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ABSTRACT

In this research, we introduce several types of subsets and of fuzzy sets of fully UP-semigroups,
investigate the algebraic properties of fuzzy sets under the operations of intersection and union, and
discuss the relation between t-characteristic fuzzy sets and UP, -subalgebras (resp., UP, —subalgebras,
near UP, —filters, near UP filters, UP, filters, UP filters, UP, -ideals, UP -ideals, strongly UP, -ideals
and strongly UP. —ideals). We introduce ten types of fuzzy soft sets over fully UP-semigroups, investigate
the algebraic properties of fuzzy soft sets under the operations of (extended) intersection and (restricted)
union, and discuss the relation between some conditions of fuzzy soft sets and fuzzy soft UP, -subalgebras
(resp., fuzzy soft UP, —subalgebras, fuzzy soft near UP, filters, fuzzy soft near UP filters, fuzzy soft UP,
—filters, fuzzy soft UP, —filters, fuzzy soft UP, -ideals, fuzzy soft UP -ideals, fuzzy soft strongly UP, -
ideals, fuzzy soft strongly UP, -ideals). We apply distributivity laws of several fuzzy sets for any fuzzy sets
and study distributivity laws with any fuzzy soft sets. We investigate properties of some operations for
fuzzy soft sets and their interrelation with respect to different operations such as “(restricted) union”,

“(extended) intersection”, “AND”, and “OR”.
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CHAPTER 1

INTRODUCTION

Among many algebraic structures, algebras of logic form important class
of algebras. Examples of these algebras are BCK-algebras [11], BCI-algebras
[12], B-algebras [26], UP-algebras [§] and so on. They are strongly connected
with some logic. For example, BCI-algebras introduced by Iséki [12] in 1966 have
connections with BCI-logic being the BCI-system in combinatory logic which has
application in the language of functional programming. BCK and BClI-algebras
are two classes of logical algebras. They were introduced by Tmai and Iséki [T1], [12]
in 1966 and have been extensively investigated by many researchers. It is known

that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

Several researches introduced a new class of algebras related to logical
algebras and semigroups such as: In 1993, Jun et al. [15] introduced the notion
of BCI-semigroups. In 1998, Jun et al. [20] renamed the BCI-semigroup as the
[S-algebra. In 2006, Kim [21] introduced the notion of KS-semigroups. In 2015,
Endam and Vilela [6] introduced the notion of JB-semigroups. In 2018, lampan

[9] introduced the notion of fully UP-semigroups.

A fuzzy subset F of a set X is a function from X to a closed interval
[0,1]. The concept of a fuzzy subset of a set was first considered by Zadeh [30]
in 1965. The fuzzy set theories developed by Zadeh and others have found many
applications in the domain of mathematics and elsewhere. After the introduction
of the concept of fuzzy sets by Zadeh [36], several researches were conducted on
the generalizations of the notion of fuzzy set and application to many logical
algebras such as: In 1998, Jun et al. [I4] applied the notion of fuzzy sets to
BCl-semigroups (it was renamed as an IS-algebra for the convenience of study),

and introduced the concept of fuzzy I-ideals. In 2000, Roh et al. [30] considered



the fuzzification of an associative [-ideal of an IS-algebra. They proved that every
fuzzy associative I-ideal is a fuzzy I-ideal. By giving an appropriate example, they
verified that a fuzzy I-ideal may not be a fuzzy associative I-ideal. They gave a
condition for a fuzzy I-ideal to be a fuzzy associative I-ideal, and they investigated
some related properties. In 2003, Jun and Kondo [I7] proved that some concepts
of BCK/BClI-algebras expressed by a certain formula can be naturally extended
to the fuzzy setting and that many results are obtained immediately with the
use of our method. Moreover, they proved that these results can be extended to
fuzzy IS-algebras. In 2003, Jianming and Dajing [13] introduced the concept of
intuitionistic fuzzy associative I-ideals of IS-algebras and they investigated some
related properties. In 2007, Prince Williams and Husain [35] studied fuzzy KS-
semigroups. In 2016, Endam and Manahon [5] introduced the notion of fuzzy

JB-semigroups and they investigated some of its properties.

In 1999, to solve complicated problems in economics, engineering, and
environment, we cannot successfully use classical methods because of various un-
certainties typical for those problems. Uncertainties cannot be handled using
traditional mathematical tools but may be dealt with using a wide range of ex-
isting theories such as the probability theory, the theory of (intuitionistic) fuzzy
sets, the theory of vague sets, the theory of interval mathematics, and the theory
of rough sets. However, all of these theories have their own difficulties which are
pointed out in [25]. In 2001, Maji et al. [24] introduced the concept of fuzzy soft
sets as a generalization of the standard soft sets, and presented an application
of fuzzy soft sets in a decision making problem. In 2010, Jun et al. [I8] applied
fuzzy soft set for dealing with several kinds of theories in BCK/BClI-algebras.
The notions of fuzzy soft BCK/BCl-algebras, (closed) fuzzy soft ideals and fuzzy
soft p-ideals are introduced, and related properties are investigated. In 2013,
Rehman et al. [2§] studied some operations of fuzzy soft sets and give fundamen-

tal properties of fuzzy soft sets. They discuss properties of fuzzy soft sets and



their interrelation with respect to different operations such as union, intersection,
restricted union and extended intersection. Then, they illustrate properties of
OR, AND operations by giving counter examples. Also we prove that certain De
Morgan’s laws hold in fuzzy soft set theory with respect to different operations

on fuzzy soft sets.



CHAPTER II
REVIEW OF RELATED LITERATURE

AND RESEARCH

Two important classes of logical algebras, BCK and BCI-algebras were

introduced by Imai and Iséki [11] 12].

Definition 2.0.1 An algebra A = (A, -,0) is called a BCI-algebra if it satisfies
the following conditions:

(BCI-1) (Vo,y,2z € A)(((z - y) - (x-2)-(y-2)) =0),

(BCI-2) (Va,y € A)((z- (x-y)) -y =),

(BCI-3) (Vz € A)(x-2z=0), and

(BCI-4) Vo,y€e A)(z-y=0,y-z2=0=z=1y).

A BCl-algebra A is called a BCK-algebra if it satisfies the following

identity:

(BCK) (Vz € A)(0-z=0).

In 2002, Neggers and Kim [26] introduced the notion of B-algebras.
Definition 2.0.2 An algebra A = (A, -,0) of type (2,0) is called a B-algebra if
it satisfies the following axioms:

(B-1) (Vxz e A)(z -2 =0),
(B-2) (Vx € A)(xz-0=1x), and

(B-3) (Yo,y,2 € A)(w-y)-2=a- (= (0-1))).



In 2017, Iampan [§] introduced the notion of UP-algebras.

Definition 2.0.3 An algebra A = (A,-,0) of type (2,0) is called a UP-algebra
where A is a nonempty set, - is a binary operation on A, and 0 is a fixed element

of A (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1) (Va,y,2 € A)((y-2) - ((z-y) - (z - 2)) = 0),
(UP-2) (Vz € A)(0-2=x),
(UP-3) (Vx € A)(x-0=0), and
(UP4) (Ve,ycA)(z-y=0,y-2=0=z=y).
In 1993, Jun et al. [15] introduced the notion of BCI-semigroups (it was
renamed as [S-algebras for the convenience of study).
Definition 2.0.4 An IS-algebra is a nonempty set A together with two binary
operations - and * and a constant 0 satisfying the following:
(IS-1) (A,-,0) is a BCI-algebra,
(IS-2) (A, x) is a semigroup, and

(IS-3) The operation * is left and right distributive over the operation -.

In 2006, Kim [21] introduced the notion of KS-semigroups.

Definition 2.0.5 A KS-semigroup is a nonempty set A together with two binary

operations - and * and a constant 0 satisfying the following:

(KS-1) (4,-,0) is a BCK-algebra,

(KS-2) (A,x) is a semigroup, and



(KS-3) The operation x is left and right distributive over the operation -.

In 2015, Endam and Vilela [6] introduced the notion of JB-semigroups.
Definition 2.0.6 A JB-semigroup is a nonempty set A together with two binary
operations - and * and a constant 0 satisfying the following:

(JB-1) (A,-,0) is a B-algebra,
(JB-2) (A, %) is a semigroup, and
(JB-3) The operation x is left and right distributive over the operation -.

In 2018, Tampan [9] introduced the notion of fully UP-semigroups (in
short, f-UP-semigroups).

Definition 2.0.7 An f-UP-semigroup is a nonempty set A together with two
binary operations - and * and a constant 0 satisfying the following:

(fUP-1) (4,-,0) is a UP-algebra,

(fUP-2) (A, x) is a semigroup, and

(fUP-3) The operation * is left and right distributive over the operation -.

In 1965, Zadeh [30] introduced the concept of a fuzzy set for the first
time.

Definition 2.0.8 A fuzzy set F in a nonempty set U (or a fuzzy subset of U)
is described by its membership function fp. To every point z € U, this func-
tion associates a real number fp(z) in the interval [0,1]. The number fp(z) is

interpreted for the point as a degree of belonging x to the fuzzy set F, that is,



Fi={(u,fp(u)) |ue U}. f ACU and t € (0, 1], the t-characteristic function

[19] X% of U is a function of U into {0, ¢} defined as follows:

t ifrxreA,
0 ifxé¢ A

By the definition of t-characteristic function, x% is a function of U into {0,¢} C

0,1]. We denote the fuzzy set F’; in U is described by its membership function
A

X', is called the t-characteristic fuzzy set of A in U. We say that a fuzzy set F

in U is constant if its membership function fr is constant.
In 1999 - 2004, Jun et al. [29, [16] and Jianming and Dajing [13] applied
the notion of fuzzy sets to IS-algebras.

Definition 2.0.9 A fuzzy set F in a semigroup (A, %) is called a fuzzy stable if
(Vo,y € A)(fp(z *y) > fr(y)).

Definition 2.0.10 A fuzzy set F in a BCl-algebra (A, -,0) is called a fuzzy sub-
algebra if (Vz,y € A)(fp(z - y) > min{fp(z), fr(y)}).

Definition 2.0.11 A fuzzy set F in a BCl-algebra (A, -,0) is called a fuzzy ideal
of A if it satisfies the following conditions:

(1) (Vz € A)(tr(0) > fp(z)), and

(2) (Vz,y € A)(fr(z) = min{fr(z - y), fr(y)}).
Definition 2.0.12 A fuzzy set F in an IS-algebra (A, -, *,0) is called a fuzzy
I-ideal of A if it satisfies the following conditions:

(1) F is a fuzzy stable, and

(2) F is a fuzzy ideal of a BCl-algebra A.



Definition 2.0.13 A fuzzy set F in an IS-algebra (A, -, *,0) is called a fuzzy

associative I-ideal of A if it satisfies the following conditions:

(1) F is a fuzzy stable, and
(2) (Va,y,2 € A)(fe(x) = min{fe((z - y) - 2), oy - 2)}).
In 2016, Endam and Manahon [5] applied the notion of fuzzy sets to

JB-semigroups.
Definition 2.0.14 A fuzzy JB-semigroup F of a JB-semigroup (A, -, *,0) is called
a fuzzy sub JB-semigroup of A if it satisfies the following conditions:

(1) (Vz,y € A)(fr(z - y) > min{fp(z), fr(y)}), and

(2) (Vo,y € A)(fr(z *y) = min{fr(z), fr(y)}).

Definition 2.0.15 A fuzzy JB-semigroup F of a JB-semigroup (A, -, *,0) is called

a fuzzy JB-ideal of A if it satisfies the following conditions:

(1) (Vz,y,a,b € A)(fr((x-a) - (y-b)) > min{fp(z - y),fr(a-b)}), and
(2) (Vo,y € A)(fp(z * y) > min{fr(x), fr(y)}).

Definition 2.0.16 A fuzzy JB-semigroup F of a JB-semigroup (A4, -, *,0) is called

a fuzzy JBg-ideal of A if it satisfies the following conditions:

(1) (Vz,y,a,b € A)(fp((x-a)- (y-b)) > min{fp(z - y),fr(a-b)}), and

(2) (Va,y € A)(fr(z * y) > max{fp(z),fr(y)}).

In 2001, Maji et al. [24] introduced the notion of fuzzy soft sets, as a

generalization of the standard soft sets.



Definition 2.0.17 Let U be an initial universe set and P be a set of parameters.
Let F(U) denote the set of all fuzzy sets in U. Then (];;, E) is called a fuzzy soft

set over U where E C P and F is a mapping given by F: E — F(U).

In general, for every e € E, a fuzzy set,

Fle] := {(u, fpy(w)) | v € U)}

in U is called fuzzy value set of parameter e.

In 2010, Jun et al. [18] applied the notion of fuzzy soft sets to BCK/BCI-

algebras.

Definition 2.0.18 Let (F, E) be a fuzzy soft set over a BCK /BCl-algebra (A, -, 0)
where E is a subset of P. If there exists e € E such that Fle] is a fuzzy BCK/BCI-
algebra in A, we say that (ﬁ,E) is a fuzzy soft BCK/BClI-algebra based on
a parameter e over A. If (F, E) is a fuzzy soft BCK/BCl-algebra based on a
parameter e over A for all e € E, we say that (ﬁ, E) is a fuzzy soft BCK/BCI-

algebra over A.

Definition 2.0.19 Let (ﬁ, E) be a fuzzy soft set over a BCK/BCl-algebra (A, -,0)
where E is a subset of P. If there exists e € E such that Fle] is a fuzzy ideal of
A, we say that (F, E) is a fuzzy soft ideal of A based on a parameter e. If (F, E)

is a fuzzy soft ideal of A based on all parameters, we say that (ﬁ, E) is a fuzzy

soft ideal of A.



CHAPTER I11

PRELIMINARIES

Before we begin our study, we will introduce a UP-algebra. From [§], we

know that the notion of UP-algebras is a generalization of KU-algebras (see [27]).

On a UP-algebra A = (A,-,0), we define a binary relation < on A as
follows:

(Vez,y e A)(z <yeax-y=0).

Example 3.0.20 [33] Let X be a universal set and let Q € P(X). Let Po(X) =
{AeP(X)|QC A}. Define a binary operation - on Pq(X) by putting A- B =
BN (A UQ) for all A, B € Po(X). Then (Pq(X),-,Q) is a UP-algebra and we

shall call it the generalized power UP-algebra of type 1 with respect to €.

Example 3.0.21 [33] Let X be a universal set and let 2 € P(X). Let P%(X) =
{A € P(X) | A C Q}). Define a binary operation * on P%(X) by putting
AxB=BU(A'NQ) for all A, B € P*(X). Then (P9(X),*,() is a UP-algebra

and we shall call it the generalized power UP-algebra of type 2 with respect to €).

In particular, we have (P(X),-, () is the power UP-algebra of type 1 and
(P(X), *, X) is the power UP-algebra of type 2.

Example 3.0.22 [4] Let IN be the set of all natural numbers with two binary
operations o and e defined by,
y ifx<uy,

(Vz,yeN) [zoy = ,
0 otherwise



and

y ifz>yoraxz=0,
Ve,y eN) [z ey = .
0 otherwise

Then (IN,0,0) and (IN, e, 0) are UP-algebras.

[, 9]).

For more examples of UP-algebras, see [3, [, 32], 33].

Ve e A)(x-x=0),
Ve,y,z € A)(x-y=0,y-2=0=2-2=0),
Ve,y,z€ A)(x-y=0=(z-2)-(2-y) =0),

Ve,y,z€ A)(x-y=0=(y-2) - (x-2)=0),

11

In a UP-algebra A = (A,-,0), the following assertions are valid (see

Definition 3.0.23 [8, B34] [7, 10] A nonempty subset S of a UP-algebra (A, -,0)

is called



12

(1) a UP-subalgebra of A if (Vx,y € S)(x-y € 9),
(2) a near UP-filter of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and
(i) (Ve,ye A)(yeS=z-ye€S),
(3) a UP-filter of A if it satisfies the following properties:
(i) the constant 0 of A is in S, and
(i) (Vz,ye A)(z-ye S,z e S=yeb9),
(4) a UP-ideal of A if it satisfies the following properties:
(i) the constant 0 of A is in S, and
(ii)) Vz,y,z€ A)(xz-(y-2)€S,ye S=x-2z€79),
(5) a strongly UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(i) (Vo,y,2€ A)((z-y) - (z-x) € S,ye S=z€9).

We know that the notion of UP-subalgebras is a generalization of near
UP-filters, the notion of near UP-filters is a generalization of UP-filters, the notion
of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a
generalization of strongly UP-ideals. Moreover, they also proved that a UP-

algebra A is the only one strongly UP-ideal of itself.

Definition 3.0.24 A nonempty subset S of a semigroup (A, *) is called

(1) a subsemigroup of A if (Vz,y € S)(x*xy € 5), and

(2) an ideal of A if (Vo € A,Vs € S)(x*s,sxx € 9).



13

Clearly, an ideal is a subsemigroup.

Lemma 3.0.25 Let S be a nonempty subset of a UP-algebra (A, -,0)
(0,1]. Then the constant 0 of A is in S if and only if (Vx € A)(x5(0) > x4(2)).

Proof. Assume that 0 € S. Then for all x € A, x4(0) =t > x4 (z).

Conversely, assume that x4(0) > x4(z) for all z € A. Since S is a
nonempty subset of A, we have an element a in S, that is, y%(a) = ¢t. Thus

t > x%(0) > x%(a) =t. So x4(0) =¢, that is, 0 € S. O

Definition 3.0.26 ([34, [7]) A fuzzy set F in a UP-algebra A = (A, -,0) is called

(1) a fuzzy UP-subalgebra of A if (Vz,y € A)(fp(z - y) > min{fp(2), fr(y)}),
(2) a fuzzy UP-filter of A if
(i) (Vo € A)(Er(0) > f(z)), and
(i) (Va,y € A)(fe(y) > min{fe(z - y),fe(2)}),
(3) a fuzzy UP-ideal of A if
(i) (Vo € A)(fr(0) > fr(z)), and
(i) (Va,y,2z € A)(fr(z - 2) = min{fr(z - (y - 2)), fr () }),
(4) a fuzzy strongly UP-ideal of A if
(i) (V& € A)fp(0) > fp(z), and
(i) (Vo,y,2 € A)(fp(z) > min{fe((z - y) - (z- @), fr (y)})-

Now, we introduce the notion of fuzzy near UP-filters of UP-algebras as

follows:

Definition 3.0.27 A fuzzy set F in a UP-algebra A = (A, -,0) is called a fuzzy
near UP-filter of A if
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(i) (Vo € A)(E(0) > fo(z)), and

(i) (Vo,y € A)(fe(z-y) > fr(y)).

We know that the notion of fuzzy UP-subalgebras is a generalization of
fuzzy near UP-filters, the notion of fuzzy near UP-filters is a generalization of
fuzzy UP-filters, the notion of fuzzy UP-filters is a generalization of fuzzy UP-
ideals, and the notion of fuzzy UP-ideals is a generalization of fuzzy strongly
UP-ideals. Moreover, fuzzy strongly UP-ideals and constant fuzzy sets coincide

in UP-algebras.

Theorem 3.0.28 [7/ Fuzzy strongly UP-ideals and constant fuzzy sets coincide

in UP-algebras.
Theorem 3.0.29 Let S be a nonempty subset of a UP-algebra A = (A,-,0) and
t € (0,1]. Then the following statements hold:

(1) S is a UP-subalgebra of A if and only if the t-characteristic fuzzy set Fy is

a fuzzy UP-subalgebra of A,

(2) S is a near UP-filter of A if and only if the t-characteristic fuzzy set F is
a fuzzy near UP-filter of A,

(3) S is a UP-filter of A if and only if the t-characteristic fuzzy set Fl is a
fuzzy UP-filter of A,

(4) S is a UP-ideal of A if and only if the t-characteristic fuzzy set Fl is a
fuzzy UP-ideal of A, and

(5) S is a strongly UP-ideal of A if and only if the t-characteristic fuzzy set F

is a fuzzy strongly UP-ideal of A.

Proof. (1) Assume that S is a UP-subalgebra of A. Let x,y € A.



15

Case 1: z,y € S. Then x4(z) =t = x4(y), so min{x%(x), x5(y)} = t.

Since S is a UP-subalgebra of A, we have z-y € S and so x%(z-y) = t. Therefore,

Xs(7-y) =t >t =min{xs(z), x5(v)}.

Case 2: x ¢ S ory ¢ S. Then x4(z) =0 or x4(y) =0, so

min{xs(z), x5(y)} = 0.

Therefore, ng(a: cy) > 0= min{xg(x), ng(y)}

Hence, F% is a fuzzy UP-subalgebra of A.

Conversely, assume that F% is a fuzzy UP-subalgebra of A. Let x,y €
S. Then x4(y) = t = x4(y), so min{x%(x), x4(y)} = t. Since F% is a fuzzy
>

min{x%(x), x5(y)} = ¢. Thus
Xs(z-y) =t, that is, z -y € S. Hence, S is a UP-subalgebra of A.

UP-subalgebra of A, we have t > y4(z - y)

(2) Assume that S is a near UP-filter of A. Since 0 € 5, it follows from
Lemma [3.0.25[ that x%(0) > x%(z) for all z € A. Next, let z,y € A.

