzy set Ft
S is a fuzzy UPi-filter of A.
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29. Every fuzzy UPs-filter of an f -UP-semigroup is a fuzzy near UPs-filter.

30. Every fuzzy UPi-filter of an f -UP-semigroup is a fuzzy near UPi-filter.

31. The intersection of any nonempty family of fuzzy UPs-ideals of A is also a

fuzzy UPs-ideal of A.

32. A nonempty subset S ofA is a UPs-ideal ofA if and only if the t-characteristic

fuzzy set Ft
S is a fuzzy UPs-ideal of A.

33. The intersection of any nonempty family of fuzzy UPi-ideals of A is also a

fuzzy UPi-ideal of A.

34. A nonempty subset S ofA is a UPi-ideal ofA if and only if the t-characteristic

fuzzy set Ft
S is a fuzzy UPi-ideal of A.

35. Every fuzzy UPs-ideal of A is a fuzzy UPs-filter of A.

36. Every fuzzy UPi-ideal of A is a fuzzy UPi-filter of A.

37. Fuzzy strongly UPs-ideals, fuzzy strongly UPi-ideals, and constant fuzzy

sets coincide in A.

38. The intersection and union of any nonempty family of fuzzy strongly UPs-

ideals of A are also a fuzzy strongly UPs-ideal of A.

39. The intersection and union of any nonempty family of fuzzy strongly UPi-

ideals of A are also a fuzzy strongly UPi-ideal of A.

40. A nonempty subset S of A is a strongly UPs-ideal of A if and only if the

t-characteristic fuzzy set Ft
S is a fuzzy strongly UPs-ideal of A.

41. A nonempty subset S of A is a strongly UPi-ideal of A if and only if the

t-characteristic fuzzy set Ft
S is a fuzzy strongly UPi-ideal of A.
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42. Every fuzzy strongly UPs-ideal (fuzzy strongly UPi-ideal) of A is a fuzzy

UPs-ideal and a fuzzy UPi-ideal of A.

43. If F is a fuzzy set in A satisfying the condition (4.3.3), then F satisfies the

condition (4.3.1).

44. If F is a fuzzy set in A satisfying the condition (4.3.2), then F satisfies the

condition (4.3.4).

45. If F is a fuzzy UP-subalgebra of A satisfying the condition

(∀x, y ∈ A)(x · y 6= 0⇒ fF(x) ≥ fF(y)), (4.3.5)

then F is a fuzzy near UP-filter of A.

46. If F is a fuzzy set in A satisfying the condition (4.3.6), then F satisfies the

condition (4.3.2).

47. If F is a fuzzy near UP-filter of A satisfying the condition

(∀x, y ∈ A)(fF(x · y) = fF(y)), (4.3.7)

then F is a fuzzy UP-filter of A.

48. Let A be a UP-algebra satisfying the condition

(∀x, y, z ∈ A)(z · (y · x) = y · (z · x)). (4.3.10)

If F is a fuzzy set in A satisfying the condition (4.3.9), then F satisfies the

condition (4.3.8).

49. If F is a fuzzy set in A satisfying the condition (4.3.9), then F satisfies the

condition (4.3.6).



 

 

 
101

50. If F is a fuzzy UP-filter of A satisfying the condition

(∀x, y, z ∈ A)(fF(y · (x · z)) = fF(x · (y · z))), (4.3.11)

then F is a fuzzy UP-ideal of A.

51. If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(z ≤ x · y ⇒ fF(z) ≥ min{fF(x), fF(y)}), (4.3.13)

then F satisfies the condition (4.3.3).

52. If F is a fuzzy set in A satisfying the condition

(∀x, y, z ∈ A)(z ≤ x · y ⇒ fF(z) ≥ fF(y)), (4.3.14)

then F satisfies the condition (4.3.3).

53. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.3) and (3.0.14), then (F̃, E) is a fuzzy soft

UPs-subalgebra of A.

54. If (F̃, E) is a fuzzy soft UPs-subalgebra of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPs-subalgebra of A.

55. The extended intersection of two fuzzy soft UPs-subalgebras of A is also

a fuzzy soft UPs-subalgebra. Moreover, the intersection of two fuzzy soft

UPs-subalgebras of A is also a fuzzy soft UPs-subalgebra.

56. The union of two fuzzy soft UPs-subalgebras of A is also a fuzzy soft UPs-

subalgebra if sets of statistics of two fuzzy soft UPs-subalgebras are disjoint.

57. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]
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in A satisfies the conditions (4.3.3) and (3.0.15), then (F̃, E) is a fuzzy soft

UPi-subalgebra of A.

58. Every e-fuzzy soft UPi-subalgebra of A is an e-fuzzy soft UPs-subalgebra.

Moreover, every fuzzy soft UPi-subalgebra ofA is a fuzzy soft UPs-subalgebra.

59. If (F̃, E) is a fuzzy soft UPi-subalgebra of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft UPi-subalgebra of A.

60. The extended intersection of two fuzzy soft UPi-subalgebras of A is also

a fuzzy soft UPi-subalgebra. Moreover, the intersection of two fuzzy soft

UPi-subalgebras of A is also a fuzzy soft UPi-subalgebra.

61. The union of two fuzzy soft UPi-subalgebras of A is also a fuzzy soft UPi-

subalgebra if sets of statistics of two fuzzy soft UPi-subalgebras are disjoint.

62. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.2) and (3.0.14), then (F̃, E) is a fuzzy soft

near UPs-filter of A.

63. Every e-fuzzy soft near UPs-filter of A is an e-fuzzy soft UPs-subalgebra.

Moreover, every fuzzy soft near UPs-filter ofA is a fuzzy soft UPs-subalgebra.

64. If (F̃, E) is a fuzzy soft UPs-subalgebra of A such that for all e ∈ E, a fuzzy

set F̃[e] in A satisfies the condition (4.3.5), then (F̃, E) is a fuzzy soft near

UPs-filter of A.

65. If (F̃, E) is a fuzzy soft near UPs-filter of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗)

is a fuzzy soft near UPs-filter of A.

66. The extended intersection of two fuzzy soft near UPs-filters of A is also a

fuzzy soft near UPs-filter. Moreover, the intersection of two fuzzy soft near

UPs-filters of A is also a fuzzy soft near UPs-filter.
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67. The union of two fuzzy soft near UPs-filters of A is also a fuzzy soft near

UPs-filter if sets of statistics of two fuzzy soft near UPs-filters are disjoint.

68. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.2) and (3.0.15), then (F̃, E) is a fuzzy soft

near UPi-filter of A.

69. Every e-fuzzy soft near UPi-filter of A is an e-fuzzy soft near UPs-filter.

Moreover, every fuzzy soft near UPi-filter of A is a fuzzy soft near UPs-

filter.

70. Every e-fuzzy soft near UPi-filter of A is an e-fuzzy soft UPi-subalgebra.

Moreover, every fuzzy soft near UPi-filter ofA is a fuzzy soft UPi-subalgebra.

71. If (F̃, E) is a fuzzy soft UPi-subalgebra of A such that for all e ∈ E, a fuzzy

set F̃[e] in A satisfies the condition (4.3.5), then (F̃, E) is a fuzzy soft near

UPi-filter of A.

72. If (F̃, E) is a fuzzy soft near UPi-filter of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗)

is a fuzzy soft near UPi-filter of A.

73. The extended intersection of two fuzzy soft near UPi-filters of A is also a

fuzzy soft near UPi-filter. Moreover, the intersection of two fuzzy soft near

UPi-filters of A is also a fuzzy soft near UPi-filter.

74. The union of two fuzzy soft near UPi-filters of A is also a fuzzy soft near

UPi-filter. Moreover, the restricted union of two fuzzy soft near UPi-filters

of A is also a fuzzy soft near UPi-filter.

75. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.6) and (3.0.14), then (F̃, E) is a fuzzy soft

UPs-filter of A.
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76. Every e-fuzzy soft UPs-filter of A is an e-fuzzy soft near UPs-filter. More-

over, every fuzzy soft UPs-filter of A is a fuzzy soft near UPs-filter.

77. If (F̃, E) is a fuzzy soft near UPs-filter of A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the condition (4.3.7), then (F̃, E) is a fuzzy soft

UPs-filter of A.

78. If (F̃, E) is a fuzzy soft UPs-filter of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗) is

a fuzzy soft UPs-filter of A.

79. The extended intersection of two fuzzy soft UPs-filters of A is also a fuzzy

soft UPs-filter. Moreover, the intersection of two fuzzy soft UPs-filters of A

is also a fuzzy soft UPs-filter.

80. The union of two fuzzy soft UPs-filters of A is also a fuzzy soft UPs-filter if

sets of statistics of two fuzzy soft UPs-filters are disjoint.

81. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.6) and (3.0.15), then (F̃, E) is a fuzzy soft

UPi-filter of A.