Case 1: y € S. Then x%(y) = t. Since S is a near UP-filter of A, we have

z-y € S and so x4(x - y) =t. Therefore, x4(z-y) =t >t = x4(y).
Case 2: y ¢ S. Then x4(y) = 0. Thus x4(z-y) > 0= x%(y).
Hence, FY% is a fuzzy near UP-filter of A.

Conversely, assume that FY is a fuzzy near UP-filter of A. Since x%(0) >
X5 (z) for all z € A, it follows from Lemma that 0 € S. Next, let z,y € A
be such that y € S. Then x%(y) = t. Since FY is a fuzzy near UP-filter of A, we
have t > x4(z-y) > x4(y) = t. Thus x4(x-y) =1, that is, z -y € S. Hence, S is
a near UP-filter of A.

(3) Assume that S is a UP-filter of A. Since 0 € S, it follows from Lemma
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3.0.25| that x4(0) > x4(x) for all x € A. Next, let z,y € A.

Case 1: z,y € S. Then x4(z) =t = x%(y). Thus x4(y) =t > xL(z-y) =
min{xs(z - y), Xs(z)}-

Case 2: © ¢ Sory ¢ S. If © ¢ S, then x4(x) = 0. Thus x4(y) >
0 = min{x4(z - y),x5(z)}. If y ¢ S, then x%(y) = 0. Since S is a UP-filter
of A, we have -y ¢ S or z ¢ S and so x4(z-y) = 0 or x4(z) = 0. Thus

Xs(y) = 0> 0 = min{xs(z - y), xs()}.
Hence, F% is a fuzzy UP-filter of A.

Conversely, assume that F% is a fuzzy UP-filter of A. Since x4(0) > x%(x)
for all z € A, it follows from Lemma[3.0.25 that 0 € S. Next, let ,y € A be such
that z-y € Sand € S. Then x4(z-y) =t = x%(x), so min{x%(z-vy), x4(z)} = ¢.
Since FY is a fuzzy UP-filter of A, we have t > x4 (y) > min{x%(z-y), x5(z)} = t.
Thus x%(y) = t, that is, y € S. Hence, S is a UP-filter of A.

(4) Assume that S is a UP-ideal of A. Since 0 € 5, it follows from Lemma
3.0.25| that x4(0) > x4(x) for all x € A. Next, let z,y, 2 € A.

Case I: -(y-2),y € S. Then xs(z-(y-2)) =t = x5(y), so min{x(z-(y-
2)), X5(y)} = t. Since S is a UP-ideal of A, we have z-z € S and so x4(x-z) = t.

Thus xs(7 - 2) =t >t = min{xs(z - (v - 2)), x5(¥)}-
Case 2: z-(y-2) ¢ Sory ¢ S. Then x4(z-(y-2)) =0 or x4(y) =0, so
min{xs(z - (¥ - 2)), Xs(y)} = 0. Thus xg(z - 2) > 0 = min{xs(x - (y - 2)), X5(y)}-
Hence, F% is a fuzzy UP-ideal of A.
Conversely, assume that F% is a fuzzy UP-ideal of A. Since x%(0) > x4 (z)

for all x € A, it follows from Lemma [3.0.25| that 0 € S. Next, let x,y,2z € A

such that z - (y-2) € Sand y € S. Then x4(z - (y-2)) =t = x4(y), so
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min{x4(z - (y - 2)),x5(y)} = t. Since F% is a fuzzy UP-ideal of A, we have
t > xh(z - 2z) > min{x4(z - (y-2)),x5(y)} = t. Thus x4(x - 2) = ¢, that is,
x -z € S. Hence, S is a UP-ideal of A.

(5) It is straightforward by Theorem|3.0.28, and A is the only one strongly
UP-ideal of itself. O

Definition 3.0.30 [31] A fuzzy set F in a semigroup A = (A4, %) is called

(1) a fuzzy subsemigroup of A if

(Vz,y € A)(fp(z * y) > min{fp(z),fr(y)}), and

(2) a fuzzy ideal of A if for any z,y € A,

(Vz,y € A)(fp(z * y) > max{fp(z),fr(y)}).

Clearly, a fuzzy ideal is a fuzzy subsemigroup.

Theorem 3.0.31 Let S be a nonempty subset of a semigroup A = (A, *) and
t € (0,1]. Then the following statements hold:

(1) S is a subsemigroup of A if and only if the t-characteristic fuzzy set Fl is
a fuzzy subsemigroup of A, and

(2) S is an ideal of A if and only if the t-characteristic fuzzy set F% is a fuzzy
ideal of A.

Proof. (1) Assume that S is a subsemigroup of A. Let z,y € A.

Case 1: z,y € S. Then x4(z) =t = x4(y), so min{x%(x), x5(v)} = t.

Since S is a subsemigroup of A, we have zxy € S and so x%(z*y) = t. Therefore,

Xs(z*y) =t >t =min{x§(x), x5(v)}
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Case 2: x ¢ S ory ¢ S. Then x4(z) =0 or x4(y) =0, so

min{xs(z), x5(y)} = 0.

Therefore, x%(z *y) > 0 = min{x%(z), x5(y)}.

Hence, F% is a fuzzy subsemigroup of A.

Conversely, assume that F% is a fuzzy subsemigroup of A. Let x,y €
S. Then x4(y) = t = x4(y), so min{x%(x), x5(y)} = t. Since F% is a fuzzy
subsemigroup of A, we have t > xL(z *xy) > min{x%(z),x%(y)} = t. Thus

Xs(z xy) =t, that is, x x y € S. Hence, S is a subsemigroup of A.
(2) Assume that S is an ideal of A. Let z,y € A.

Case 1: x,y € S. Then x4(z) =t = x%(y), so max{x%(z), x5(y)} = t.

Since S is an ideal of A, we have x xy € S and so x4(z xy) = t. Therefore,

X5z *y) =t >t = max{xs(z), xs(¥)}.

Case 2: « ¢ Sory ¢ S. If zxy € S, then x4(z xy) = t. Therefore,

Xs(zxy) =t > max{x§(z),x5(y)}. Haxy ¢ S, thenz,y ¢ S. Thus x4(zxy) =0

and x4 (x) = 0 = x%(y). Therefore, y4(x xy) =0 > 0 = max{x%(z), x5(y)}.
Hence, F% is a fuzzy ideal of A.

Conversely, assume that F% is a fuzzy ideal of A. Let s € S and = € A.
Then y%(s) = t, so max{x%(s), x4(z)} = t. Since Fk is a fuzzy ideal of A, we have
t 2 Xs(s ), Xs(x*5) 2 max{xs(s), Xs(x)} = t. Thus xg(s*x) =t = xs(x*5),

that is s * x,x * s € S. Hence, S is an ideal of A. n

Definition 3.0.32 [23] Let {F,};c; be a nonempty family of fuzzy sets in a
nonempty set U where [ is an arbitrary index set. The intersection of F;, de-

noted by (,c; Fs, is described by its membership function f,c,; 7; which defined
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as follows:

The union of F;, denoted by |J,; Fi, is described by its membership function

fU,, 7 which defined as follows:

(Vo € U)(ty,, v, (2) = sup{fe;(2) }icr)-

Definition 3.0.33 [23] Let F and G be fuzzy sets in a nonempty set U. Then
F < G is defined by fp(z) < fg(x) for all z € U.

Definition 3.0.34 [22] Let F and G be fuzzy sets in a semigroup A = (A, *).
Then the product of F and G, denoted by F oG, is described by their membership

function fr and fg, respectively which defined as follows: For all z € A,

sup{min{fr(y), fc(2)} }sys» if 3y, z € A such that x =y * 2,
(frofa)(z) =
0 otherwise.

Definition 3.0.35 [22] The semigroup A itself is a fuzzy set of A, denoted by A

such that fo(z) =1 for all z € A.

Lemma 3.0.36 [22] Let F be a fuzzy set in a semigroup A = (A, ). Then

(1) F is a fuzzy subsemigroup of A if and only if it satisfies the condition

FoF <F. (3.0.14)

(2) F is a fuzzy ideal of A if and only if it satisfies the condition

AoF<FandFoA <F. (3.0.15)

Theorem 3.0.37 Let F; and F be fuzzy sets in a nonempty set X where I is a

nonempty set. Then the following properties hold:
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(1) FA(Uer ) = Uy (F ),
(2) (Uyer F) NF = Uy (F, N E),
(3) FU(Ms F) = Ny (FUF), and
(4) (Mier Fi) UF = My (FL U F).

Proof. Let x € X. (1) First, we investigate left hand side of the equality. Assume
that | J,c; Fs = FY. Then F N (U, Fi) = FNFY. Also,

icl

fFﬂFU (ZL‘) = Hlln{fp(x)7 fFU (i)}
= min{fp(x), fUieI F; (.T)}

~ min{fF(z)7 sup{fr;(z) }ier }-

Consider the right hand side of the equality. Assume that F N F; = F{! for all
1 € I. Then

fy,., 70 (x) = sup{fen () }ics
= sup{frnp, () }ier

= sup{min{fr(z), fr, () } }ies.
It is clear that min{fpe,), sup{fp;(z)}icr} = sup{min{fp(z),fr,(2)}}ic;. There-
fore, FnN (Uiel Fz) = UiEI(F N Fz)
(2) By using techniques as in (1), then (2) can is derived.

(3) First, we investigate left hand side of the equality. Assume that
Nie; Fi =F". Then FU (N, F;) = FUF". Also,

el

fFUpﬁ (1’) = max{fp(x), fFﬁ (CC)}

= max{fr(), fn,_, v (7)}
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= max{fp(z), nf{fp; () }ier}-

Consider the right hand side of the equality. Assume that F U F; = F? for all
1 € I. Then

fr, e rv () = inf{fpu () }ics
= inf{frur, () }ics

= inf{max{fr(z), fr, ()} }icr-

It is clear that max{fp(,), inf{fp;(z)}ic/} = inf{max{fp(z),fr,(x)} }icr. Therefore,

FU (ﬂie[ Fz) = miGI(F U Fz)

(4) By using techniques as in (3), then (4) can is derived. O



CHAPTER IV

RESULTS

4.1 Special subsets of fully UP-semigroups

In this section, we introduce the notions of UP¢-subalgebras, UP;-subalge-
bras, near UPy-filters, near UP;-filters, UP¢filters, UP;-filters, UP,-ideals, UP;-
ideals, strongly UP-ideals, and strongly UP;-ideals of fully UP-semigroups, pro-

vide the necessary examples and prove its generalizations.
From now on, we shall let A be an f-UP-semigroup A = (A, -, *,0) unless
otherwise specified.

Definition 4.1.1 A subset S of an f-UP-semigroup A is called
(1) a UPs-subalgebra of A if S is a UP-subalgebra of (4, -,0), and S is a sub-
semigroup of (A4, %), and

(2) a UP;-subalgebra of A if S is a UP-subalgebra of (A4, -,0), and S is an ideal
of (A, x).

We have Theorem [4.1.2] [4.1.13] and |[4.1.18|directly from Definition|3.0.24}]

Theorem 4.1.2 FEvery UP;-subalgebra of A is a UPs-subalgebra of A.

Example 4.1.3 Let A ={0,1,2,3} be a set with two binary operations - and

defined by the following Cayley tables:

0123 *0 1 2 3
0/]0 1 2 3 0/0 0 0 O
110 0 2 3 1101 0 0
2/0 1 0 3 2/0 0 20
3101 2 0 310 3 00
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Then A = (A4, -, %,0) is an f-UP-semigroup. Let S = {0,1,2}. Then S is a UP,-
subalgebra of A. Since 1 € S and 3 € Abut 3x1 =3¢ S, we have S is not an
ideal of (A, x*). Thus S is not a UP;-subalgebra of A.

Definition 4.1.4 A subset S of an f-UP-semigroup A = (A, -, %,0) is called
(1) a near UPs-filter of A if S is a near UP-filter of (A,-,0), and S is a sub-
semigroup of (A4, ), and

(2) a near UP;-filter of A if S is a near UP-filter of (A, -,0), and S is an ideal
of (A, *).

We have Theorem 1.5, B1.7, E1.10, 112, E1.15, 117, E1.20, and
directly from a result quoted in Definition [3.0.23

Theorem 4.1.5 Every near UPs-filter of A is a UPs-subalgebra of A.

Example 4.1.6 Let A ={0,1,2,3} be a set with two binary operations - and *

defined by the following Cayley tables:

0123 *(0 1 2 3
0/01 2 3 0/0 0 0 O
110 0 1 3 110 0 0 0O
2(0 0 0 3 2/0 0 0 O
3]0 110 310 0 01

Then A = (A, -, %,0) is an f-UP-semigroup. Let S = {0,2}. Then S is a UP-
subalgebra of A. Since 2 € Sbut 3-2=1¢ S, we have S is not a near UP-filter
of (A,+,0). Thus S is not a near UP-filter of A.

Theorem 4.1.7 Every near UP;-filter of A is a UP;-subalgebra of A.

In Example [£.1.6] we have S is a UP;-subalgebra of A. Since S is not a
near UP-filter of (A,-,0), we have S is not a near UP;-filter of A.
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Theorem 4.1.8 FEvery near UP;-filter of A is a near UPs-filter of A.
In Example [4.1.3] we have S is a near UP4-filter of A. Since S is not an
ideal of (A, *), we have S is not a near UP;-filter of A.
Definition 4.1.9 A subset S of an f-UP-semigroup A = (A, -, %,0) is called
(1) a UPs-filter of A if S is a UP-filter of (A,-,0), and S is a subsemigroup of
(A, ), and
(2) a UP;-filter of A if S is a UP-filter of (A, -,0), and S is an ideal of (A, x).
Theorem 4.1.10 Every UPs-filter of A is a near UP,-filter of A.

Example 4.1.11 Let A = {0,1,2,3} be a set with two binary operations - and

x defined by the following Cayley tables:

0123 *x0 1 2 3
0/0 1 2 3 0/0 0 0 O
110 0 2 3 1{0 0 0 0
2(0 0 0 3 2/0 0 0 O
310 0 0 O 310 0 01

Then A = (A,-,*,0) is an f-UP-semigroup. Let S = {0,2}. Then S is a near
UPg-filter of A. Since 2-1=0¢€ S and 2 € S but 1 ¢ S, we have S is not a
UP-filter of (A,-,0). Thus S is not a UPfilter of A.

Theorem 4.1.12 FEvery UP;-filter of A is a near UP;-filter of A.
In Example [4.1.11], we have S is a near UP;-filter of A. Since S is not a
UP-filter of (A,-,0), we have S is not a UP;-filter of A.

Theorem 4.1.13 Every UP;-filter of A is a UPs-filter of A.
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In Example we have S is a UPgfilter of A. Since S is not an ideal
of (A, %), we have S is not a UP;-filter of A.

Definition 4.1.14 A subset S of an f-UP-semigroup A is called
(1) a UPs-ideal of A if S is a UP-ideal of (A, -,0), and S is a subsemigroup of
(A, ), and
(2) a UP;-ideal of A if S is a UP-ideal of (A,-,0), and S is an ideal of (A, x).
Theorem 4.1.15 Every UP;-ideal of A is a UPs-filter of A.

Example 4.1.16 Let A = {0,1,2,3} be a set with two binary operations - and

x defined by the following Cayley tables:

0123 *(0 1 2 3
0(0 1 2 3 0({0 0 0 O
110 0 2 2 1{0 0 0 0
2/0 1 0 2 2/0 000
3/01 00 3/0 0 0 O

Then A = (A,-,%,0) is an f-UP-semigroup. Let S = {0,1}. Then S is a UP-
filter of A. Since2-(1-3)=0€ Sand 1€ Sbhut2-3=2¢ S, we have S is not
a UP-ideal of (A4, -,0). Thus S is not a UPs-ideal of A.

Theorem 4.1.17 Every UP;-ideal of A is a UP;-filter of A.

In Example 4.1.16, we have S is a UP;-filter of A. Since S is not a
UP-ideal of (A,-,0), we have S is not a UP;-ideal of A.

Theorem 4.1.18 Fvery UP;-ideal of A is a UPs-ideal of A.

In Example we have S is a UPg-ideal of A. Since S is not an ideal
of (A, %), we have S is not a UP;-ideal of A.
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Definition 4.1.19 A subset S of an f-UP-semigroup A is called

(1) a strongly UPs-ideal of A if S is a strongly UP-ideal of (A, -,0), and S is a

subsemigroup of (A, ), and

(2) a strongly UP;-ideal of A if S is a strongly UP-ideal of (A,-,0), and S is an
ideal of (A, ).

Theorem 4.1.20 Every strongly UP,-ideal of A is a UP,-ideal of A.

Example 4.1.21 Let A = {0,1,2,3} be a set with two binary operations - and

x defined by the following Cayley tables:

0123 *x0 1 2 3
0/0 1 2 3 0/]0 0 0 O
110 0 2 3 110 0 0 0
2(0 1 0 3 2/0 0 01
3101 2 0 310 010

Then A = (A, -, %,0) is an f-UP-semigroup. Let S = {0,1,2}. Then S is a UP-
ideal of A. Since S # A, we have S is not a strongly UP-ideal of (A, -,0). Thus
S is not a strongly UPg-ideal of A.

Theorem 4.1.22 FEvery strongly UP;-ideal of A is a UP;-ideal of A.

In Example [4.1.21] we have S is a UP;-ideal of A. Since S is not a

strongly UP-ideal of (A,-,0), we have S is not a strongly UP;-ideal of A.

Theorem 4.1.23 Strongly UP,-ideals and strongly UP;-ideals coincide in A and
it is only A.

Proof. 1t is straightforward by A is the only one strongly UP-ideal of itself. [
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4.2 Fuzzy sets in fully UP-semigroups

In this section, we introduce the notions of fuzzy UPs-subalgebras, fuzzy
UP;-subalgebras, fuzzy UPg-filters, fuzzy UP;-filters, fuzzy UPg-ideals, fuzzy UP;-
ideals, fuzzy strongly UPs-ideals, and fuzzy strongly UP;-ideals of fully UP-
semigroups, provide the necessary examples, prove its generalizations and inves-
tigate the algebraic properties of fuzzy sets under the operations of intersection

and union.

Definition 4.2.1 A fuzzy set F in an f-UP-semigroup A is called

(1) a fuzzy UPs-subalgebra of A if F is a fuzzy UP-subalgebra of (A, -,0) and a

fuzzy subsemigroup of (A, *), and

(2) a fuzzy UP;-subalgebra of A if F is a fuzzy UP-subalgebra of (A, -,0) and a
fuzzy ideal of (A, *).

Clearly, a fuzzy UP;-subalgebra is a fuzzy UP;-subalgebra.

In Example [4.1.21] we define a membership function fr as follows:

Then F is a fuzzy UPg-subalgebra of A. Since fp(2 % 3) = fp(1) = 0.4 # 0.5 =
max{0.5,0.2} = max{fr(2),{r(3)}, we have F is not a fuzzy UP;-subalgebra of A.

Theorem 4.2.2 The intersection of any nonempty family of fuzzy UPs-subalgebras
of A is also a fuzzy UPs-subalgebra of A.

Proof. Let F; be a fuzzy UPg-subalgebra of A for all ¢ € I. Then

fﬂie] F; (ZL’ : y) = lnf{sz(fL‘ ' y)}ie[
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> inf{min{fe; (x), fr;(y) } Vies

= min{inf{fp;(z) }icr, inf{fri(y) bicr}

= min{fn _, r,(z),fn,_, ¥, (y)} and
fr,., b (% y) = inf{fe;(z % y) bies

> inf{min{fe; (x), fr;(y) } Vies

= min{inf{fp;(z) Vics, inf{f; (1) bics }

= min{fﬂiel F; (l’), fﬂie[ F; (y)}
Hence, ;¢ Fi is a fuzzy UP-subalgebra of A. O]

In Example [4.1.21] we define two membership functions frp; and fpy as

follows:
Al O 1 2 3

fry |0.7 0.5 0.7 0.3
fro 0.7 0.3 0.2 0.6

Then F; and Fy are fuzzy UPg-subalgebras of A. Since fr,ur,(3%2) = fp,ur, (1) =
0.5 # 0.6 = min{0.6,0.7} = min{fr,ur,(3), fr,ur,(2)}, we have F; U F5 is not a
fuzzy UPg-subalgebra of A.

Theorem 4.2.3 A nonempty subset S of A is a UPs-subalgebra of A if and only

if the t-characteristic fuzzy set FY is a fuzzy UPs-subalgebra of A.

Proof. Tt is straightforward by Theorem [3.0.31][(1)] and Theorem [3.0.29[(1)] O

Theorem 4.2.4 The intersection of any nonempty family of fuzzy UP;-subalgebras
of A is also a fuzzy UP;-subalgebra of A.

Proof. Let F; be a fuzzy UP;-subalgebra of A for all i € I. Then

fﬂiel F; (l’ ) y) = lnf{fFZ($ ’ y)}iEI
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> inf{min{fe; (x), fr;(y)} Vies

= min{inf{fp;(z) Vics, inf{f;(y) bics }

= min{fn _, r,(z),fn,_, ¥ (y)} and
o v (2 % y) = mf{fr,(@ % y) bier

> inf{max{fp;(z), fr:(y)} }icr

> max{inf{fr;(z) }ics, inf{fr;(y) }icr }

= max{fﬂiez Fz(x)’ fﬂie[ Fy (y)}
Hence, ;¢ Fi is a fuzzy UPj-subalgebra of A. O]
In Example we define two membership functions fp; and fpy as

follows:
Al 0 1 2 3

fp, | 0.9 0.7 0.1 0.1

fr, 0.8 0.4 0.5 0.6

Then F; and Fy are fuzzy UP;-subalgebras of A. Since fp, g, (1 -3) = fp,ur, (2) =
0.5 # 0.6 = min{0.7,0.6} = min{fr,ur,(1), fr,ur,(3)}, we have F; U F, is not a
fuzzy UP;-subalgebra of A.

Theorem 4.2.5 A nonempty subset S of A is a UP;-subalgebra of A if and only

if the t-characteristic fuzzy set FY is a fuzzy UP;-subalgebra of A.

Proof. 1t is straightforward by Theorem |3.0.31 and Theorem [3.0.29 . O

Definition 4.2.6 A fuzzy set F in an f-UP-semigroup A is called
(1) a fuzzy near UPs-filter of A if F is a fuzzy near UP-filter of (4,-,0) and a
fuzzy subsemigroup of (A, *), and

(2) a fuzzy near UPi-filter of A if F is a fuzzy near UP-filter of (A,-,0) and a
fuzzy ideal of (A, x).
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Clearly, a fuzzy near UP;-filter is a fuzzy near UPg-filter.

In Example |4.1.21], we define a membership function fr as follows:

Then F is a fuzzy near UPgfilter of A. Since fp(23) = fp(1) = 0.4 # 0.5 =
max{0.5,0.2} = max{fp(2),{r(3)}, we have F is not a fuzzy near UP;-fiter of A.

Theorem 4.2.7 The intersection of any nonempty family of fuzzy near UP;-
filters of an f-UP-semigroup A = (A, -, *,0) is also a fuzzy near UPs-filter.

Proof. Let F; be a fuzzy near UPg-filter of an f-UP-semigroup A = (A, -, x,0) for
all 2 € I. Then

fr,c, 7. (0) = inf{fp; (0) }ics

> inf{fp;(x) }ier
= .., r.(2),

fﬂiE[Fi (z - y) = inf{fr;(z - y) bier
= inf{fp;(y) }ier
= In,., 7 (y), and

i, b (% y) = inf{fr;(z % y) bies
> inf{min{fr;(z), fri(y)} bier
= min{inf{fr;(z) }icr, inf{fr;(y) }ics }

= min{fmiej (), fr]ie,Fi (y)}-

Hence, (,.; Fi is a fuzzy near UPg-filter of A. O]

icl

In Example [4.1.21] we define two membership functions fp; and fpy as
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follows:

A0 1 2 3

fp, |1 0.7 1 0.5

1

fe, [1 05 0.3 08

Then F; and Fy are fuzzy near UPg¢filters of A but F; U F5 is not a fuzzy near
UPgfilter of A. Indeed, fr,ur, (3 * 2) = fpur, (1) = 0.7 # 0.8 = min{0.8,1} =

min{fFluFQ (3); fFlUFQ (2)}

Theorem 4.2.8 A nonempty subset S of A is a near UPs-filter of A if and only

if the t-characteristic fuzzy set ¥l is a fuzzy near UPs-filter of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . m

Theorem 4.2.9 The intersection of any nonempty family of fuzzy near UP;-
filters of an f-UP-semigroup A = (A, -, *,0) is also a fuzzy near UP;-filter.

Proof. Let F; be a fuzzy near UP;-filter of an f-UP-semigroup A = (A, -, %,0) for
all © € I. Then, by the proof of Theorem [4.2.7, we have fn _ r,(0) > fn_, F,(z)

and fr_ v, (2 - y) > fn,_, ¥, (y). Thus

fﬂigI F; (z % y) = Inf{fr;(z * y) }ier
> inf{max{fg;(z), fr;(y)} }icr
> max{inf{fp;(x) }icr, inf{fr;(y) bics }

= max{fﬂiel F; (l’), fﬂie[ F; (y>}

Hence, (;c; Fi is a fuzzy near UPj-filter of A. O

Theorem 4.2.10 The union of any nonempty family of fuzzy near UP;-filters of

an f-UP-semigroup A = (A, -, *,0) is also a fuzzy near UP;-filter.

Proof. Let F; be a fuzzy near UP;-filter of an f-UP-semigroup A = (A, -, ,0) for
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all i € I. Then

fU,., 7:(0) = sup{fr;(0) }icr

> sup{fp;(z) }ics
= fy,., r:(@),

f,e 7. (@ - y) = sup{fri(z - y) bies
> sup{fr;(y) bier
= fUieI r, (y), and

fU,e, i (@ * y) = sup{fpi(z * y) bier
2 sup{max{fp;(2), fri(y)} }ier
= max{sup{fr;(2) }icr, sup{fr;(y) bicr}

= maX{fUiEI F; (x)7 fUieI F; (y>}

Hence, (J,; Fi is a fuzzy near UPj-filter of A. O

Theorem 4.2.11 A nonempty subset S of A is a near UP;-filter of A if and only

if the t-characteristic fuzzy set FY is a fuzzy near UP;-filter of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . O]

We have Theorem [4.2.12} 4.2.13| |4.2.20], {4.2.22] |4.2.28] 4.2.29, and

directly from a result quoted in Definition [3.0.26]

Theorem 4.2.12 FEvery fuzzy near UPs-filter of an f-UP-semigroup is a fuzzy
UP;-subalgebra.

In Example [4.1.6] we define a membership function fg as follows:
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Then F is a fuzzy UPg-subalgebra of A. Since frp(1-2) = fp(1) = 0.8 # 0.9 = fp(2),
we have F is not a fuzzy near UP-filter of A.
Theorem 4.2.13 FEvery fuzzy near UP;-filter of an f-UP-semigroup is a fuzzy
UP;-subalgebra.
In Example [4.1.6, we define a membership function fg as follows:
Then F is a fuzzy UP;-subalgebra of A. Since fp(1-2) = fp(1) = 0.4 % 0.8 = fp(2),
we have F is not a fuzzy near UP;-filter of A.
Definition 4.2.14 A fuzzy set F in an f-UP-semigroup A is called
(1) a fuzzy UPs-filter of A if F is a fuzzy UP-filter of (A,-,0) and a fuzzy
subsemigroup of (A, *), and
(2) a fuzzy UP;-filter of A if F is a fuzzy UP-filter of (A,-,0) and a fuzzy ideal
of (A, %).
Clearly, a fuzzy UP;-filter is a fuzzy UPg-filter.

In Example [4.1.21] we define a membership function fr as follows:

Then F is a fuzzy UPgfilter of A. Sincefp(2 * 3) = fp(1) = 04 # 0.5 =
max{0.5,0.2} = max{fp(2),{r(3)}, we have F is not a fuzzy UP;-filter of A.

Theorem 4.2.15 The intersection of any nonempty family of fuzzy UPs-filters
of A is also a fuzzy UPs-filter of A.
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Proof. Let F; be a fuzzy UPg-filter of A for all ¢ € I. Then

frc, 7:(0) = inf{f; (0) }ies
> inf{fr; () }ies
=, v (@),
fr,e, i (y) = inf{fri(y) bier
> inf{min{fp;(z - y), fri(2) } bier
= min{inf{fp;(z - y) bier, Inf{fr;(z) bicr }
= min{fn _, v, (2 y),in,_, 7.(2)}, and
frie i@+ y) = Inf{fp;(z * y) }ier
> inf{min{tr;(2), frs(y)} bier
= min{inf{fr;(z) }ier, inf {fri(y) bier}

= min{fﬂie[ F; <x>’ fﬂiel F; (y)}
Hence, (;c; Fi is a fuzzy UPfilter of A. O
In Example we define two membership functions frp; and fpy as

follows:
Al 0 1 2 3

fe, |0.7 0.5 0.7 0.3

fp, [0.7 0.3 0.2 0.6

2

Then F; and Fy are fuzzy UP¢-filters of A. Since fr,ur,(2%3) = fr,ur, (1) = 0.5 2
0.6 = min{0.7,0.6} = min{fr,ur,(2), fr,ur,(3)}, we have Fy U Fy is not a fuzzy

UP,-filter of A.

Theorem 4.2.16 A nonempty subset S of A is a UPs-filter of A if and only if
the t-characteristic fuzzy set ¥l is a fuzzy UPs-filter of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . ]
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Theorem 4.2.17 The intersection of any nonempty family of fuzzy UP;-filters
of A is also a fuzzy UP;-filter of A.

Proof. Let F; be a fuzzy UP;-filter of A for all 4 € I. Then

fre, 7:(0) = inf{fp; (0) }ies
> inf{fr;(2) }ier
= fn,, 7. (2),
fr, p(y) = inf{fr(y) bies
> inf{min{fp;(2 - y), fr: ()} bier
= min{inf{fp;(z - y) bier, inf{fr; () }ics }
= min{fn _ r,(z - y),In 7 (2)}, and
fre, Fi(@ o+ y) = inf{fe (2« y) bier
> inf{max{fp;(x), fri(y)} }ies
> max{inf{f; () }ier, inf{fr; (y) bies}

4 max{fﬂiel F; (ZE), fﬂie] F; (y)}

Hence, ),.; F: is a fuzzy UP;-filter of A. [

el

Example 4.2.18 Let A = {0,1,2,3} be a set with two binary operations - and

x defined by the following Cayley tables:

0123 *0 1 2 3
0j0 1 2 3 0/0 0 0 O
110 0 2 2 110 0 0 0O
2/0 1 01 2/0 000
310 0 0 O 310 0 0 0

Then A = (A, -,*,0) is an f-UP-semigroup. We define two membership functions
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fr; and fgp, as follows:

A0 1 2 3

fr, 109 0.9 0.5 0.5

fp, | 1 0.5 06 0.5

2

Then F; and Fy are fuzzy UPi-filters of A. Since fr,ur,(3) = 0.5 # 0.6 =
m1n{09, 06} = min{fplup2(1>, fFlUFQ (2)} = l’nil’l{fFlup2 (2 . 3), fFlqu (2)}, we have
F; UFs is not a fuzzy UP;-filter of A.

Theorem 4.2.19 A nonempty subset S of A is a UP;-filter of A if and only if

the t-characteristic fuzzy set ¥l is a fuzzy UP;-filter of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . [

Theorem 4.2.20 FEvery fuzzy UPs-filter of an f-UP-semigroup is a fuzzy near
UP;-filter.

The following example shows that the converse of Theorem |4.2.20] is not
true.

Example 4.2.21 Let A = {0,1,2,3} be a set with two binary operations - and

x defined by the following Cayley tables:

0123 *(0 1 2 3
0/j0 1 2 3 0/j0 0 0 O
110 0 2 3 110 0 0 0O
2(0 0 0 3 2/0 0 0O
310 0 0 O 310 0 0 2

Then A = (A, -, *,0) is an f-UP-semigroup. We define a membership function fg
as follows:
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Then F is a fuzzy near UPgfilter of A. Since fp(1) = 0.7 % 0.8 = min{1,0.8} =
min{fg(0), fr(3)} = min{fp(3-1),{r(3)}, we have F is not a fuzzy UP-filter of A.

Theorem 4.2.22 Fvery fuzzy UP;-filter of an f-UP-semigroup is a fuzzy near
UP:;-filter.

In Example 4.2.21} we have F is a fuzzy near UP;-filter of A but it is not
a fuzzy UP;-filter of A.

Definition 4.2.23 A fuzzy set F in an f-UP-semigroup A is called

(1) a fuzzy UPs-ideal of A if F is a fuzzy UP-ideal of (A,-,0) and a fuzzy

subsemigroup of (A, *), and

(2) a fuzzy UP;-ideal of A if F is a fuzzy UP-ideal of (A4, -,0) and a fuzzy ideal
of (A, %).

Clearly, a fuzzy UP;-ideal is a fuzzy UPg-ideal.
In Example |4.1.21], we define a membership function fr as follows:

Then F is a fuzzy UPs-ideal of A. Since fp(3 x2) = fp(1) = 04 % 05 =
max{0.2,0.5} = max{fr(3),{r(2)}, we have F is not a fuzzy UP;-ideal of A.

Theorem 4.2.24 The intersection of any nonempty family of fuzzy UPs-ideals
of A is also a fuzzy UP,-ideal of A.

Proof. Let F; be a fuzzy UPg-ideal of A for all i € I. Then

fﬂie] F(O) = inf{fFi(O)}iel
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> inf{fr;(2) bier

= fr,., 7 (2),
fre, (@ - 2) = inf{fp (2 - 2) bies

> inf{min{fp;(z - (y - 2)), frs(y) } bies

= min{inf{fp;(z - (y - 2)) bier, inf{frs(y) }ier}

=min{fn,_ v, (2 (y-2)),fn,,r(y)}, and
frue ri(e v y) = nf{fe; (2 * y) bier

> inf{min{fe; (), fr;(y)} Vies

= min{inf{fp, () }icr, inf{fr,(y) }ies }

— mln{fﬂlej F; (‘T)? fniel F; (y>}
Hence, ;o Fi is a fuzzy UP,-ideal of A. O

In Example [4.1.21] we define two membership functions frp; and fpy as

follows:
Al O 1 2 3

fr
fr

0.7 0.5 0.7 0.3

1

, 107 03 02 06

Then F; and Fy are fuzzy UPg-ideals of A. Since fg,ur, (3%2) = fr,ur, (1) = 0.5 2
0.6 = min{0.6,0.7} = min{fr,ur,(3), fr,ur,(2)}, we have Fy U Fy is not a fuzzy
UPs-ideal of A.

Theorem 4.2.25 A nonempty subset S of A is a UPs-ideal of A if and only if

the t-characteristic fuzzy set ¥l is a fuzzy UPs-ideal of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . O

Theorem 4.2.26 The intersection of any nonempty family of fuzzy UP;-ideals
of A is also a fuzzy UP;-ideal of A.
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Proof. Let F; be a fuzzy UP;-ideal of A for all ¢ € I. Then

fr,c, i (0) = inf{f; (0) }ier
> inf{fr;(z)}ies
= fn,, r.(2),
fr, (@ - 2) = inf{fei (@ 2)bier
> inf{min{fp;(z - (y - 2)), fr;(y) } }ier
= min{inf{fp;(z - (y - 2)) bier, nf{fr;(y) }ies }
=min{f _ r (2 (¥ 2)),In,,r)}, and
fre r: (@ % y) = inf{fe;(z % y) bics
> inf{max{fp;(z), fp; ()} }ics
> max{inf{fr;(z) }icr, inf{fr;(y) bicr }

= max{fﬂz‘el F; (x>’ fﬂie[ F; (y)}
Hence, (;c; Fi is a fuzzy UP;-ideal of A. O
In Example we define two membership functions frp; and fpy as

follows:
Al 0 1 2 3

fr, |0.7 0.3 04 0.3

fp, 0.8 0.5 0.2 0.2

Then F; and Fy are fuzzy UPj-ideals of A. Since fr,ur, (0 3) = fr,ur, (3) = 0.3 %
04 = m1n{04, 05} = min{fplup‘2 (2), fFlup2 (1)} = min{fFlUp2 (O (13)), fF1UF2 (1)},

we have F; U Fy is not a fuzzy UP;-ideal of A.

Theorem 4.2.27 A nonempty subset S of A is a UP;-ideal of A if and only if

the t-characteristic fuzzy set ¥l is a fuzzy UPi-ideal of A.

Proof. 1t is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . ]
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Theorem 4.2.28 Fvery fuzzy UPs-ideal of A is a fuzzy UPs-filter of A.

In Example |4.1.16, we define a membership function fr as follows:

Then F is a fuzzy UPgfilter of A. Since fp(2 - 3) = fp(2) = 0.3 # 0.6 =
min{0.8,0.6} = min{fp(0),fr(1)} = min{fp(2- (1 -3)),fr(1)}, we have F is not a
fuzzy UPs-ideal of A.

Theorem 4.2.29 Fvery fuzzy UP;-ideal of A is a fuzzy UP;-filter of A.

In Example [4.1.16, we define a membership function fr as follows:

fr(0) = 0.8, fp(1) = 0.6, fp(2) = 0.3, and fp(3) = 0.3.

Then F is a fuzzy UPifilter of A. Since fp(2-3) = fr(2) = 0.3 ¥ 0.6 =
max{0.8,0.6} = max{fr(0),fr(1)} = max{fr(2 - (1-3)),fr(1)}, we have F is

not a fuzzy UP;-ideal of A.
Definition 4.2.30 A fuzzy set F in an f-UP-semigroup A is called
(1) a fuzzy strongly UPs-ideal of A if F is a fuzzy strongly UP-ideal of (A, -,0)
and a fuzzy subsemigroup of (A, %), and

(2) a fuzzy strongly UP;-ideal of A if F is a fuzzy strongly UP-ideal of (A, -,0)

and a fuzzy ideal of (A, *).

Theorem 4.2.31 Fuzzy strongly UPs-ideals, fuzzy strongly UP;-ideals, and con-

stant fuzzy sets coincide in A.

Proof. 1t is straightforward by Theorem [3.0.28 [
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If a fuzzy set F; is constant for all ¢ € I, then we see that the fuzzy sets

Nic; Fi and /., F; are constant. From this, we have Theorem [4.2.32 and {4.2.33]

Theorem 4.2.32 The intersection and union of any nonempty family of fuzzy

strongly UPs-ideals of A are also a fuzzy strongly UPs-ideal of A.

Theorem 4.2.33 The intersection and union of any nonempty family of fuzzy

strongly UP;-ideals of A are also a fuzzy strongly UP;-ideal of A.
Theorem 4.2.34 A nonempty subset S of A is a strongly UP,-ideal of A if and

only if the t-characteristic fuzzy set FY is a fuzzy strongly UPs-ideal of A.

Proof. 1t is straightforward by Theorem |3.0.31 and Theorem |3.0.29 . O

Theorem 4.2.35 A nonempty subset S of A is a strongly UP;-ideal of A if and

only if the t-characteristic fuzzy set FY is a fuzzy strongly UP;-ideal of A.

Proof. It is straightforward by Theorem [3.0.31 and Theorem |3.0.29 . [

Theorem 4.2.36 Every fuzzy strongly UPs-ideal (fuzzy strongly UP;-ideal) of A
s a fuzzy UPs-ideal and a fuzzy UP;-ideal of A.

In Example we define a membership function fr as follows:

Then F is a fuzzy UP;-ideal of A. Since F is not constant, we have F is not a

fuzzy strongly UPs-ideal and a fuzzy strongly UP;-ideal of A.

Then we get the diagram of generalization of fuzzy sets in fully UP-

semigroups as shown in Figure [4.2] below.
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Fuzzy UP.-Subalgebra
?{ % Fuzzy UP;-Subalgebra

Fuzzy Near UP-Filter T{
Fuzzy Near UP;-Filter

FuzzyTU{Ps-F“ter % T{

Fuzzy UP;-Filter
Fuzzy UP-1deal

| i

Fuzzy Strongly UP,-1deal \/ Fuzzy Strongly UP;-ldeal

Constant Fuzzy Set

Figure 1: Fuzzy sets in fully UP-semigroups

4.3 Properties of fuzzy sets in UP-algebras

In this section, we shall let A be a UP-algebra A = (A,-,0) and find

some properties of fuzzy sets in UP-algebras.

Proposition 4.3.1 [3]] If F is a fuzzy UP-subalgebra of A, then
(Vz € A)(fr(0) > fr(z)). (4.3.1)
Proposition 4.3.2 If F is a fuzzy UP-filter of A, then
(Va,y € A)(z <y = fr(z) < fr(y)). (4.3.2)
Proposition 4.3.3 If F is a fuzzy set in A satisfying the condition
(Vo,y,z € A)(z < x = fp(x-y) > min{fr(2), fr(y)}), (4.3.3)
then F is a fuzzy UP-subalgebra of A.

Proof. Let x,y € A. By (3.0.1), we have x < z. It follows from (4.3.3)) that
fr(x - y) > min{fr(z),fr(y)}. Hence, F is a fuzzy UP-subalgebra of A. O
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Theorem 4.3.4 If F is a fuzzy set in A satisfying the condition (4.3.3)), then F
satisfies the condition (4.3.1]).

Proof. 1t is straightforward by Proposition 4.3.3 n

The following example shows that the converse of Theorem [4.3.4] is not

true.

Example 4.3.5 Let A = {0, 1,2,3} be a set with a binary operation - defined by

the following Cayley table:

—_
o o o O | O
=

(eI e B V)
S NN W W

Then A = (A,-,0) is a UP-algebra. We define a membership function fr as
follows:

Then F satisfies the condition (4.3.1]) but it does not satisfy the condition (4.3.3]).
Indeed, 1 < 1 but fp(1-3) = fp(2) = 0.2 # 0.6 = min{0.6,0.9} = min{fp(1), fx(3)}.