82. Every e-fuzzy soft UPi-filter of A is an e-fuzzy soft UPs-filter. Moreover,

every fuzzy soft UPi-filter of A is a fuzzy soft UPs-filter.

83. Every e-fuzzy soft UPi-filter of A is an e-fuzzy soft near UPi-filter. More-

over, every fuzzy soft UPi-filter of A is a fuzzy soft near UPi-filter.

84. If (F̃, E) is a fuzzy soft near UPi-filter of A such that for all e ∈ E, a

fuzzy set F̃[e] in A satisfies the condition (4.3.7), then (F̃, E) is a fuzzy soft

UPi-filter of A.

85. If (F̃, E) is a fuzzy soft UPi-filter of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗) is

a fuzzy soft UPi-filter of A.
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86. The extended intersection of two fuzzy soft UPi-filters of A is also a fuzzy

soft UPi-filter. Moreover, the intersection of two fuzzy soft UPi-filters of A

is also a fuzzy soft UPi-filter.

87. The union of two fuzzy soft UPi-filters of A is also a fuzzy soft UPi-filter if

sets of statistics of two fuzzy soft UPi-filters are disjoint.

88. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.8) and (3.0.14), then (F̃, E) is a fuzzy soft

UPs-ideal of A.

89. Every e-fuzzy soft UPs-ideal of A is an e-fuzzy soft UPs-filter. Moreover,

every fuzzy soft UPs-ideal of A is a fuzzy soft UPs-filter.

90. If (F̃, E) is a fuzzy soft UPs-filter of A such that for all e ∈ E, a fuzzy set

F̃[e] in A satisfies the condition (4.3.11), then (F̃, E) is a fuzzy soft UPs-ideal

of A.

91. If (F̃, E) is a fuzzy soft UPs-ideal of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗) is

a fuzzy soft UPs-ideal of A.

92. The extended intersection of two fuzzy soft UPs-ideals of A is also a fuzzy

soft UPs-ideal. Moreover, the intersection of two fuzzy soft UPs-ideals of A

is also a fuzzy soft UPs-ideal.

93. The union of two fuzzy soft UPs-ideals of A is also a fuzzy soft UPs-ideal if

sets of statistics of two fuzzy soft UPs-ideals are disjoint.

94. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.8) and (3.0.15), then (F̃, E) is a fuzzy soft

UPi-ideal of A.

95. Every e-fuzzy soft UPi-ideal of A is an e-fuzzy soft UPs-ideal. Moreover,

every fuzzy soft UPi-ideal of A is a fuzzy soft UPs-ideal.
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96. Every e-fuzzy soft UPi-ideal of A is an e-fuzzy soft UPi-filter. Moreover,

every fuzzy soft UPi-ideal of A is a fuzzy soft UPi-filter.

97. If (F̃, E) is a fuzzy soft UPi-filter of A such that for all e ∈ E, a fuzzy set

F̃[e] in A satisfies the condition (4.3.11), then (F̃, E) is a fuzzy soft UPi-ideal

of A.

98. If (F̃, E) is a fuzzy soft UPi-ideal of A and ∅ 6= E∗ ⊆ E, then (F̃|E∗ , E∗) is

a fuzzy soft UPi-ideal of A.

99. The extended intersection of two fuzzy soft UPi-ideals of A is also a fuzzy

soft UPi-ideal. Moreover, the intersection of two fuzzy soft UPi-ideals of A

is also a fuzzy soft UPi-ideal.

100. The union of two fuzzy soft UPi-ideals of A is also a fuzzy soft UPi-ideal if

sets of statistics of two fuzzy soft UPi-ideals are disjoint.

101. Every e-fuzzy soft strongly UPs-ideal of A is an e-fuzzy soft UPs-ideal.

Moreover, every fuzzy soft strongly UPs-ideal of A is a fuzzy soft UPs-ideal.

102. e-fuzzy soft strongly UPs-ideals and e-constant fuzzy soft sets coincide in

A. Moreover, fuzzy soft strongly UPs-ideals and constant fuzzy soft sets

coincide in A.

103. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.12) (or (4.3.13) or (4.3.14)) and (3.0.14),

then (F̃, E) is a fuzzy soft strongly UPs-ideal of A.

104. If (F̃, E) is a fuzzy soft strongly UPs-ideal of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft strongly UPs-ideal of A.