It is clear that we have the following proposition.

Proposition 4.3.6 If F is a fuzzy set in A satisfying the condition

(Vz,y,z € A)(fp(x - y) > min{fp(2),fr(y)}), (4.3.4)

then F satisfies the condition (4.3.3)).

The following example shows that the converse of Proposition is

not true.
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Example 4.3.7 Let A = {0,1,2,3} be a set with a binary operation - defined by

the following Cayley table:

012 3
0j0 1 2 3
110 0 3 3
2(0 1 00
3101 20

Then A = (A,-,0) is a UP-algebra. We define a membership function fr as
follows:

fp(0) = 1,fp(1) = 0.1, fp(2) = 0.8, and fx(3) = 0.2.

Then F satisfies the condition (4.3.3)) but it does not satisfy the condition (4.3.4]).
Indeed, fp(1-2) = fp(3) = 0.2 # 0.8 = min{1,0.8} = min{fp(0), f:(2)}.

Proposition 4.3.8 If F is a fuzzy set in A satisfying the condition (4.3.2)), then
F is a fuzzy near UP-filter of A.

Proof. Let x,y € A. By (UP-3), we have x < 0. It follows from (4.3.2) that

fr(0) > fp(x). By (3.0.5), we have y < z-y. It follows from (4.3.2)) that fp(z-y) >
fr(y). Hence, F is a fuzzy near UP-filter of A. O

Theorem 4.3.9 If F is a fuzzy set in A satisfying the condition (4.3.2)), then F

satisfies the condition (4.3.4)).

Proof. Let x,y,z € A. By (3.0.5), we have y < z - y. It follows from (4.3.2) that
fr(z - y) > fp(y) > min{fp(2), fr(y)}. Hence, F satisfies (4.3.4)). O

The following example shows that the converse of Theorem is not

true.
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Example 4.3.10 Let A = {0,1,2,3} be a set with a binary operation - defined

by the following Cayley table:

—_
o O O o | O
o o O

S N
S W W W W

Then A = (A,-,0) is a UP-algebra. We define a membership function fr as
follows:

Then F satisfies the condition (4.3.4) but it does not satisfy the condition (4.3.2)).

Theorem 4.3.11 If F is a fuzzy UP-subalgebra of A satisfying the condition

(Ve,y € A)(z -y # 0 = fr(z) > fr(y)), (4.3.5)

then ¥ is a fuzzy near UP-filter of A.

Proof. Let xz,y € A. If z-y = 0, then by (4.3.1)), we have fp(z-y) = fp(0) > fr(y).

If z-y # 0, then by (4.3.5), we have fp(z - y) > min{fr(z), fr(y)} = fr(y). Hence,
F is a fuzzy near UP-filter of A. O

Proposition 4.3.12 A fuzzy set F in A satisfies the condition

(Vz,y,z € A)(z <z -y = fp(y) > min{fp(2), fr(x)}) (4.3.6)

if and only if ¥ is a fuzzy UP-filter of A.
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Proof. Let x € A. By (UP-3), we have < x - 0. It follows from (4.3.6)) that

fr(0) > min{fp(x),fr(z)} = fr(x). Let z,y € A. By (3.0.1)), we have x -y < z - y.
It follows from (4.3.6) that fr(y) > min{fp(z - y),fr(x)}. Hence, F is a fuzzy
UP-filter of A.

Conversely, let x,y,z € A be such that z < x-y. Then z- (z-y) =0, so

fr(z - y) = min{fp(z - (2 - ), fr(2)} = min{fp(0), fr(2)} = fr(2).
Thus fr(y) > min{fp(z - y), fr(z)} > min{fp(z), fr(x)}. Hence, F satisfies (4.3.6).
O

Theorem 4.3.13 If F is a fuzzy set in A satisfying the condition (4.3.6)), then F
satisfies the condition (4.3.2)).

Proof. Let z,y € A such that x < y. By (3.0.11)), we have = < z - y. It follows
from (4.3.6)) that fp(y) > min{fr(z),fr(z)} = fr(z). Hence, F satisfies (4.3.2). O

The following example shows that the converse of Theorem [4.3.13|is not
true.

Example 4.3.14 Let A = {0,1,2,3} be a set with a binary operation - defined

by the following Cayley table:

—_
o o O o | O
)

DO
[\

Then A = (A,-,0) is a UP-algebra. We define a membership function fp as
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follows:

fp(0) = 0.9, fp(1) = 0.3, f(2) = 0.6, and f(3) = 0.2.

Then F satisfies the condition (4.3.2)) but it does not satisfy the condition (4.3.6]).
Indeed, 1 <23 but fp(3) = 0.2 # 0.3 = min{0.3,0.6} = min{fp(1), fp(2)}.

Theorem 4.3.15 If F is a fuzzy near UP-filter of A satisfying the condition

(Vz,y € A)(fr(z - y) = fr(y)), (4.3.7)

then ¥ 1s a fuzzy UP-filter of A.

Proof. Let z,y € A. By (4.3.7)), we have frp(y) > min{fp(y), fr(z)} = min{fp(x -
y),fr(x)}. Hence, F is a fuzzy UP-filter of A. ]

Proposition 4.3.16 A fuzzy set F in A satisfies the condition

(Va,xz,y,z € A)(a<z-(y-2)=fp(x-2z) > min{fp(a),fr(y)}) (4.3.8)

if and only if ¥ is a fuzzy UP-ideal of A.

Proof. Let x € A. By (UP-3), we have x < z - (z-0). By (UP-3) and (4.3.8]), we

have

Let z,y,z € A. By (3.0.1), we have x - (y - 2) <z - (y - z). It follows from ({4.3.8])
that

fp(x - 2) =2 min{fe(z - (y - 2)), fr (y) }-

Hence, F is a fuzzy UP-ideal of A.
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Conversely, let a,z,y, z € A be such that a <z - (y - z). By Proposition
[1.3.2] we have fr(a) < fp(z - (y - 2)). Thus

fr(x - 2) > min{fp(z - (v - 2)), fr(y)} > min{fr(a), fr(y)}.

Hence, F satisfies (4.3.5)). n

Proposition 4.3.17 If F is a fuzzy UP-ideal of A, then

(Va,z,y,z € A)(a < x-(y-2) = fp(a-2) > min{fp(z), fr(y)}). (4.3.9)

Proof. Let a,x,y,z € A be such that a < x-(y-2). Thena-(x-(y-2)) =0, so

fr(a-(y-2)) = min{fr(a- (z- (y-2))), fr(2)} = min{fp(0), fr(z)} = fr(z).

Thus
fr(a-z) > min{fr(a- (y - 2)),fr(y)} > min{fp(z), fr(y)}.
[

Corollary 4.3.18 If F is a fuzzy set in A satisfying the condition (4.3.8), then
F satisfies the condition (4.3.9).

Proof. Tt is straightforward by Propositions [4.3.16] and [£.3.17] m

Theorem 4.3.19 Let A be a UP-algebra satisfying the condition

(Vz,y,z€ A)(z- (y-x) =y - (2-2)). (4.3.10)

If F is a fuzzy set in A satisfying the condition (4.3.9), then F satisfies the con-
dition (4.3.8).

Proof. Let a,z,y,z € A such that a < z - (y-z). By (4.3.10), we have 0 =
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a-(z-(y-z))=z-(a-(y-2)), that is, z < a- (y-2). It follows from (4.3.9)) that
fp(x - z) > min{fr(a), fr(y)}. Hence, F satisfies (4.3.8)). O
Theorem 4.3.20 If F is a fuzzy set in A satisfying the condition (4.3.9)), then F
satisfies the condition (4.3.6)).

Proof. Let x,y,z € A be such that z < x-y. By (3.0.1) and (3.0.3), we have
0==z2-2<2z-(x-y). By (UP-2) and (4.3.9), we have fr(y) = fr(0-y) >
min{fr(z), fr(z)}. Hence, F satisfies (4.3.6). O
Corollary 4.3.21 If F is a fuzzy set in A satisfying the condition (4.3.8), then
F satisfies the condition (4.3.6]).

Proof. 1t is straightforward by Corollary and Theorem O

The following example shows that the converse of Theorem [4.3.20]is not

true.

Example 4.3.22 Let A = {0,1,2,3} be a set with a binary operation - defined

by the following Cayley table:

—_
o O o o | O
)

N O W N
o O W W | w

Then A = (A,-,0) is a UP-algebra. We define a membership function fp as
follows:

fp(0) = 1,fp(1) = 0.9, f5(2) = 0.1, and fp(3) = 0.1.

Then F satisfies the condition (4.3.6)) but it does not satisfy the condition (4.3.9)).
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The following example shows that fuzzy set in a UP-algebra which sat-
isfies the condition (4.3.8]) is not constant.

Example 4.3.23 Let A = {0,1,2,3} be a set with a binary operation - defined

by the following Cayley table:

0123
0(0 1 2 3
110 0 2 3
2/0 1 0 3
3|01 20

Then A = (A,-,0) is a UP-algebra. We define a membership function fp as
follows:

£2(0) = 0.7, fp(1) = 0.5, f(2) = 0.4, and f(3) = 0.4.
Then F satisfies the condition (4.3.8) but it is not constant.

Theorem 4.3.24 If F is a fuzzy UP-filter of A satisfying the condition

(Ve,y,z € A)(fp(y - (- 2)) =fp(x - (y - 2))), (4.3.11)

then F is a fuzzy UP-ideal of A.

Proof. Let x,y,z € A. By (4.3.11]), we have

fp(z - 2) > min{fe(y - (z - 2)), fe(y)} = min{fe(z - (y - 2)), fe(y) }-

Hence, F is a fuzzy UP-ideal of A. O]

Proposition 4.3.25 A fuzzy set F in A satisfies the condition

(Va,z,y,z € A)(a < (z-y) - (z-2) = fp(r) > min{fr(a),fr(y)}) (4.3.12)
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if and only if ¥ is a fuzzy strongly UP-ideal of A.

Proof. Let x € A. By (UP-3), we have z <0=2x-0= (0-z)-(0-0). By (4.3.12),
we have fg(0) > min{fp(z), fp(x)} = fp(x). Let x,y,2 € A. By (3.0.1), we have

(z-y)-(z-2) <(2-y)-(2-2). By (4.3.12), we have fp(z) > min{fr((z-y) - (=
x)),fr(y)}. Hence, F is a fuzzy strongly UP-ideal of A.

The converse is obvious because F is constant. O

Theorem 4.3.26 If F is a fuzzy set in A satisfying the condition
(Ve,y,z € A)(z <z -y = fp(2) > min{fp(z),fr(y)}), (4.3.13)

then F satisfies the condition (4.3.3)).

Proof. Let x,y,z € A be such that z < z. By (3.0.4), we have z -y < z-y. By
(4.3.13), we have fp(z - y) > min{fp(2),fr(y)}. Hence, F satisfies (4.3.3). O

Proposition 4.3.27 A fuzzy set F in A satisfies the condition (4.3.13)) iof and
only if ¥ is a fuzzy strongly UP-ideal of A.

Proof. Let x € A. By (UP-3), we have z < 0 = 0-0. By (4.3.13), we have

fp(z) > min{fr(0),fr(0)} = fr(0). By Theorem [4.3.26| and Proposition {4.3.3| we
have fp(0) > fp(z). Thus fp(x) = fr(0) for all x € A, so F is constant. Hence, F

a fuzzy strongly UP-ideal of A.

The converse is obvious because F is constant. O

Theorem 4.3.28 If F is a fuzzy set in A satisfying the condition
(Ve,y,z € A)(z < x-y=1r(2) > fr(y)), (4.3.14)

then F satisfies the condition (4.3.3)).
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Proof. Let z,y,z € A be such that z < z. By (3.0.4), we have z -y < z - y. It

follows from (4.3.14) that fp(z-y) > fr(y) > min{fr(2), fr(y)}. Hence, F satisfies
@33). 0

Proposition 4.3.29 A fuzzy set ¥ in A satisfies the condition (4.3.14) if and
only if ¥ is a fuzzy strongly UP-ideal of A.

Proof. Let x € A. By (UP-3), we have x < 0 = 0-0. By (4.3.14]), we have
fr(z) > fr(0). By Theorem [4.3.28 and Proposition [4.3.3| we have fr(0) > fp(z).

Thus fr(z) = fp(0) for all x € A, so F is constant. Hence, F is a fuzzy strongly
UP-ideal of A.

The converse is obvious because F is constant. O

We have provided various important properties of fuzzy sets in various
types in UP-algebras which will be used in the next section. We get the diagram

of the properties of fuzzy sets in UP-algebras as shown in Figure below.

Fuzzy UP-Subalgebra (4.3.1)

{

(4.3.3)

K3

(4.3.4)

K?

Fuzzy Near UP-Filter «—— (4.3.2)

14 14

Fuzzy UP-Filter «——— (4.3.6)

‘ J{ td
(4.3.9)
t

Fuzzy UP-ldeal «———— (4.3.8)
K [k

Fuzzy Strongly UP-ldeal «—— Constant Fuzzy Set

(4312) (43.13) (4.3.14)

Figure 2: Properties of fuzzy sets in UP-algebras
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4.4 Fuzzy soft sets over fully UP-semigroups

From now on, we shall let A be an f-UP-semigroup A = (A, -, *,0) and
P be a set of parameters. Let F(A) denotes the set of all fuzzy sets in A. A

subset E of P is called a set of statistics.

Definition 4.4.1 Let £ C P. A pair (ﬁ, E) is called a fuzzy soft set over A if F
is a mapping given by F:E—>F (A), that is, a fuzzy soft set is a statistic family
of fuzzy sets in A. In general, for every e € E, Fle] := {(x, frq(@)) |z € At is a

fuzzy set in A and it is called a fuzzy value set of statistic e.

Definition 4.4.2 Let (F, Ey) and (G, Ey) be two fuzzy soft sets over a common
universe U. The union [24] of (F, Ey) and (G, E») is defined to be the fuzzy soft
set (F, By) U (G, By) = (H, E) satisfying the following conditions:

(1) E = E1 U E2 and

(ii) for all e € E,
Fle] ifee B\ Ey
Hle] = ¢ Gle] ifee By \ By
FleUGle] ifee B N Es.

The restricted union [28] of (F, Ey) and (G, E,) is defined to be the fuzzy soft set
(F, Ey) U (G, E,) = (H, E) satisfying the following conditions:

(1) E:ElﬂEQ#@and

(i) Hle] = F[e] U Gle] for all e € E.

Definition 4.4.3 Let (F, Ey) and (G, Ey) be two fuzzy soft sets over a common
universe U. The estended intersection [28] of (F, Ey) and (G, E,) is defined to be

the fuzzy soft set (ﬁ, Ey)N (é, Ey) = (H, E) satisfying the following conditions:
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(1) FE = E1 U EQ and

(ii) for all e € F,
Fle] if e € Fy\ Ey
Hle] = ¢ Gle] ifee Fy\ B
Fle]nGle] if e € By N EBs.

The intersection [2] of (F,E;) and (G, Es) is defined to be the fuzzy soft set
(F, Ey) m (G, Ey) = (H, E) satisfying the following conditions:

(i) E=E NE,#0and

(i) Hle] = Fle] N Gle] for all e € E.

Definition 4.4.4 A fuzzy soft set (F,E) over A is called a fuzzy soft UP.-
subalgebra based on e € E (we shortly call an e-fuzzy soft UPs-subalgebra) of
A if a fuzzy set Fle] in A is a fuzzy UPy-subalgebra of A. If (F,E) is an e-
fuzzy soft UPg-subalgebra of A for all e € E, we say that (ﬁ, E) is a fuzzy soft
UP;-subalgebra of A.

In the next theorem, we give necessary condition for fuzzy soft UPg-

subalgebras of f-UP-semigroups.

Theorem 4.4.5 If (ﬁ,E) s a fuzzy soft set over A such that for all e € F, a

fuzzy set ﬁ[e] in A satisfies the conditions (4.3.3)) and (3.0.14)), then (ﬁ,E) is a
fuzzy soft UPs-subalgebra of A.

Proof. It is straightforward by Proposition and Lemma [3.0.36|[(1)} O

The proof of the following theorem can be verified easily.

Theorem 4.4.6 If (]_?’,E) is a fuzzy soft UPs-subalgebra of A and §) # E* C E,

then (F

g+, B*) is a fuzzy soft UPs-subalgebra of A.
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The following example shows that there exists a nonempty subset E* of
E such that (F|g-, E*) is a fuzzy soft UPg-subalgebra of A, but (F, E) is not a
fuzzy soft UPs-subalgebra of A.

Example 4.4.7 Let A be the set of four series of the iPhone, that is,
A=1{5,6,7, X}.

Define two binary operations - and % on A as the following Cayley tables:

X 7 6 5 * | X 7 6 5
XX 7 6 5 XX X X X
71X X 6 5 71X X X X
6|X 7 X 5 6| X X X 7
>|X 7 6 X 5| X X 7 X

Then A = (A, -, x,X) is an f-UP-semigroup. Let (15, E) be a fuzzy soft set over
A where

E := {price, beauty, specifications, stability}

with F[price], F[beauty], F[specifications], and Flstability] are fuzzy sets in A de-

fined as follows:

F X7 6 5

price 0.8 0.3 0.7 0.1
beauty 0.5 03 02 04
specifications 0.9 0.8 0.5 0.6
stability 1 04 07 0.6

Then ﬁ[stability] is not a fuzzy UPg-subalgebra of A. Indeed,

fl?‘[staubility](5 * 6) = fﬁ[stability}(7> =04 z 0.6 = m1n{()6, 07} =

mln{fﬁ [stability] (5) ’ fﬁ [stability] (6) } :
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Hence, (F, E) is not a fuzzy soft UP-subalgebra of A. We take
E* := {price, beauty, specifications}.

Thus (F

g+, B*) is a fuzzy soft UPs-subalgebra of A.

Theorem 4.4.8 The extended intersection of two fuzzy soft UPs-subalgebras of
A is also a fuzzy soft UPs-subalgebra. Moreover, the intersection of two fuzzy soft

UP;-subalgebras of A is also a fuzzy soft UPs-subalgebra.

Proof. Let (ﬁ, Ey) and (é, E5) be two fuzzy soft UPg-subalgebras of A. Assume
that (F, £,) N (G, By) = (H, E) with E = By UE,. Let e € E.

Case 1: e € By \ By (resp., e € Fy \ Ey). Then Hle] = Fle] (resp.,
H[e] = Gle]) is a fuzzy soft UP,-subalgebra of A.

Case 2: e € Ey N Ey. By Theorem [4.2.2 we have Hle] = Fle] N G[e] is a

fuzzy soft UPs-subalgebra.

Thus (ﬁ, E) is an e-fuzzy soft UPg-subalgebra of A for all e € E. Hence,
(H, E) is a fuzzy soft UPy-subalgebra of A. O

Theorem 4.4.9 The union of two fuzzy soft UPs-subalgebras of A is also a fuzzy
soft UPs-subalgebra if sets of statistics of two fuzzy soft UPs-subalgebras are dis-

joint.

Proof. Let (F, Ey) and (G, E3) be two fuzzy soft UPg-subalgebras of A such that
E1N By = 0. Assume that (F, E;) U (G, E;) = (H, E) with E = E; U E,. Let
e€ E. Since EyNEy =0, we have e € Fy \ By or e € Ey \ Ey.

Case 1: e € Fy \ Ey. Then Hle] = Fle] is a fuzzy soft UPy-subalgebra of



57

Case 2: ¢ € Fy \ Ey. Then Hle] = G[e] is a fuzzy soft UP,-subalgebra of

Thus (ﬁ, E) is an e-fuzzy soft UPs-subalgebra of A for all e € E. Hence,
(H, E) is a fuzzy soft UPg-subalgebra of A. O

The following example shows that Theorem is not valid if sets of

statistics of two fuzzy soft UPg-subalgebras are not disjoint.

Example 4.4.10 By Cayley tables in Example we know that A = (A4, -, *, X)
is an f-UP-semigroup. Let (Gy, By) and (Gg, Ey) be two fuzzy soft sets over A

where
E, := {price, beauty, specifications} and Ey := {price, stability}

with Gy [price], Gy [beauty], G [specifications], Gs[price], and G, |[stability] are fuzzy

sets in A defined as follows:

G, X 7 6 5

price 0.9 0.7 09 0.2
beauty 1 08 0.3 02
specifications 0.6 0.5 0.3 04

G, X 7 6 5

price 0.9 0.3 0.2 0.8
stability 0.7 0.2 0.5 0.2

Then (él, E;) and (ég, E,) are two fuzzy soft UPg-subalgebras of A. Since price €

FEy N Esy, we have

<fél[Price}U62 [PriCe])(6 * 5) - <fé1[price}uéz [price])(7)
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=0.7

#0.8

= min{0.9, 0.8}

= mlIl{ (fél [price]UGa [price] ) (6)7 (fél [price]UGa [price] ) (5) } ’

Thus G [price] U Gy[price] is not a fuzzy UP,-subalgebra of A, that is, (G1, £;) U
(ég, E») is not a price-fuzzy soft UPg-subalgebra of A. Hence, (él, E)U (C~}2, E»)
is not a fuzzy soft UPg-subalgebra of A. Moreover, (C‘q, E)u (6}2, E,) is not a

fuzzy soft UPg-subalgebra of A.

Definition 4.4.11 A fuzzy soft set (ﬁ,E) over A is called a fuzzy soft UP;-
subalgebra based on e € E (we shortly call an e-fuzzy soft UP;-subalgebra) of A if
a fuzzy set Fle] in A is a fuzzy UP;-subalgebra of A. If (F, E) is an e-fuzzy soft
UP;-subalgebra of A for all e € E, we say that (ﬁ, E) is a fuzzy soft UP;-subalgebra
of A.

In the next theorem, we give necessary condition for fuzzy soft UP;-

subalgebras of f-UP-semigroups.

Theorem 4.4.12 If (ﬁ, E) is a fuzzy soft set over A such that for alle € E, a

fuzzy set Fle] in A satisfies the conditions ([A.3.3) and ([3.0.15), then (F,E) is a
fuzzy soft UP;-subalgebra of A.

Proof. 1t is straightforward by Proposition and Lemma [3.0.36|[(2)] O

Theorem 4.4.13 FEvery e-fuzzy soft UP;-subalgebra of A is an e-fuzzy soft UPs-
subalgebra. Moreover, every fuzzy soft UP;i-subalgebra of A is a fuzzy soft UP;-

subalgebra.

The following example shows that the converse of Theorem is not

true.
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Example 4.4.14 In Example we know that (ﬁ‘,E) is a price-fuzzy soft
UPg-subalgebra of A but ﬁ[price] is not a fuzzy UP;-subalgebra of A. Indeed,

Eopprice] (6% 5) = fpriee (7) = 0.3 # 0.7 = max{0.7,0.1} =

maX{fﬁ [price] (6) ’ ff? [price] (5) } :
Hence, (ﬁ, F) is not a price-fuzzy soft UP;-subalgebra of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.15 If (ﬁ,E) is a fuzzy soft UP;-subalgebra of A and ) # E* C E,

then (F

g+, B*) is a fuzzy soft UP;-subalgebra of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and [4.4.9

Theorem 4.4.16 The extended intersection of two fuzzy soft UP;-subalgebras of
A is also a fuzzy soft UP;-subalgebra. Moreover, the intersection of two fuzzy soft

UP;-subalgebras of A is also a fuzzy soft UP;-subalgebra.

Theorem 4.4.17 The union of two fuzzy soft UP;-subalgebras of A is also a

fuzzy soft UP;-subalgebra if sets of statistics of two fuzzy soft UP;-subalgebras are

disjoint.

The following example shows that Theorem [4.4.17] is not valid if sets of

statistics of two fuzzy soft UP;-subalgebras are not disjoint.

Example 4.4.18 Let A be the set of four types of a music, that is,

A = {pop, rock, classic, disco}.



Define two binary operations - and * on A as the following Cayley tables:

pop rock disco classic

pop | pop rock disco classic
rock | pop pop disco disco
disco | pop rock pop disco

classic | pop rock pop  pop

* pop rock disco classic

pop | pop Ppop  pop pop
rock | pop pop pop  pop
disco | pop pop pop  pop

classic | pop pop pop  pop

60

Then A = (A, -, x,pop) is an f-UP-semigroup. Let ((~}1, E;) and (62, E5) be two

fuzzy soft sets over A where

E; := {sorrow, modernity} and F5 := {modernity, enjoyment}

with G1[sorrow], Gi[modernity], Gs[modernity], and Gs[enjoyment] are fuzzy sets

in A defined as follows:

él pop rock disco classic

SOITOW 0.7 0.7 0.5 0.5
modernity 09 0.8 0.3 0.3

ég pop rock disco classic

modernity 0.8 0.3 0.4 0.5

enjoyment 1 09 0.1 0.1

Then (él,El) and (ég,Eg) are two fuzzy soft UP;-subalgebras of A. Since
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modernity € F; N E,, we have

(fél[modernity}uég [modernity])<rOCk ’ ClaSSiC)

- (fC~11 [modernity]UG2 [modernity] ) (diSCO)

=04

#0.5

= min{0.8,0.5}

= mln{ (fél [modernity] UGz [modernity] ) (I‘OCk) ) (fél [modernity] UGz [modernity] ) (ClaSSiC) } :

Thus G1[modernity] U Go[modernity] is not a fuzzy UP;-subalgebra of A, that is,
(G1, E1) U (Ga, Es) is not a modernity-fuzzy soft UP;-subalgebra of A. Hence,
(él, Ey)u (ég, E,) is not a fuzzy soft UP;-subalgebra of A. Moreover, (él, E))u
(ég, E,) is not a fuzzy soft UP;-subalgebra of A.

Definition 4.4.19 A fuzzy soft set (F, E) over A is called a fuzzy soft near UP,-
filter based on e € E (we shortly call an e-fuzzy soft near UPs-filter) of A if a
fuzzy set ﬁ[e] in A is a fuzzy near UPg-filter of A. If (f‘, E) is an e-fuzzy soft near
UP,-filter of A for all e € E, we say that (ﬁ, E) is a fuzzy soft near UPs-filter of
A.

In the next theorem, we give necessary condition for fuzzy soft near UP-

filters of f-UP-semigroups.

Theorem 4.4.20 If (ﬁ, E) is a fuzzy soft set over A such that for all e € E, a

fuzzy set ﬁ[e] in A satisfies the conditions (4.3.2)) and (3.0.14)), then (ﬁ,E) is a
fuzzy soft near UPs-filter of A.

Proof. 1t is straightforward by Proposition and Lemma [3.0.36|[(1)}] O

Theorem 4.4.21 FEvery e-fuzzy soft near UPs-filter of A is an e-fuzzy soft UP;s-
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subalgebra. Moreover, every fuzzy soft near UPs-filter of A is a fuzzy soft UP;-

subalgebra.

The following example shows that the converse of Theorem [4.4.21}is not

true.

Example 4.4.22 Let A be a set of four foods, that is,

A = {apple, banana, meat, rice}.

Define two binary operations - and % on A as the following Cayley tables:

rice apple banana meat

rice |rice apple banana meat
apple |rice rice apple meat
banana | rice rice rice  meat

meat |rice apple apple rice

* rice apple banana meat
rice |rice rice rice rice
apple |rice rice rice rice
banana | rice rice rice rice

meat |rice rice rice  apple

Then A = (A, -, , rice) is an f-UP-semigroup. Let (F, E) be a fuzzy soft set over
A where

E := {pig, monkey, chicken}
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with F[pig], F[monkey], and Fchicken] are fuzzy sets in A defined as follows:

F rice apple banana meat

pig 1 0.8 0.9 0.3
monkey 0.8 0.4 0.8 0.3
chicken 0.7 0.4 0.3 0.2

Then (ﬁ, F) is a pig-fuzzy soft UPg-subalgebra of A. But (F‘, E) is not a pig-fuzzy
soft near UP-filter of A since

fipig (meat - banana) = fi .\ (apple)

=03

#0.9

= ff(pig (Panana),
that is, Flpig] is not a fuzzy near UPsfilter of A.
In the next theorem, we give necessary condition for fuzzy soft UPs-

subalgebras as fuzzy soft near UPg-filters of f-UP-semigroups.

Theorem 4.4.23 If (15, E) is a fuzzy soft UPs-subalgebra of A such that for all
e € B, a fuzzy set ﬁ[e] in A satisfies the condition (4.3.5)), then (f‘, E) is a fuzzy
soft near UPs-filter of A.

Proof. 1t is straightforward by Theorem [4.3.11 m

The proof of the following theorem can be verified easily.

Theorem 4.4.24 If (ﬁ, E) is a fuzzy soft near UPs-filter of A and ) # E* C E,

then (F

g+, E*) is a fuzzy soft near UPs-filter of A.
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The following two theorems can be deduced in the same way as Theorems

4.4.8 and 14.4.91

Theorem 4.4.25 The extended intersection of two fuzzy soft near UPs-filters of
A is also a fuzzy soft near UPs-filter. Moreover, the intersection of two fuzzy soft

near UPs-filters of A is also a fuzzy soft near UP;-filter.

Theorem 4.4.26 The union of two fuzzy soft near UP,-filters of A is also a
fuzzy soft near UPs-filter if sets of statistics of two fuzzy soft near UPs-filters are

disjoint.

The following example shows that Theorem [4.4.26| is not valid if sets of

statistics of two fuzzy soft near UP-filters are not disjoint.

Example 4.4.27 In Example[4.4.10, we have (6}1, Ey) and ((~}2, E,) are two fuzzy

soft near UP-filters of A. Since price € E; N E,, we have

<fC~}1[price}U(~}2 [price])(6 * 5) =3 <fC~}1[price}U(~}2 [price])(7)

= 0.7

#0.8

= min{0.9, 0.8}

> mln{ (fél [price] UGz [price] ) (6)7 (fél [price] UG [price] ) (5) } ’

Thus G [price] U Ga[price] is not a fuzzy near UPyfilter of A, that is, (Gy, E1) U
(ég, E») is not a price-fuzzy soft near UP¢-filter of A. Hence, (C‘q, E))u (ég, E,)
is not a fuzzy soft near UP4-filter of A. Moreover, (él, E))u ((EQ,EQ) is not a
fuzzy soft near UPg-filter of A.

Definition 4.4.28 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft near UP;-
filter based on e € E (we shortly call an e-fuzzy soft near UP;-filter) of A if a

fuzzy set Fle] in A is a fuzzy near UPy-filter of A. If (F, E) is an e-fuzzy soft near
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UP;-filter of A for all e € E, we say that (ﬁ, E) is a fuzzy soft near UP;-filter of
A.

In the next theorem, we give necessary condition for fuzzy soft near UP;-

filters of f-UP-semigroups.

Theorem 4.4.29 If (ﬁ, E) is a fuzzy soft set over A such that for all e € E, a

fuzzy set Fle] in A satisfies the conditions ([1.3.2) and (3.0.15), then (F,E) is a
fuzzy soft near UP;-filter of A.

Proof. 1t is straightforward by Proposition and Lemma [3.0.36|[(2)] O

Theorem 4.4.30 Every e-fuzzy soft near UP;-filter of A is an e-fuzzy soft near

UPs-filter. Moreover, every fuzzy soft near UP;-filter of A is a fuzzy soft near
UP;-filter.

Theorem 4.4.31 Every e-fuzzy soft near UP;-filter of A is an e-fuzzy soft UP;-
subalgebra. Moreover, every fuzzy soft near UPi-filter of A is a fuzzy soft UP;-

subalgebra.

The following two examples show that the converse of Theorems
and [£.4.37] is not true.

Example 4.4.32 In Example we know that (F,E) is a price-fuzzy soft

near UPg¢-filter of A but ﬁ[price] is not a fuzzy near UP;-filter of A. Indeed,

f=

F[price]

(6% 5) = fpriee (7) = 0.3 # 0.7 = max{0.7,0.1} =

maX{fﬁ[price] (6) ’ f}~<“[p1rice] (5) } :

Hence, (F, E) is not a price-fuzzy soft near UP;filter of A.

Example 4.4.33 In Example [4.4.22, we know that (ﬁ, E) is a monkey-fuzzy soft
UP;-subalgebra of A but F[monkey] is not a fuzzy near UP;-filter of A. Indeed,



66

fﬁ[monkey}(apple - banana) = 1g[monkey}(apple) =04%08= fﬁ[monkey] (banana).

Hence, (ﬁ, E) is not a monkey-fuzzy soft near UP;-filter of A.

In the next theorem, we give necessary condition for fuzzy soft UP;-

subalgebras as fuzzy soft near UP;-filters of f-UP-semigroups.

Theorem 4.4.34 If (ﬁ,E) 18 a fuzzy soft UP;-subalgebra of A such that for all
e€ E, a fuzzy set ﬁ[e] in A satisfies the condition (4.3.5)), then (ﬁ, E) is a fuzzy
soft near UP;-filter of A.

Proof. 1t is straightforward by Theorem O

The proof of the following theorem can be verified easily.

Theorem 4.4.35 If (ﬁ, E) is a fuzzy soft near UP;-filter of A and ) # E* C E,

then (F

g+, E*) is a fuzzy soft near UP;-filter of A.

By using Theorem [4.2.10, we can obtain the following two theorems in

the same way as Theorems [4.4.8 and |4.4.9|

Theorem 4.4.36 The extended intersection of two fuzzy soft near UP;-filters of
A is also a fuzzy soft near UP;-filter. Moreover, the intersection of two fuzzy soft

near UP;-filters of A is also a fuzzy soft near UP;-filter.

Theorem 4.4.37 The union of two fuzzy soft near UP;-filters of A is also a
fuzzy soft near UP;-filter. Moreover, the restricted union of two fuzzy soft near

UP;-filters of A is also a fuzzy soft near UP;-filter.

Definition 4.4.38 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft UPs-filter
based on e € E (we shortly call an e-fuzzy soft UPs-filter) of A if a fuzzy set ﬁ[e]
in A is a fuzzy UPgfilter of A. If (F, E) is an e-fuzzy soft UP¢-filter of A for all
e € B, we say that (ﬁ, E) is a fuzzy soft UPs-filter of A.
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In the next theorem, we give necessary condition for fuzzy soft UPs-filters

of f-UP-semigroups.

Theorem 4.4.39 If (f‘, E) is a fuzzy soft set over A such that for all e € E, a

fuzzy set ﬁ[e] in A satisfies the conditions (4.3.6) and (3.0.14)), then (ﬁ,E) is a
fuzzy soft UPs-filter of A.

Proof. 1t is straightforward by Proposition |4.3.12f and Lemma |3.0.36 . [

Theorem 4.4.40 Every e-fuzzy soft UPs-filter of A is an e-fuzzy soft near UP;s-
filter. Moreover, every fuzzy soft UPs-filter of A is a fuzzy soft near UPs-filter.

The following example shows that the converse of Theorem is not

true.

Example 4.4.41 Let A be a set of four coffees, that is,
A = {Mocha(M), Americano(A), Cappuccino(C), Latte(L)}.

Define two binary operations - and * on A as the following Cayley tables:

L AMC L AMC
LIL A MC L|L L L L
AL L M C AL L L L
ML L L C M|L L L L
C|L L L L C|L L L M

Then A = (A, -, x, Latte) is an f-UP-semigroup. Let (ﬁ,E) be a fuzzy soft set
over A where

E := {sweetness, strong, aroma}
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with Flsweetness], F[strong], and F[aroma)] are fuzzy sets in A defined as follows:

F L A M C

sweetness 0.8 0.1 0.6 0.6
strong 0.7 0.7 0.6 0.5
aroma 05 03 04 0.1

Then (ﬁ, E) is a sweetness-fuzzy soft near UP¢-filter of A but ﬁ[sweetness] is not
a fuzzy UPg-filter of A. Indeed,

f=

F[sweetness]

mln{fﬁ [sweetness] <L)7 fI:j[svveetness] (M)} = mln{fﬁ [sweetness] (M ’ A)7 fﬁ[sweetness} (M)}

(A)=0.1% 0.6 =min{0.8,0.6} =

Hence, (15, E) is not a sweetness-fuzzy soft UP¢-filter of A.

In the next theorem, we give necessary condition for fuzzy soft near UP-

filters as fuzzy soft UP¢-filters of f-UP-semigroups.

Theorem 4.4.42 If (ﬁ,E) is a fuzzy soft near UPs-filter of A such that for all
e€ E, a fuzzy set ﬁ[e] in A satisfies the condition (4.3.7)), then (ﬁ, E) is a fuzzy
soft UPs-filter of A.

Proof. It is straightforward by Theorem {4.3.15 [

The proof of the following theorem can be verified easily.

Theorem 4.4.43 If (ﬁ, E) is a fuzzy soft UPs-filter of A and ) # E* C E, then
(F

g+, E*) is a fuzzy soft UPs-filter of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and 14.4.9
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Theorem 4.4.44 The extended intersection of two fuzzy soft UPs-filters of A is
also a fuzzy soft UPs-filter. Moreover, the intersection of two fuzzy soft UP,-filters
of A is also a fuzzy soft UPs-filter.

Theorem 4.4.45 The union of two fuzzy soft UP,-filters of A is also a fuzzy soft
UP-filter if sets of statistics of two fuzzy soft UPs-filters are disjoint.

The following example shows that Theorem [4.4.45|is not valid if sets of

statistics of two fuzzy soft UPs-filters are not disjoint.

Example 4.4.46 In Example |4.4.10) we have (6}1, Ey) and (C‘rg, Es) are two fuzzy
soft UP4-filters of A. Since price € E1 N E>, we have

<fél[price]uéz[price]>(6 * 5) = <fél[price]uéz[price]>(7) =0.7 z 0.8 = mln{og? 08} =

l'Illl'l{ (fél [price] UG [price] ) <6) ) (fél [price] UG [price] ) (5) } :

Thus G [price] UGs[price] is not a fuzzy UPg-filter of A, that is, (G1, Ey)U(Gy, E)
is not a price-fuzzy soft UPyfilter of A. Hence, (Gy, ) U (G, Es) is not a fuzzy
soft UP¢-filter of A. Moreover, (él, E))u (ég, E,) is not a fuzzy soft UP-filter
of A.

Definition 4.4.47 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft UP;-filter
based on e € E (we shortly call an e-fuzzy soft UP;-filter) of A if a fuzzy set F €]
in A is a fuzzy UPy-filter of A. If (F, E) is an e-fuzzy soft UPy-filter of A for all
e € E, we say that (1?‘, E) is a fuzzy soft UP;-filter of A.

In the next theorem, we give necessary condition for fuzzy soft UP;-filters

of f-UP-semigroups.

Theorem 4.4.48 If (ﬁ, E) is a fuzzy soft set over A such that for alle € E, a

fuzzy set Fle] in A satisfies the conditions ([A.3.6) and ([3.0.15), then (F,E) is a
fuzzy soft UP;-filter of A.
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Proof. 1t is straightforward by Proposition 4.3.12| and Lemma |3.0.36 . O]

Theorem 4.4.49 FEvery e-fuzzy soft UP;-filter of A is an e-fuzzy soft UPs-filter.
Moreover, every fuzzy soft UP;-filter of A is a fuzzy soft UPs-filter.

Theorem 4.4.50 Every e-fuzzy soft UP;-filter of A is an e-fuzzy soft near UP;-
filter. Moreover, every fuzzy soft UP;-filter of A is a fuzzy soft near UP;-filter.

The following two examples show that the converse of Theorems [4.4.49

and [£.4.50] is not true.

Example 4.4.51 In Example , we know that (ﬁ, E) is a beauty-fuzzy soft
UP,filter of A but F[beauty] is not a fuzzy UP;-filter of A. Indeed,

f=

F[beauty]

(6% 5) = Frpeaury (7) = 0.3 # 0.4 = max{0.2,0.4} =

max{fﬁ[beauty] (6) ’ ff? [beauty] (5> } :

Hence, (F, E) is not a beauty-fuzzy soft UPy-filter of A.

Example 4.4.52 In Example |4.4.41, we know that (ﬁ, E) is a aroma-fuzzy soft

near UP;filter of A but Flaroma) is not a fuzzy UPy-filter of A. Indeed,

[ aroma) (A) = 0.3 # 0.4 = min{0.5,0.4} = min{{5, oma (1) faroma (M)} =
min{fﬁ[aroma](M ) A>’ fﬁ[aroma]<M>}'

Hence, (F, E) is not a aroma-fuzzy soft UPy-filter of A.

In the next theorem, we give necessary condition for fuzzy soft near UP;-

filters as fuzzy soft UP;-filters of f-UP-semigroups.

Theorem 4.4.53 If (ﬁ, E) is a fuzzy soft near UP;-filter of A such that for all
e € E, a fuzzy set Fle] in A satisfies the condition [&.3.7), then (F,E) is a fuzzy
soft UP;i-filter of A.
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Proof. 1t is straightforward by Theorem [4.3.15 O]

The proof of the following theorem can be verified easily.

Theorem 4.4.54 If (l?‘,E) is a fuzzy soft UP;-filter of A and ) # E* C E, then
(ﬁ g+, B*) is a fuzzy soft UP;-filter of A.

The following two theorems can be deduced in the same way as Theorems

[4.4.8 and 4.4.91

Theorem 4.4.55 The extended intersection of two fuzzy soft UP;-filters of A is
also a fuzzy soft UP;-filter. Moreover, the intersection of two fuzzy soft UP;-filters
of A is also a fuzzy soft UP;-filter.

Theorem 4.4.56 The union of two fuzzy soft UP;-filters of A is also a fuzzy soft
UP;-filter if sets of statistics of two fuzzy soft UP;-filters are disjoint.

The following example shows that Theorem [4.4.56| is not valid if sets of

statistics of two fuzzy soft UP;-filters are not disjoint.

Example 4.4.57 Let A be a set of four colors, that is,

A = {blue, green, cyan, black}.