105. The extended intersection of two fuzzy soft strongly UPs-ideals of A is also

a fuzzy soft strongly UPs-ideal. Moreover, the intersection of two fuzzy soft

strongly UPs-ideals of A is also a fuzzy soft strongly UPs-ideal.
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106. The union of two fuzzy soft strongly UPs-ideals is also a fuzzy soft strongly

UPs-ideal. Moreover, the restricted union of two fuzzy soft strongly UPs-

ideals of A is also a fuzzy soft strongly UPs-ideal.

107. Every e-fuzzy soft strongly UPi-ideal of A is an e-fuzzy soft UPi-ideal. More-

over, every fuzzy soft strongly UPi-ideal of A is a fuzzy soft UPi-ideal.

108. e-fuzzy soft strongly UPi-ideals and e-constant fuzzy soft sets coincide in

A. Moreover, fuzzy soft strongly UPi-ideals and constant fuzzy soft sets

coincide in A.

109. If (F̃, E) is a fuzzy soft set over A such that for all e ∈ E, a fuzzy set F̃[e]

in A satisfies the conditions (4.3.12) (or (4.3.13) or (4.3.14)) and (3.0.15),

then (F̃, E) is a fuzzy soft strongly UPi-ideal of A.

110. If (F̃, E) is a fuzzy soft strongly UPi-ideal of A and ∅ 6= E∗ ⊆ E, then

(F̃|E∗ , E∗) is a fuzzy soft strongly UPi-ideal of A.

111. The extended intersection of two fuzzy soft strongly UPi-ideals of A is also

a fuzzy soft strongly UPi-ideal. Moreover, the intersection of two fuzzy soft

strongly UPi-ideals of A is also a fuzzy soft strongly UPi-ideal.

112. The union of two fuzzy soft strongly UPi-ideals of A is also a fuzzy soft

strongly UPs-ideal. Moreover, the restricted union of two fuzzy soft strongly

UPi-ideals of A is also a fuzzy soft strongly UPi-ideal.

113. The restricted union of family of fuzzy soft near UPi-filters of A is also a

fuzzy soft near UPi-filter.

114. The union of family of fuzzy soft near UPi-filters of A is also a fuzzy soft

near UPi-filter.

115. The intersection of family of fuzzy soft UPs-subalgebras of A is also a fuzzy

soft UPs-subalgebra.
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116. The extended intersection of family of fuzzy soft UPs-subalgebras of A is

also a fuzzy soft UPs-subalgebra.

117. The AND of family of fuzzy soft UPs-subalgebras of A is also a fuzzy soft

UPs-subalgebra.

118. The OR of family of fuzzy soft near UPi-filters of A is also a fuzzy soft near

UPi-filter.

119. Let (F̃i, Ei) and (F̃, E) be fuzzy soft sets over a common universe U where

I is a nonempty set. Then the following properties hold:

(1) (F̃, E) e (
⋃

i∈I(F̃i, Ei)) =
⋃

i∈I((F̃, E) e (F̃i, Ei)),

(2) (
⋃

i∈I(F̃i, Ei)) e (F̃, E) =
⋃

i∈I((F̃i, Ei) e (F̃, E)),

(3) (F̃, E) d (
⋂

i∈I(F̃i, Ei)) =
⋂

i∈I((F̃, E) d (F̃i, Ei)),

(4) (
⋂

i∈I(F̃i, Ei)) d (F̃, E) = (F̃i, Ei)) d
⋂

i∈I((F̃, E),

(5) (F̃, E) ∩ (di∈I(F̃i, Ei)) =di∈I((F̃, E) ∩ (F̃i, Ei)),

(6) (di∈I(F̃i, Ei)) ∩ (F̃, E) =di∈I((F̃i, Ei) ∩ (F̃, E)),

(7) (F̃, E) ∪ (ei∈I(F̃i, Ei)) =ei∈I((F̃, E) ∪ (F̃i, Ei)),

(8) (ei∈I(F̃i, Ei)) ∪ (F̃, E) =ei∈I((F̃i, Ei) ∪ (F̃, E)),

(9) (F̃, E) e (di∈I(F̃i, Ei)) =di∈I((F̃, E) e (F̃i, Ei)),

(10) (di∈I(F̃i, Ei)) e (F̃, E) =di∈I((F̃i, Ei) e (F̃, E)),

(11) (F̃, E) d (ei∈I(F̃i, Ei)) =ei∈I((F̃, E) d (F̃i, Ei)), and

(12) (ei∈I(F̃i, Ei)) d (F̃, E) =ei∈I((F̃i, Ei) d (F̃, E)).
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