Define two binary operations - and % on A as the following Cayley tables:

black cyan blue green

black | black cyan blue green
cyan | black black blue blue

blue | black cyan black cyan

green | black black black black
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* black cyan blue green

black | black black black black
cyan | black black black black
blue | black black black black

green | black black black black

Then A = (A, -, *, black) is an f-UP-semigroup. Let (G1, E;) and (Gs, Es) be two

fuzzy soft sets over A where
E; := {endurance, beauty} and Es := {endurance, warmth}

with Gi[endurance], G, [beauty], Go[endurance], and Go[warmth] are fuzzy sets in

A defined as follows:

e black cyan blue green

endurance 1 0.5 0.7 0.5
beauty 04 03 02 02

ég black cyan blue green

endurance 1 0.6 05 0.5
warmth 0.9 04 05 0.4

Then (él, Ey) and (62, E,) are two fuzzy soft UP;-filters of A. Since endurance €

E1 N Es, we have

<f€}1[endurance}uaz[endurance})(green) =0.5 ;é 0.6 = mln{067 07} =

1’I11Il{ (fél [endurance]UGz[endurance] ) (Cy&l’l), <féq [endurance]UG2[endurance] ) (blue>} =

min{(fg | blue - green), (f5 blue)}.

endurance]UGs [endurance] ) ( 1[endurance] UGz [endurance] ) (

Thus G4 [endurance] U Golendurance] is not a fuzzy UP;-filter of A, that is,

(él, E)uU (ég, E,) is not a endurance-fuzzy soft UP;-filter of A. Hence, (C~}1, Ey)U
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(ég, E,) is not a fuzzy soft UP;-filter of A. Moreover, (él, E))u (ég, E,) is not
a fuzzy soft UP;-filter of A.

Definition 4.4.58 A fuzzy soft set (1?‘, E) over A is called a fuzzy soft UPs-ideal
based on e € E (we shortly call an e-fuzzy soft UPs-ideal) of A if a fuzzy set ﬁ[e]
in A is a fuzzy UPs-ideal of A. If (F, E) is an e-fuzzy soft UP-ideal of A for all
e € E, we say that (]_:“, E) is a fuzzy soft UPs-ideal of A.

In the next theorem and corollary, we give necessary condition for fuzzy

soft UPg-ideals of f-UP-semigroups.

Theorem 4.4.59 If (ﬁ, E) is a fuzzy soft set over A such that for all e € E, a

fuzzy set Fle] in A satisfies the conditions (4.3.8) and ([3.0.14), then (F,E) is a
fuzzy soft UPs-ideal of A.

Proof. 1t is straightforward by Proposition 4.3.16{ and Lemma |3.0.36 . O]
Corollary 4.4.60 Let A be an f-UP-semigroup satisfying the condition (4.3.10)).
If (f‘, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set ﬁ[e] in A

satisfies the conditions (4.3.9) and (3.0.14)), then (f‘,E) is a fuzzy soft UP,-ideal
of A.

Proof. 1t is straightforward by Theorems [4.4.59| and 4.3.19| O

Theorem 4.4.61 Fvery e-fuzzy soft UPs-ideal of A is an e-fuzzy soft UPs-filter.
Moreover, every fuzzy soft UPs-ideal of A is a fuzzy soft UP,-filter.

The following example shows that the converse of Theorem is not

true.

Example 4.4.62 By Cayley tables in Example {.4.18 we know that A =

(A, -, %, pop) is an f-UP-semigroup. Let (ﬁ, E) be a fuzzy soft set over A where

E := {sorrow, relaxation, enjoyment}
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with Flsorrow], F[modernity], and F[enjoyment] are fuzzy sets in A defined as

follows:

F pop rock disco classic

SOTTOW 0.6 0.2 0.1 0.1
modernity 1 0.5 0.5 0.5
enjoyment 0.7 0.5 0.2 0.2

Then (F, E) is a sorrow-fuzzy soft UPfilter of A but F[sorrow] is not a fuzzy
UPg-ideal of A. Indeed,

fﬁ[sorrow} (disco - classic) = fﬁ[sorrow]

(disco) = 0.1 # 0.2 = min{0.6,0.2} =
min{fﬁ[sorrow] (p0p>’ fﬁ [sorrow] (TOCk)} =
min{fz (rock)}.

disco - (rock - classic)), f;

[sorrow] ( Flsorrow]

Hence, (F, E) is not a sorrow-fuzzy soft UP,-ideal of A.

In the next theorem, we give necessary condition for fuzzy soft UPs-filters

as fuzzy soft UPg-ideals of f-UP-semigroups.

Theorem 4.4.63 If (ﬁ, E) is a fuzzy soft UPs-filter of A such that for all e € E,
a fuzzy set ﬁ[e] in A satisfies the condition (4.3.11)), then (f‘,E) is a fuzzy soft
UP,-ideal of A.

Proof. 1t is straightforward by Theorem [4.3.24 m

The proof of the following theorem can be verified easily.

Theorem 4.4.64 If (ﬁ, E) is a fuzzy soft UPs-ideal of A and O # E* C E, then
(ﬁ g+, E*) is a fuzzy soft UPs-ideal of A.

The following two theorems can be deduced in the same way as Theorems

4.4 8 and 14.4.9]
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Theorem 4.4.65 The extended intersection of two fuzzy soft UPs-ideals of A is
also a fuzzy soft UP,-ideal. Moreover, the intersection of two fuzzy soft UPs-ideals

of A is also a fuzzy soft UPs-ideal.

Theorem 4.4.66 The union of two fuzzy soft UPs-ideals of A is also a fuzzy soft

UP;-ideal if sets of statistics of two fuzzy soft UPs-ideals are disjoint.

The following example shows that Theorem [4.4.66| is not valid if sets of

statistics of two fuzzy soft UPs-ideals are not disjoint.

Example 4.4.67 In Example |4.4.10) we have (6}1, E;) and (C‘rg, Es) are two fuzzy
soft UPs-ideals of A. Since price € E7 N E>, we have

<f€§1[price]uéz[price]>(6 * 5) = <f€§1[price]uéz[price]>(7) =0.7 z 0.8 = mln{og? 08} =

l'Illl'l{ (fél [price] UG [price] ) <6) ) (fél [price] UG [price] ) (5) } :

Thus G [price] UGs[price] is not a fuzzy UPg-ideal of A, that is, (G1, E,)U(Gy, E»)
is not a price-fuzzy soft UPy-ideal of A. Hence, (Gy, ) U (G, Es) is not a fuzzy
soft UP¢-ideal of A. Moreover, (él, E))u (éz, E,) is not a fuzzy soft UPg-ideal
of A.

Definition 4.4.68 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft UP;-ideal
based on e € E (we shortly call an e-fuzzy soft UP;-ideal) of A if a fuzzy set F €]
in A is a fuzzy UPy-ideal of A. If (F, E) is an e-fuzzy soft UPy-ideal of A for all
e € E, we say that (1?‘, E) is a fuzzy soft UP;-ideal of A.

In the next theorem and corollary, we give necessary condition for fuzzy

soft UP;-ideals of f-UP-semigroups.

Theorem 4.4.69 If (ﬁ, E) is a fuzzy soft set over A such that for alle € E, a

fuzzy set ﬁ[e] in A satisfies the conditions (4.3.8) and (3.0.15)), then (ﬁ,E) is a
fuzzy soft UP;-ideal of A.
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Proof. 1t is straightforward by Proposition 4.3.16{ and Lemma |3.0.36 . O]

Corollary 4.4.70 Let A be an f-UP-semigroup satisfying the condition (4.3.10)).
If (ﬁ, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set ﬁ[e] in A

satisfies the conditions (4.3.9) and (3.0.15)), then (ﬁ,E) is a fuzzy soft UP;-ideal
of A.

Proof. 1t is straightforward by Theorems [4.4.69| and |4.3.19| O

Theorem 4.4.71 FEvery e-fuzzy soft UP;-ideal of A is an e-fuzzy soft UPs-ideal.

Moreover, every fuzzy soft UP;-ideal of A is a fuzzy soft UPs-ideal.

Theorem 4.4.72 Every e-fuzzy soft UP;-ideal of A is an e-fuzzy soft UP;-filter.
Moreover, every fuzzy soft UP;-ideal of A is a fuzzy soft UP;-filter.

The following two examples show that the converse of Theorems
and [4.4.72] is not true.

Example 4.4.73 In Example we know that (ﬁ,E) is a price-fuzzy soft
UP,-ideal of A but Fprice] is not a fuzzy UP;-ideal of A. Indeed,

(5% 6) = fpriee (7) = 0.3 # 0.7 = max{0.1,0.7} =

max{fﬁ [price] (5)7 fﬁ [price] (6) } :

f5

[price]

Hence, (ﬁ, E) is not a price-fuzzy soft UP;-ideal of A.

Example 4.4.74 In Example |4.4.62, we know that (ﬁ, E) is a enjoyment-fuzzy
soft UP;-filter of A but ﬁ[enjoyment] is not a fuzzy UP;-ideal of A. Indeed,

fﬁ[enjoyment} (dlSCO ’ Cl&SSlC) = fﬁ[enjoyment]

(disco) = 0.2 # 0.5 = min{0.7,0.5} =

Inln{fl?1 [enjoyment] (p0p>’ fﬁ [enjoyment] (I‘OCk)} -

min{fy (rock)}.

disco - (rock - classic)), f

enjoyment] ( Flenjoyment]
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Hence, (ﬁ, F) is not a enjoyment-fuzzy soft UP;-ideal of A.
In the next theorem, we give necessary condition for fuzzy soft UP;-filters

as fuzzy soft UP;-ideals of f-UP-semigroups.

Theorem 4.4.75 If (ﬁ, E) is a fuzzy soft UP;-filter of A such that for all e € E,
a fuzzy set ﬁ[e] in A satisfies the condition (4.3.11)), then (ﬁ,E) is a fuzzy soft
UP;-ideal of A.

Proof. Tt is straightforward by Theorem O

The proof of the following theorem can be verified easily.

Theorem 4.4.76 If (?,E) is a fuzzy soft UP;-ideal of A and ) # E* C E, then
(i’ g+, B*) is a fuzzy soft UP;-ideal of A.

The following two theorems can be deduced in the same way as Theorems

4.4.8 and [4.4.9

Theorem 4.4.77 The extended intersection of two fuzzy soft UP;-ideals of A is
also a fuzzy soft UP;-ideal. Moreover, the intersection of two fuzzy soft UP;-ideals
of A is also a fuzzy soft UP;-ideal.

Theorem 4.4.78 The union of two fuzzy soft UP;-ideals of A is also a fuzzy soft

UP;-ideal if sets of statistics of two fuzzy soft UP;-ideals are disjoint.
The following example shows that the converse of Theorem [4.4.7§|is not
true.

Example 4.4.79 In Example[4.4.57, we have (6}1, Ey) and (ég, E,) are two fuzzy

soft UP;-ideals of A. Since endurance € E; N E5, we have
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<fé1[endurance]uég[endurance])(blaCk ) green) = (fél[endurance}uég [endurance])(green) =

0.5 # 0.6 = min{0.6,0.7} =

1’I11I1{ (fél [endurance]UGz[endurance] ) (Cyan) ’ <fC~}1 [endurance]UGz[endurance] ) (blue> }

min{(fél[ondurancc]uég[onduranco})(blaCk ) (blue )

green) ) ) (fél [endurance] UGz [endurance] ) (blue> } :

Thus G4 [endurance] U Gofendurance] is not a fuzzy UP;-ideal of A, that is,

(él, E)uU ((N}Q, E5) is not a endurance-fuzzy soft UP;-ideal of A. Hence, ((N}l, E))U
(Go, Es) is not a fuzzy soft UPy-ideal of A. Moreover, (Gq, E1) U (Ga, Es) is not
a fuzzy soft UP;-ideal of A.

Definition 4.4.80 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft strongly
UP;-ideal based on e € E (we shortly call an e-fuzzy soft strongly UP;s-ideal)
of A if a fuzzy set ﬁ[e] in A is a fuzzy strongly UP.-ideal of A. If (ﬁ, E) is an
e-fuzzy soft strongly UP.-ideal of A for all e € E, we say that (ﬁ, E) is a fuzzy
soft strongly UPs-ideal of A.

Definition 4.4.81 A fuzzy soft set (ﬁ, E) over A is called a constant fuzzy soft
set based on e € E (we shortly call an e-constant fuzzy soft set) of A if a fuzzy
set Fle] in A is constant. If (F, E) is an e-constant fuzzy soft set over A for all

e € E, we say that (ﬁ, E) is a constant fuzzy soft set over A.

Theorem 4.4.82 Fvery e-fuzzy soft strongly UPs-ideal of A is an e-fuzzy soft
UPs-ideal. Moreover, every fuzzy soft strongly UPs-ideal of A is a fuzzy soft UP;-

1deal.

Theorem 4.4.83 e-fuzzy soft strongly UPs-ideals and e-constant fuzzy soft sets
coincide in A. Moreover, fuzzy soft strongly UPs-ideals and constant fuzzy soft

sets coincide in A.

In the next theorem, we give necessary condition for fuzzy soft strongly

UPs-ideals of f-UP-semigroups.
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Theorem 4.4.84 If (ﬁ, E) is a fuzzy soft set over A such that for all e € E, a
fuzzy set ﬁ[e] in A satisfies the conditions (4.3.12) (or (4.3.13)) or (4.3.14) ) and
(3.0.14)), then (ﬁ,E) is a fuzzy soft strongly UPs-ideal of A.

Proof. Tt is straightforward by Propositions[4.3.25| (or[4.3.27|or |4.3.29)) and Lemma
3.0.36[(1)] O

The following example shows that the converse of Theorem is not

true.

Example 4.4.85 Let A be a set of four brands of a pick-up truck, that is,

A = {Toyota Hilux(TH), Mitsubishi Triton(MT), Ford Ranger(FR),

Isuzu D-Max(ID)}.

Define two binary operations - and % on A as the following Cayley tables:

MT FR ID TH * |[MT FR ID TH
MT |MT FR ID TH MT |MT MT MT MT
FR | MT MT ID TH FR |MT FR MT MT
ID 'MT FR MT TH ID |{MT MT ID MT
T™H | MT FR ID MT TH MT TH MT MT

Then A = (A, -, %, Mitsubishi Triton) is an f-UP-semigroup. Let (ﬁ,E) be a

fuzzy soft set over A where
E := {displacement, horse power, torque}

with F[displacement], F[horse power], and Fltorque] are fuzzy sets in A defined



as follows:

F MT FR ID TH

displacement 1 0.6 0.4 0.7
horse power 0.9 06 0.5 0.5
torque 0.9 07 06 0.5
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Then (F, E) is a torque-fuzzy soft UPyideal of A but Fltorque] is not a fuzzy

strongly UPg-ideal of A. Indeed,

f=

Fitorque) (ID) = 0.6 # 0.7 = min{0.9,0.7} = min{fg ., . (MT), 5,

(FR)}.

[torque]

((ID - FR) - (ID - ID)), f

F[torque]

torque

min { fﬁ [torque]

Hence, (Fv , E) is not a torque-fuzzy soft strongly UP.-ideal of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.86 If (ﬁ, E) is a fuzzy soft strongly UPs-ideal of A and () # E*
E, then (ﬁ|E,E*) is a fuzzy soft strongly UPs-ideal of A.

By using Theorem [4.2.32, we can obtain the following two theorems
the same way as Theorems [£.4.8) and [4.4.9]

J(FR)} =

-

n

Theorem 4.4.87 The extended intersection of two fuzzy soft strongly UPs-ideals

of A is also a fuzzy soft strongly UPs-ideal. Moreover, the intersection of two

fuzzy soft strongly UPs-ideals of A is also a fuzzy soft strongly UPs-ideal.

Theorem 4.4.88 The union of two fuzzy soft strongly UP,-ideals is also a fuzzy

soft strongly UPs-ideal. Moreover, the restricted union of two fuzzy soft strongly

UPs-ideals of A is also a fuzzy soft strongly UPs-ideal.

Definition 4.4.89 A fuzzy soft set (ﬁ, E) over A is called a fuzzy soft strongly

UP;-ideal based on e € E (we shortly call an e-fuzzy soft strongly UP;-ideal)
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of A if a fuzzy set ﬁ[e] in A is a fuzzy strongly UP;-ideal of A. If (i’, E) is an
e-fuzzy soft strongly UP;-ideal of A for all e € E, we say that (ﬁ, E) is a fuzzy
soft strongly UP;-ideal of A.

Theorem 4.4.90 Every e-fuzzy soft strongly UP;i-ideal of A is an e-fuzzy soft
UP;-ideal. Moreover, every fuzzy soft strongly UP;-ideal of A is a fuzzy soft UP;-

1deal.

Theorem 4.4.91 e-fuzzy soft strongly UP;-ideals and e-constant fuzzy soft sets
coincide in A. Moreover, fuzzy soft strongly UP;-ideals and constant fuzzy soft

sets coincide in A.

Corollary 4.4.92 e-fuzzy soft strongly UPs-ideals, e-fuzzy soft strongly UP;-
ideals, and e-constant fuzzy soft sets coincide in A. Moreover, fuzzy soft strongly

UP;-ideals, fuzzy soft strongly UP;-ideals and constant fuzzy soft sets coincide in
A.

Proof. 1t is straightforward by Theorems [4.4.83| and |4.4.91| O

In the next theorem, we give necessary condition for fuzzy soft strongly

UP;-ideals of f-UP-semigroups.

Theorem 4.4.93 If (ﬁ, E) is a fuzzy soft set over A such that for alle € E, a
fuzzy set Fle] in A satisfies the conditions (£.3.12) (or (.3.13) or [@.3.14)) and

(3.0.15)), then (ﬁ,E) is a fuzzy soft strongly UP;-ideal of A.

Proof. 1t is straightforward by Proposition 4.3.25| (or 4.3.27or [4.3.29) and Lemma

3.0.36/[(2)] 0

The following example shows that the converse of Theorem [4.4.90] is not

true.
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Example 4.4.94 In Example(4.4.85, we know that (ﬁ, F) is a displacement-fuzzy
soft UP;-ideal of A but ﬁ[displacement] is not a fuzzy strongly UP;-ideal of A.
Indeed,

f= ID) = 0.4 # 0.6 = min{1,0.6} =
MT)’ fﬁ[displacement] (FR>} =

((ID-FR) - (ID - ID)), £

Fldisplacement]

[displacement] (
mln{fﬁ [displacement] (

(FR)}.

Hlll’l{fl:: [displacement

Hence, (F, E) is not a displacement-fuzzy soft strongly UP;-ideal of A.

The proof of the following theorem can be verified easily.

Theorem 4.4.95 If (ﬁ, E) is a fuzzy soft strongly UP;i-ideal of A and () # E* C

E, then (F

g+, B*) is a fuzzy soft strongly UP;-ideal of A.

By using Theorem we can obtain the following two theorems in

the same way as Theorems |4.4.8/ and [4.4.9|

Theorem 4.4.96 The extended intersection of two fuzzy soft strongly UP;-ideals
of A is also a fuzzy soft strongly UP;-ideal. Moreover, the intersection of two

fuzzy soft strongly UP;-ideals of A is also a fuzzy soft strongly UP;-ideal.

Theorem 4.4.97 The union of two fuzzy soft strongly UP;-ideals of A is also
a fuzzy soft strongly UPs-ideal. Moreover, the restricted union of two fuzzy soft

strongly UP;-ideals of A is also a fuzzy soft strongly UP;-ideal.

Then, we get the diagram of generalization of fuzzy soft sets over fully

UP-semigroups as shown in Figure [£.4] below.
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Fuzzy Soft UP,-Subalgebra

Tf Fuzzy Soft UP;-Subalgebra

Fuzzy Soft Near UP-Filter ‘M
Tf Fuzzy Soft Near UP;-Filter

Fuzzy Soft UP-Filter ‘M

Fuzzy Soft UP;-Filter
Fuzzy Soft UP,-Ideal
Fuzzy Soft UP;-Ideal

1

Fuzzy Soft Strongly UP-ldeal Fuzzy Soft Strongly UP;-Ideal

Constant Fuzzy Soft Set

Figure 3: Fuzzy soft sets over fully UP-semigroups

4.5 Properties of operations for fuzzy soft sets over

fully UP-semigroups

From now on, we shall let A be an f-UP-semigroup A = (A, -, *,0) and
P be a set of parameters. Let F(A) denotes the set of all fuzzy sets in A. A

subset E of P is called a set of statistics.

Definition 4.5.1 [24] Let (F, By) and (G, E) be two fuzzy soft sets over a com-
mon universe U. The OR of (F, E;) and (G, E,) is defined to be the fuzzy soft
set (F, By) V (G, By) = (H, E) satisfying the following conditions:

(1) FE = E1 X E'Q and

(i) Hley, es] = Fle ] U Gle] for all (eq,e5) € E.

Definition 4.5.2 [24] Let (F, E,) and (G, E) be two fuzzy soft sets over a com-
mon universe U. The AND of (1?‘, Ey) and ((N}, E,) is defined to be the fuzzy soft
set (F, E1) A (G, E,) = (H, E) satisfying the following conditions:

(1) E = E1 X E2 and

(i) Hley, es] = Fler] N Gleg] for all (ey,e5) € E.
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We will introduce the notions of the restricted union, the union, the
intersection, the extended intersection, the AND, and the OR of any fuzzy soft

sets and apply to f-UP-semigroups.

Definition 4.5.3 Let {(E, E;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The restricted union
of (F;, E;) is defined to be the fuzzy soft set W,/ (F;, E;) = (F, E) satisfying the

following conditions:

(i) E=je; £i #0 and

(ii) Fle] = U, File] for all e € E.

Theorem 4.5.4 The restricted union of family of fuzzy soft near UP;-filters of
A is also a fuzzy soft near UP;-filter.

Proof. Let (151, E;) be a fuzzy soft near UP;-filters of A for all i € I. Assume
that U,c;(F;, E;) = (F, E) be the restricted union of (F;, E;) for all i € I. Then
E=Ne Ei#0. Let e € E. By Theorem we have Fle] = Uier File] is a
fuzzy near UPi-filter of A. Therefore, (F, E) is an e-fuzzy soft near UP;-filter of

A. But since e is an arbitrary statistic of F, we have (i’, E) is a fuzzy soft near

UP;-filter of A. O

In the same way as Theorem [4.5.4] we can use Theorems [4.2.32| (resp.,
4.2.33) to prove that the restricted union of family of fuzzy soft strongly UP-

ideals (resp., fuzzy soft strongly UP;-ideals) of A is also a fuzzy soft strongly

UPg-ideal (resp., fuzzy soft strongly UP;-ideal).

Definition 4.5.5 Let {(E, E;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The union of (E, E;)
is defined to be the fuzzy soft set Uig(ﬁu E;) = (F, E) satisfying the following

conditions:
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() E=U,e; Ei and

(i) Fle] = Ujes Fje] for all e € E with e € Njes £ — Ures_y Er where ) #
JCI.

Theorem 4.5.6 The union of family of fuzzy soft near UP;-filters of A is also a
fuzzy soft near UP;-filter.

Proof. Let (E, E;) be a fuzzy soft near UP;-filters of A for all ¢ € I. Assume that
ﬂiel(ﬁi,Ei) — (F, E) be the union of (F;, B;) for all i € I. Then E = Uics Ei-
Let e € E.

Case 1: |J| = |I]. By Theorem , we have Fle] = Nicr F;le] is a fuzzy
near UP;-filter of A.

Case 2: |J| =1, that is, J is a singleton set. Then Fe] = F;le] =

je{s}

F;le] is a fuzzy near UP;-filter of A.

Case 3: 1 < |J| < |I|. Then Fle] = ﬂjGJﬁj[e]. Since e € E; for all j € J
and e ¢ Ey, for some k € I —.J and by same Case 1, we have Fle] is a fuzzy near

UP;-filter of A.

Therefore, (F, E) is an e-fuzzy soft near UPy-filter of A. But since e is an

arbitrary statistic of £, we have (ﬁ, E) is a fuzzy soft near UP;-filter of A. O]

In the same way as Theorem [£.5.6] we can prove that the union of family
of fuzzy soft strongly UPs-ideals (resp., fuzzy soft strongly UP;-ideals) of A is

also a fuzzy soft strongly UPs-ideal (resp., fuzzy soft strongly UP;-ideal).

In section [£.4] we show that the union of two fuzzy soft UP,-subalgebras
(resp., fuzzy soft UPj-subalgebras, fuzzy soft near UPg-filters, fuzzy soft UPs-
filters, fuzzy soft UP;-filters, fuzzy soft UPg-ideals, fuzzy soft UP;-ideals) of A is

not fuzzy soft UPg-subalgebra (resp., fuzzy soft UP;-subalgebra, fuzzy soft near
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UPg-filter, fuzzy soft UPg-filter, fuzzy soft UP;-filter, fuzzy soft UPs-ideal, fuzzy
soft UP;-ideal).

Definition 4.5.7 Let {(F;, B;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The intersection
of (E, E;) is defined to be the fuzzy soft set @ig(ﬁi, E;) = (ﬁ, E) satisfying the

following conditions:

(1) E=jes £i #0 and
(i) Fle] = ;e File] for all e € E.

Theorem 4.5.8 The intersection of family of fuzzy soft UPs-subalgebras of A is

also a fuzzy soft UPs-subalgebra.

Proof. Let (F;, E;) be a fuzzy soft UPy-subalgebras of A for all i € I. Assume
that M;e;(Fi, E;) = (F,E) is the intersection of (F;, E;) for all i € I. Then
E =e; Ei # 0. Let e € E. By Theorem , we have Fle] = Nicr F,le] is a
fuzzy UPs-subalgebra of A. Therefore, (ﬁ, E) is an e-fuzzy soft UPg-subalgebra
of A. But since e is an arbitrary statistic of £, we have (ﬁ, E) is a fuzzy soft

UPg-subalgebra of A. m

In the same way as Theorem [4.5.8 we can use Theorems (resp.,
4.2.7, |4.2.9, 4.2.15] [4.2.17] 4.2.24] 4.2.26] |4.2.32} 4.2.33)) to prove that the inter-

section of family of fuzzy soft UP;-subalgebras (resp., fuzzy soft near UP4filters,
fuzzy soft near UPj-filters, fuzzy soft UPg-filters, fuzzy soft UP;-filters, fuzzy
soft UPs-ideals, fuzzy soft UP;-ideals, fuzzy soft strongly UPg-ideals, fuzzy soft
strongly UP;-ideals) of A is also a fuzzy soft UP;-subalgebra (resp., fuzzy soft near
UPgfilter, fuzzy soft near UP;-filter, fuzzy soft UP4-filter, fuzzy soft UP;-filter,
fuzzy soft UPg-ideal, fuzzy soft UP;-ideal, fuzzy soft strongly UPg-ideal, fuzzy soft

strongly UP;-ideal).
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Definition 4.5.9 Let {(F;, B;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The extended
intersection of (F;, E;) is defined to be the fuzzy soft set mig[(ﬁiin) = (F,E)

satisfying the following conditions:

() E = U, Ei and

(i) Fle] = Njes F;[e] for all e € E with e € Njes £ — Ures_y Er where 0 #
JCI.

Theorem 4.5.10 The extended intersection of family of fuzzy soft UPs-subalgebras

of A is also a fuzzy soft UPs-subalgebra.

Proof. Let (E, E;) be a fuzzy soft UPg-subalgebras of A for all i € I. Assume
that ni€](§i7Ei> — (F, E) is the extended intersection of (F;, E;) for all i € 1.

Then F =J..; E;. Let e € E.

el

Case 1: |J| = |I]. By Theorem , we have Fle] = Nics F,le] is a fuzzy
UPg-subalgebra of A.

Case 2: |.J| = 1, that is, J is a singleton set. Then Fle] = Njet ﬁj[e] =

F;[e] is a fuzzy UP¢-subalgebra of A.

Case 3: 1 < |.J| < |I|. Then Fle] = Njes ﬁj[e]. Since e € Ej for all j € J
and e ¢ Fj for some k € I — J and by same Case 1, we have F[e] is a fuzzy

UPg-subalgebra of A.

Therefore, (F, E) is an e-fuzzy soft UP,-subalgebra of A. But since e
is an arbitrary statistic of £, we have (f‘, E) is a fuzzy soft UPg-subalgebra of
A. O

In the same way as Theorem we can prove that the extended

intersection of family of fuzzy soft UP;-subalgebras (resp., fuzzy soft near UPg-
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filters, fuzzy soft near UP;-filters, fuzzy soft UPg-filters, fuzzy soft UP;-filters,
fuzzy soft UP-ideals, fuzzy soft UP;-ideals, fuzzy soft strongly UP-ideals, fuzzy
soft strongly UP;-ideals) of A is also a fuzzy soft UP;-subalgebra (resp., fuzzy soft
near UPg-filter, fuzzy soft near UP;-filter, fuzzy soft UPg-filter, fuzzy soft UP;-
filter, fuzzy soft UPg¢-ideal, fuzzy soft UP;-ideal, fuzzy soft strongly UP-ideal,

fuzzy soft strongly UP;-ideal).

Definition 4.5.11 Let {(F;, E;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The AND of (E, E;)
is defined to be the fuzzy soft set /\iel(ﬁzﬁ E;) = (F, E) satisfying the following

conditions:

(i) E= Hie] E; and

(it) Fl(er)ier] = Moy Files] for all (e;)ier € E.

Theorem 4.5.12 The AND of family of fuzzy soft UPs-subalgebras of A is also

a fuzzy soft UPs-subalgebra.

Proof. Let (E, E;) be a fuzzy soft UPg-subalgebras of A for all i € I. By means
of Definition 4.5.11} we assume that /\Z.Gl(f‘i, E;) = (F, E) such that E =[]
and F[(e;)ier] = Nicr F,le;] for all (e;)icr € E. Assume that e = (¢;);c; € E and

ZEI
let x,y € A. Then

frpg (- y) = fnie,ﬁi[ei](-f’? %)
Hlf{f ( “Y) tier
> inf{min{fz (@), & 1. (V) } bier
= min{inf{f; File:] ( ) Yier, inf{f; Filed] ( ) bier}
= min{fn (@), g @)

= min{fz, (), fr1,(»)}, and
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fr (@ *y) =1fn , Filea (@ * V)
= inf{fﬁi[ei]@ *Y) bier
> inf{min{fk:i[ei](ﬁ), fﬁi[ei](y)}}iel
= min{inf{fz () }ier, inf{fz 1 (v) }ier}
— minfiy 50 gy @)

= min{fﬁ[e] (x), fg (y)}-

Therefore, ﬁ[e] is a fuzzy UPg-subalgebra of A, that is, (ﬁ, E) is an e-fuzzy soft
UP,-subalgebra of A. But since e is an arbitrary statistic of £, we have (F, E) is
a fuzzy soft UPg-subalgebra of A. O

In the same way as Theorem [4.5.12] we can prove that the AND of family
of fuzzy soft UP;-subalgebras (resp., fuzzy soft near UPg-filters, fuzzy soft near
UP;i-filters, fuzzy soft UPg-filters, fuzzy soft UP;-filters, fuzzy soft UPs-ideals,
fuzzy soft UP;-ideals, fuzzy soft strongly UP-ideals, fuzzy soft strongly UP;-
ideals) of A is also a fuzzy soft UP;-subalgebra (resp., fuzzy soft near UP-filter,
fuzzy soft near UP;-filter, fuzzy soft UPgfilter, fuzzy soft UP;-filter, fuzzy soft
UPs-ideal, fuzzy soft UP;-ideal, fuzzy soft strongly UPg-ideal, fuzzy soft strongly
UP;-ideal).

Definition 4.5.13 Let {(F;, E;) | i € I} be a nonempty family of fuzzy soft sets
over a common universe U where [ is an arbitrary index set. The OR of (ﬁl, E;)
is defined to be the fuzzy soft set \/,. I(E, E;) = (F, E) satisfying the following

conditions:

(i) B =l £i and

(i) F(ex)ies] = U, Files] for all (e;)ier € E.
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Theorem 4.5.14 The OR of family of fuzzy soft near UP;-filters of A is also a
fuzzy soft near UP;-filter.

Proof. Let (E, E;) be a fuzzy soft near UP;-filters of A for all i € I. By means
of Definition 4.5.13| we assume that \/Z.GI(E, E;) = (F, E) such that £ =[]
and F[(e;)ies] = Uier F;le;] for all (e;)ier € E. Assume that e = (¢;)ic; € E and

ZGI

let x,y € A. Then

ﬁ[e](o) = fuielﬁi[ei](o)
= sup{fg ., (0) bier
> sup{fg, ., (¢) }ier
= 10, Filen (@)
fio (@ ¥) =, Fupea (7 - V)
= sup{fg, ., (€ - y) bier
> sup{fs Filei] ( ) Yier
=10, Filea W)
= {5 (y), and
(@ *y) = 1 Fupen (@ *9)
= sup{fs . (@ * ¥) tier
> sup{max{fy . (), {5 . (V) } }ies
= max{sup{fy, ., (z) }icr, sup{fy, ., (¥) bicr }
= max{fy 5. (@) 0 e )}
= max{fg(z), f5, () }-

Therefore, Fle] is a fuzzy near UPi-filter of A, that is, (F, E) is an e-fuzzy soft

near UP;-filter of A. But since e is an arbitrary statistic of E, we have (ﬁ, E)is
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a fuzzy soft near UP;-filter of A. O]

In the same way as Theorem [4.5.14] we can prove that the OR of family
of fuzzy soft strongly UPs-ideals (resp., fuzzy soft strongly UP;-ideals) of A is

also a fuzzy soft strongly UPs-ideal (resp., fuzzy soft strongly UP;-ideal).

The following example shows that the OR of two fuzzy soft UPs-subalge-

bras of A are not fuzzy soft UPg-subalgebra.

Example 4.5.15 By Cayley tables in Example we know that A = (4, -, *, X)
is an f-UP-semigroup. Let (Fy, By) and (Fy, Fy) be two fuzzy soft sets over A

where
E, := {price, beauty, specifications} and FEy := {price, stability}

with Fy [price], F; [beauty], F; [specifications], Fo[price], and Fs[stability] are fuzzy

sets in A defined as follows:

FF X 7 6 5 -
F, X 7 6 5

price 0.9 0.7 09 0.2
price 0.9 0.3 0.2 0.8
beauty 1 08 03 0.2
stability 0.7 0.2 0.5 0.2

specifications 0.6 0.5 0.3 04

Then (Fy, Ey) and (Fy, Ey) are two fuzzy soft UPy-subalgebras of A. Since

(price, price) € Ey x Es, we have

(fﬁl[price]uﬁg[price])(5 * 6) = (fﬁl[price}uﬁg[price])(7)

=0.7

#08

= min{0.8,0.9}
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= H’llIl{ <fﬁ1 [price]UFs [price] ) (5> ) (fl?l [price]UF s [price] ) (6) } :

Thus Fy[price] U Fy[price] is not a fuzzy UP,-subalgebra of A, that is, (Fy, E1) U
(Fa, B,) is not a (price, price)-fuzzy soft UPy-subalgebra of A. Hence, (Fy, Fy) U
@2, E,) is not a fuzzy soft UPg-subalgebra of A. Moreover, (ﬁl, E)) v (ﬁg, Ey) is

not a fuzzy soft UPg-subalgebra of A.

We can apply this example for check that the OR of two fuzzy soft UP;-
subalgebras (resp., fuzzy soft near UPg-filters, fuzzy soft UPg-filters, fuzzy soft
UP;-filters, fuzzy soft UPg-ideals, fuzzy soft UP;-ideals) of A are not fuzzy soft
UP;-subalgebra (resp., fuzzy soft near UPg-filter, fuzzy soft UPg-filter, fuzzy soft
UP;-filter, fuzzy soft UPg-ideal, fuzzy soft UP;-ideal).

We prove that certain distributive laws hold in fuzzy soft set theory with
respect to the restricted union, the union, the intersection, and the extended

intersection on any fuzzy soft sets.

Theorem 4.5.16 Let (F;, E;) and (F, E) be fuzzy soft sets over a common uni-

verse U where I is a nonempty set. Then the following properties hold:

(1) (F,E) 0 (Uie, (F, B)) = Uie, (F, E) @ (F, E2)),
(2) Uies(Fi B) @ (F, E) = U, (Fs, E) 1 (F, E)),
(3) (F, E) U (Nies(Fi, E) = Nies (F, E) U (Fy, Ey)),
(4) (Nies(Fis B) U (F, E) = (Fy, B) U N (F, B),
(5) (¥, B) N (Uies(F, E) =Uies(F, B) 0 (F, E2)),
(6) (Uies (Fi, B)) 0 (F, B) Wiy (F;, Bi) 0 (F, B)),

(7) (F,E) U (Mie;(Fs, ) =Mier((F, B) U (F;, Ey)),
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(8) (Mics(Fi, ) U (F, B) =Mics (Fy, B:) U (F, E)),
9) (1, B)n (Uie, (1, ) =Uies (F, B) @ (K, ),
(10) (Uier (s, E)) m (F, B) =Uie, (F, E) m (F, ),
(11) (F, B) Y (Mier(Fi, i) =Mic;((F, E) W (Fy, Ey)), and

(12) (Myes(Fi, B)) W (F, B) =M ((Fy, E) W (F, E)).

Proof. (1) First, we investigate left hand side of the equality. Suppose that
Uie;(Fi, Ei) = (G, EY) is the union of (F;, B;) for all i € I. Then EV = J,_, E;
and for any e € BV, Gle] = Uies F;le] with e € Njes Bi — Uper_s Ex where
0 #J C1I. Thus (F,E) A (U, (Fi, E)) = (F, E) @ (G, EY) = (H, EVT). For any
e € BV = ENEY # 0, Hle] = Fle] N Gle] where ENEY = EN (U, i) =
Uie,(E N E;). By considering G as piecewise defined function, we have H[e] =
Fle] N (U, Fjle]) with e € M, (BN Ej) = Upes_y (EN Ey) where 0 # J C 1.

Consider the right hand side of the equality. Suppose that (ﬁ,E) m
(Fi, E;) = (I, EI) is the intersection of (F, E) and (F;, E;) for alli € I. Then E! =
ENE; # 0 and for any e € Ef, T,[¢] = Fle]NF,le]. Now, U, ((F, E)m (F;, E;)) =

)

Uic; (L, Ef) = (3, E'Y), where E'V = J,.; Ef = U,c;(E N E;). For any e € E'Y,
Jle] = UjeJTj[e] with e € (e, El' — Uper_y E{ where §) # J C I. Considering
T; as piecewise functions for all i € I, we have Jle] = | > L(Fle] N F,le]) with
e € e (ENE)) =Ues s (ENEy) where § # J C I. By Theorem it is
clear that H and J are same set-valued mapping. Hence, (F, E)f (Uie[(ﬁi7 E)) =

Uie[((ﬁv E) m (ﬁ“ EZ))

(2) By using techniques as in (1) and by Theorem[3.0.37(2), then (2) can

is derived.

(3) By using techniques as in (1) and by Theorem [3.0.37(3)| then (3) can

is derived.
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(4) By using techniques as in (1) and by Theorem [3.0.37(4), then (4) can

is derived.

(5) First, we investigate left hand side of the equality. Suppose that
LLUZ-GI(E,Ei) = (é,ERU) is the restricted union of (E,EZ) for all # € I. Then
ERV = .., E; # 0 and for any e € ERV, Gle] = U, File]. Thus (F,E) N
(W, (F;, E)) = (F, E)N(G, ERV) = (H, ERVET). For any e € ERVEI = EUERU

we have
Fle] ifec E\ ERV

Hle] = { Gle] ifec ERV\ E
Fle]NGle] ifee ENERY.

By taking into account the definition of G along with ﬁ, we can write

Fle] ifec B\ (e £s)
Hle] = Uies F; €] ife€ (N, Bi)\ E
Fle] N (Use; File]) if e € EN (N, Eo).

Consider the right hand side of the equality. Suppose that (ﬁ,E) N
(Fi, E;) = (I;, BFT) is the extended intersection of (F,E) and (F;, E;) for all

i € I. Then for any e € EFf = E U E;, we have

Fle] ifee E\ E;
Lile] = ¢ File] ifec B\ E
Fle]NFi[e] ifec ENE;.

Now, LUJiEI((ﬁa E)ﬂ(ﬁi, Ei)):@iel@v EZEI) = (j, EEIRU) where EF/RU = ﬂie[ Ezl

= Nie,(EUE) = EU(Nye; Ei) # 0. For any e € EFIRU_Jle] = |J,, Lle]. By

taking into account the properties of operations in set theory and consideringi
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as piecewise defined functions for all ¢ € I, we have

Fle] if e € B\ (Nies Ei)
F;le] if e € (MNie; Bi) \ E

Uie]
J[e] - Uie[ (
Uie[(ﬁ[e] n Fl[e]) ifee EN (ﬂz’el E@)

And so
Fle] if e € B\ (N,e; Ei)
Jlel = Uses File] if e € (Mies Bi) \ E
U, Flel nFile]) ife € EN (N, Ei)-

By Theorem , it is clear that H and J are same set-valued mapping.
Hence, (F, E) N (Wi, (F;, E:)) =W ((F, E) 0 (Fy, E5)).

(6) By using techniques as in (5) and by Theorem [3.0.37(2), then (6) can

is derived.

(7) By using techniques as in (5) and by Theorem [3.0.37(3)| then (7) can

is derived.

(8) By using techniques as in (5) and by Theorem [3.0.37(4) then (8) can

is derived.

(9) First, we investigate left hand side of the equality. Suppose that
W,/ (F;, E;) = (G, ERY) is the restricted union of (F;, E;) for all i € I. Then
ERU = .., E; # 0 and for any e € ERV, Gle] = U, File]. Thus (F,E) m
(W,e,(Fi, E)) = (F, E)m(G, ERV) = (H, ERUT). For any e € ERVI = ENERV =
B0 (er o) # 0, we have flle] = Fle] 1 Gle) = Fle] 1 (Uyg, File)).

Consider the right hand side of the equality. Suppose that (F,E) @
(Fi, E;) = (I, EI) is the intersection of (F, E) and (F;, E;) for alli € I. Then E! =
ENE; # 0 and for any e € E!, I;|e] = Fle]nF;[e]. Now, U/ ((F, E)a (F;, E;)) =
W,e,(I;, EN) = (J, E'RY), where ETRU = Nicr Bl = Nic;(ENE;) # 0. Forany e €



96

BT Jle] = UjeJ Ijle] = UjeJ(F[e] s [e]). Since e, (ENE;) = EN(Nier Ed),
we have B/FV = FRUI By Theorem it is clear that H and J are same
set-valued mapping. Hence, (F, E) @ (U, (Fi, E)) =W, ((F, E) m (Fi, E))).

(10) By using techniques as in (9) and by Theorem [3.0.37(2)} then (10)

can is derived.

(11) By using techniques as in (9) and by Theorem [3.0.37(3)} then (11)

can is derived.

(12) By using techniques as in (9) and by Theorem [3.0.37|(4)} then (12)

can is derived. O
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CHAPTER V

CONCLUSIONS

From the study, we get the following results.

. Every UP;-subalgebra of A is a UP-subalgebra of A.

Every near UPgfilter of A is a UPg-subalgebra of A.
Every near UP;-filter of A is a UP;-subalgebra of A.
Every near UP;-filter of A is a near UP-filter of A.
Every UPgfilter of A is a near UPg-filter of A.
Every UP;-filter of A is a near UP;-filter of A.
Every UP;-filter of A is a UPg-filter of A.

Every UP-ideal of A is a UPfilter of A.

Every UP;i-ideal of A is a UPi-filter of A.

Every UP;-ideal of A is a UPg-ideal of A.

Every strongly UPs-ideal of A is a UPg-ideal of A.
Every strongly UP;-ideal of A is a UP;-ideal of A.
Strongly UP-ideals and strongly UP;-ideals coincide in A and it is only A.

The intersection of any nonempty family of fuzzy UPs-subalgebras of A is

also a fuzzy UPg-subalgebra of A.

A nonempty subset S of A is a UPg-subalgebra of A if and only if the

t-characteristic fuzzy set Fk is a fuzzy UPgs-subalgebra of A.
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The intersection of any nonempty family of fuzzy UP;-subalgebras of A is

also a fuzzy UP;-subalgebra of A.

A nonempty subset S of A is a UPj-subalgebra of A if and only if the

t-characteristic fuzzy set Fl is a fuzzy UP;-subalgebra of A.

The intersection of any nonempty family of fuzzy near UP.-filters of an

f-UP-semigroup A = (A, -, %,0) is also a fuzzy near UPg-filter.

A nonempty subset S of A is a near UPgfilter of A if and only if the

t-characteristic fuzzy set FY is a fuzzy near UP-filter of A.

The intersection of any nonempty family of fuzzy near UPj-filters of an

f-UP-semigroup A = (A, -, x,0) is also a fuzzy near UP;-filter.

The union of any nonempty family of fuzzy near UP;-filters of an f-UP-

semigroup A = (A, -, *,0) is also a fuzzy near UP;-filter.

A nonempty subset S of A is a near UP;-filter of A if and only if the ¢-

characteristic fuzzy set F% is a fuzzy near UP;-filter of A.
Every fuzzy near UPg-filter of an f-UP-semigroup is a fuzzy UP-subalgebra.
Every fuzzy near UP;-filter of an f-UP-semigroup is a fuzzy UP;-subalgebra.

The intersection of any nonempty family of fuzzy UP-filters of A is also a

fuzzy UPg-filter of A.

A nonempty subset S of A is a UPg-filter of A if and only if the ¢-characteristic

fuzzy set F% is a fuzzy UPgfilter of A.

The intersection of any nonempty family of fuzzy UP;-filters of A is also a

fuzzy UP;-filter of A.

A nonempty subset S of A is a UP;-filter of A if and only if the ¢-characteristic

fuzzy set FY is a fuzzy UP;-filter of A.
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Every fuzzy UPs-filter of an f-UP-semigroup is a fuzzy near UPg-filter.
Every fuzzy UP;-filter of an f-UP-semigroup is a fuzzy near UP;-filter.

The intersection of any nonempty family of fuzzy UPs-ideals of A is also a

fuzzy UPs-ideal of A.

A nonempty subset S of A is a UPs-ideal of A if and only if the ¢-characteristic

fuzzy set FY is a fuzzy UPg-ideal of A.

The intersection of any nonempty family of fuzzy UP;-ideals of A is also a

fuzzy UP;-ideal of A.

A nonempty subset S of A is a UP;-ideal of A if and only if the ¢-characteristic

fuzzy set FL is a fuzzy UPj-ideal of A.
Every fuzzy UP-ideal of A is a fuzzy UP-filter of A.
Every fuzzy UP;-ideal of A is a fuzzy UP;-filter of A.

Fuzzy strongly UPg-ideals, fuzzy strongly UP;-ideals, and constant fuzzy

sets coincide in A.

The intersection and union of any nonempty family of fuzzy strongly UP-

ideals of A are also a fuzzy strongly UPg-ideal of A.

The intersection and union of any nonempty family of fuzzy strongly UP;-

ideals of A are also a fuzzy strongly UP;-ideal of A.

A nonempty subset S of A is a strongly UPg-ideal of A if and only if the

t-characteristic fuzzy set FY is a fuzzy strongly UPs-ideal of A.

A nonempty subset S of A is a strongly UP;-ideal of A if and only if the

t-characteristic fuzzy set Fk is a fuzzy strongly UP;-ideal of A.
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Every fuzzy strongly UPg-ideal (fuzzy strongly UP;-ideal) of A is a fuzzy
UPs-ideal and a fuzzy UP;-ideal of A.

If F is a fuzzy set in A satisfying the condition (4.3.3)), then F satisfies the

condition (4.3.1)).

If F is a fuzzy set in A satisfying the condition (4.3.2)), then F satisfies the
condition (4.3.4)).

If F is a fuzzy UP-subalgebra of A satisfying the condition
(Vz,y € A)(z -y # 0= fp(z) > fr(y)), (4.3.5)

then F is a fuzzy near UP-filter of A.

If F is a fuzzy set in A satisfying the condition (4.3.6)), then F satisfies the
condition (4.3.2)).

If F is a fuzzy near UP-filter of A satisfying the condition

(Vz,y € A)(fr(z - y) = fr(y)), (4.3.7)

then F is a fuzzy UP-filter of A.

Let A be a UP-algebra satisfying the condition
(Va,y,2 € A)(z- (y-z) =y (2 7). (4.3.10)

If F is a fuzzy set in A satisfying the condition (4.3.9)), then F satisfies the
condition (4.3.8)).

If F is a fuzzy set in A satisfying the condition (4.3.9)), then F satisfies the
condition (4.3.6)).



0.

ol.

52.

93.

54.

99.

96.

57.

101

If F is a fuzzy UP-filter of A satisfying the condition

(Vx,y,z € A)(fr(y - (- 2)) =fr(z- (y- 2))), (4.3.11)

then F is a fuzzy UP-ideal of A.

If F is a fuzzy set in A satisfying the condition
(Vr,y,z € A)(z < x -y = fp(2) > min{fp(z), fr(y)}), (4.3.13)

then F satisfies the condition (4.3.3)).

If F is a fuzzy set in A satisfying the condition
(Vz,y,z € A)(z <z -y = fp(2) > fr(y)), (4.3.14)

then F satisfies the condition (4.3.3)).

If (F, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set Fle]

in A satisfies the conditions (4.3.3) and (3.0.14), then (F, E) is a fuzzy soft
UP,-subalgebra of A.

If (F,E) is a fuzzy soft UPs-subalgebra of A and ) # E* C E, then
(F

g+, B¥) is a fuzzy soft UPg-subalgebra of A.

The extended intersection of two fuzzy soft UPs-subalgebras of A is also
a fuzzy soft UPg-subalgebra. Moreover, the intersection of two fuzzy soft

UPg-subalgebras of A is also a fuzzy soft UPs-subalgebra.

The union of two fuzzy soft UPg-subalgebras of A is also a fuzzy soft UP,-

subalgebra if sets of statistics of two fuzzy soft UPs-subalgebras are disjoint.

If (F, E) is a fuzzy soft set over A such that for all e € F, a fuzzy set Fle]
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in A satisfies the conditions (4.3.3) and (3.0.15), then (F, E) is a fuzzy soft
UP;-subalgebra of A.

Every e-fuzzy soft UP;-subalgebra of A is an e-fuzzy soft UP¢-subalgebra.

Moreover, every fuzzy soft UP;-subalgebra of A is a fuzzy soft UP4-subalgebra.

If (ﬁ,E) is a fuzzy soft UPj-subalgebra of A and () # E* C E, then
(F

g+, E*) is a fuzzy soft UP;-subalgebra of A.

The extended intersection of two fuzzy soft UP;-subalgebras of A is also
a fuzzy soft UP;-subalgebra. Moreover, the intersection of two fuzzy soft

UP;-subalgebras of A is also a fuzzy soft UP;-subalgebra.

The union of two fuzzy soft UP;-subalgebras of A is also a fuzzy soft UP;-

subalgebra if sets of statistics of two fuzzy soft UP;-subalgebras are disjoint.

If (ﬁ, FE) is a fuzzy soft set over A such that for all e € E, a fuzzy set ﬁ[e]

in A satisfies the conditions (£.3.2) and (3.0.14)), then (F, E) is a fuzzy soft
near UP.filter of A.

Every e-fuzzy soft near UPgfilter of A is an e-fuzzy soft UPs-subalgebra.

Moreover, every fuzzy soft near UP-filter of A is a fuzzy soft UP-subalgebra.

If (ﬁ, E) is a fuzzy soft UPg-subalgebra of A such that for all e € E, a fuzzy
set Fle] in A satisfies the condition (@.3.5), then (F, E) is a fuzzy soft near
UP,-filter of A.

If (F, E) is a fuzzy soft near UP-filter of A and () # E* C E, then (F

E*aE*)

is a fuzzy soft near UP.-filter of A.

The extended intersection of two fuzzy soft near UP -filters of A is also a
fuzzy soft near UPg-filter. Moreover, the intersection of two fuzzy soft near

UPg-filters of A is also a fuzzy soft near UPg-filter.
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The union of two fuzzy soft near UPy-filters of A is also a fuzzy soft near

UPg-filter if sets of statistics of two fuzzy soft near UP-filters are disjoint.

If (F, E) is a fuzzy soft set over A such that for all ¢ € E, a fuzzy set Fe]

in A satisfies the conditions (£.3.2) and (3.0.15)), then (F, E) is a fuzzy soft
near UP;-filter of A.

Every e-fuzzy soft near UP;-filter of A is an e-fuzzy soft near UPg-filter.
Moreover, every fuzzy soft near UP;-filter of A is a fuzzy soft near UP,-

filter.

Every e-fuzzy soft near UP;-filter of A is an e-fuzzy soft UP;-subalgebra.

Moreover, every fuzzy soft near UP;-filter of A is a fuzzy soft UP;-subalgebra.

If (f‘, E) is a fuzzy soft UP;-subalgebra of A such that for all e € E| a fuzzy
set Fle] in A satisfies the condition (#.3.5), then (F, E) is a fuzzy soft near
UP;-filter of A.

If (F, E) is a fuzzy soft near UP;-filter of A and () # E* C E, then (F

E*aE*>

is a fuzzy soft near UP;-filter of A.

The extended intersection of two fuzzy soft near UP;-filters of A is also a
fuzzy soft near UP;-filter. Moreover, the intersection of two fuzzy soft near

UP;-filters of A is also a fuzzy soft near UP;-filter.

The union of two fuzzy soft near UP;-filters of A is also a fuzzy soft near
UP;-filter. Moreover, the restricted union of two fuzzy soft near UP;-filters

of A is also a fuzzy soft near UP;-filter.

If (F, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set Fle]

in A satisfies the conditions (4.3.6) and (3.0.14), then (F, E) is a fuzzy soft
UPfilter of A.
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Every e-fuzzy soft UPg-filter of A is an e-fuzzy soft near UPg-filter. More-

over, every fuzzy soft UPy-filter of A is a fuzzy soft near UP-filter.

If (F,E) is a fuzzy soft near UPyfilter of A such that for all ¢ € E, a
fuzzy set Fle] in A satisfies the condition (£.3.7), then (F, E) is a fuzzy soft
UP,-filter of A.

If (F, E) is a fuzzy soft UPfilter of A and () # E* C E, then (F|g-, E*) is
a fuzzy soft UPg-filter of A.

The extended intersection of two fuzzy soft UPs-filters of A is also a fuzzy
soft UPs-filter. Moreover, the intersection of two fuzzy soft UP-filters of A

is also a fuzzy soft UPfilter.

The union of two fuzzy soft UP4-filters of A is also a fuzzy soft UPg-filter if

sets of statistics of two fuzzy soft UPg-filters are disjoint.

If (F, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set Fle]

in A satisfies the conditions (£.3.6) and (3.0.15)), then (F, E) is a fuzzy soft
UP;-filter of A.

Every e-fuzzy soft UP;-filter of A is an e-fuzzy soft UPg-filter. Moreover,

every fuzzy soft UP;-filter of A is a fuzzy soft UP,-filter.

Every e-fuzzy soft UP;-filter of A is an e-fuzzy soft near UP;-filter. More-

over, every fuzzy soft UP;-filter of A is a fuzzy soft near UP;-filter.

If (F,E) is a fuzzy soft near UPi-filter of A such that for all ¢ € E, a
fuzzy set Fle] in A satisfies the condition (£.3.7), then (f‘, E) is a fuzzy soft
UP;-filter of A.

If (F, E) is a fuzzy soft UP;-filter of A and () # E* C E, then (F

E*, E*) is
a fuzzy soft UP;-filter of A.
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The extended intersection of two fuzzy soft UP;-filters of A is also a fuzzy
soft UP;-filter. Moreover, the intersection of two fuzzy soft UP;-filters of A

is also a fuzzy soft UP;-filter.

The union of two fuzzy soft UP;-filters of A is also a fuzzy soft UP;-filter if

sets of statistics of two fuzzy soft UP;-filters are disjoint.

If (F, E) is a fuzzy soft set over A such that for all e € E, a fuzzy set Fle]

in A satisfies the conditions (@.3.8) and (3.0.14), then (F, E) is a fuzzy soft
UP-ideal of A.

Every e-fuzzy soft UPg-ideal of A is an e-fuzzy soft UPg-filter. Moreover,

every fuzzy soft UPs-ideal of A is a fuzzy soft UPs-filter.

If (F, E) is a fuzzy soft UPyfilter of A such that for all e € E, a fuzzy set
ﬁ[e] in A satisfies the condition (4.3.11]), then (ﬁ, E) is a fuzzy soft UPg-ideal
of A.

If (F, E) is a fuzzy soft UP-ideal of A and () # E* C E, then (F

E*, E*) is
a fuzzy soft UP,-ideal of A.

The extended intersection of two fuzzy soft UPs-ideals of A is also a fuzzy
soft UPs-ideal. Moreover, the intersection of two fuzzy soft UPg-ideals of A

is also a fuzzy soft UPg-ideal.

The union of two fuzzy soft UP¢-ideals of A is also a fuzzy soft UPg¢-ideal if

sets of statistics of two fuzzy soft UPs-ideals are disjoint.

If (ﬁ, FE) is a fuzzy soft set over A such that for all e € E, a fuzzy set ﬁ[e]

in A satisfies the conditions (£.3.8) and (3.0.15)), then (F, E) is a fuzzy soft
UP;-ideal of A.

Every e-fuzzy soft UP;-ideal of A is an e-fuzzy soft UPg-ideal. Moreover,

every fuzzy soft UP;-ideal of A is a fuzzy soft UPg-ideal.
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Every e-fuzzy soft UP;-ideal of A is an e-fuzzy soft UP;-filter. Moreover,

every fuzzy soft UP;-ideal of A is a fuzzy soft UP;-filter.

If (J:;‘, E) is a fuzzy soft UP;-filter of A such that for all e € E, a fuzzy set
F[e] in A satisfies the condition (4.3.11)), then (F, E) is a fuzzy soft UP;-ideal
of A.

If (F, E) is a fuzzy soft UP;-ideal of A and () # E* C E, then (F

E*, E*) 18
a fuzzy soft UP;-ideal of A.

The extended intersection of two fuzzy soft UP;-ideals of A is also a fuzzy
soft UP;-ideal. Moreover, the intersection of two fuzzy soft UP;-ideals of A

is also a fuzzy soft UP;-ideal.

The union of two fuzzy soft UP;-ideals of A is also a fuzzy soft UP;-ideal if

sets of statistics of two fuzzy soft UP;-ideals are disjoint.

Every e-fuzzy soft strongly UPg-ideal of A is an e-fuzzy soft UPg-ideal.

Moreover, every fuzzy soft strongly UPs-ideal of A is a fuzzy soft UPg-ideal.

e-fuzzy soft strongly UPg-ideals and e-constant fuzzy soft sets coincide in
A. Moreover, fuzzy soft strongly UPs-ideals and constant fuzzy soft sets

coincide in A.

If (F, E) is a fuzzy soft set over A such that for all ¢ € E, a fuzzy set Fe]

in A satisfies the conditions (4.3.12) (or (4.3.13) or (4.3.14)) and (3.0.14)),
then (ﬁ, E) is a fuzzy soft strongly UPg-ideal of A.

If (ﬁ,E) is a fuzzy soft strongly UPs-ideal of A and () # E* C FE, then
(F

g, ) is a fuzzy soft strongly UPg-ideal of A.

The extended intersection of two fuzzy soft strongly UPs-ideals of A is also
a fuzzy soft strongly UPs-ideal. Moreover, the intersection of two fuzzy soft

strongly UPg-ideals of A is also a fuzzy soft strongly UP-ideal.
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The union of two fuzzy soft strongly UPg-ideals is also a fuzzy soft strongly
UPg-ideal. Moreover, the restricted union of two fuzzy soft strongly UP-

ideals of A is also a fuzzy soft strongly UP¢-ideal.

Every e-fuzzy soft strongly UP;-ideal of A is an e-fuzzy soft UP;-ideal. More-

over, every fuzzy soft strongly UP;-ideal of A is a fuzzy soft UP;-ideal.

e-fuzzy soft strongly UP;j-ideals and e-constant fuzzy soft sets coincide in
A. Moreover, fuzzy soft strongly UP;-ideals and constant fuzzy soft sets

coincide in A.

If (F, E) is a fuzzy soft set over A such that for all e € F, a fuzzy set Fle]

in A satisfies the conditions (4.3.12)) (or (4.3.13) or (4.3.14])) and (3.0.15)),
then (ﬁ, E) is a fuzzy soft strongly UP;-ideal of A.

If (ﬁ, E) is a fuzzy soft strongly UPi-ideal of A and () # E* C E, then
(F

g+, E*) is a fuzzy soft strongly UP;-ideal of A.

The extended intersection of two fuzzy soft strongly UP;-ideals of A is also
a fuzzy soft strongly UP;-ideal. Moreover, the intersection of two fuzzy soft

strongly UP;-ideals of A is also a fuzzy soft strongly UP;-ideal.

The union of two fuzzy soft strongly UP;-ideals of A is also a fuzzy soft
strongly UPg-ideal. Moreover, the restricted union of two fuzzy soft strongly

UP;-ideals of A is also a fuzzy soft strongly UP;-ideal.

The restricted union of family of fuzzy soft near UP;-filters of A is also a

fuzzy soft near UP;-filter.

The union of family of fuzzy soft near UP;-filters of A is also a fuzzy soft

near UP;-filter.

The intersection of family of fuzzy soft UPg-subalgebras of A is also a fuzzy

soft UPg-subalgebra.
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116. The extended intersection of family of fuzzy soft UPg-subalgebras of A is

also a fuzzy soft UPg-subalgebra.

117. The AND of family of fuzzy soft UP¢-subalgebras of A is also a fuzzy soft
UPg-subalgebra.

118. The OR of family of fuzzy soft near UP;-filters of A is also a fuzzy soft near
UP;-filter.

119. Let (F;, E;) and (F, E) be fuzzy soft sets over a common universe U where

I is a nonempty set. Then the following properties hold:

(1) (F, B) @ (Use,(Fi, B) = Uier (F, B) @ (s, Ey),
(2) (Uier(Fs ED) @ (F, E) = Uy, (Fi, E5) M (F, ),
(3) (F, E) U (Nies(Fis B) = Nies (F, B) U (i, Ey)),
(4) (Mies(Fi B)) U (F, E) = (Fs, ) U N (F, B),
(5) (F, B) N (Uies (Fy, E)) =Uies(F, B) 0 (F, ),
6) (Uier(Fs, E)) N (F, B) =Uie, (Fi, B:) 0 (F, E)),
(7) (F, B) U (Mies (F, ) =Mics((F, B) U (F;, E2)),
(8) (Mier(Ey, ) U (F, E) =Mies (K, E;) U (F, E)),
9) (F, B) A (Uies(Fs, E)) =Uier(F, E) @ (F, ),
(10) (Uies(Fs, E) @ (F, B) =Uies((F;, B) @ (F, E)),
(11) (F, E) U (Mic,(Fi, E)) =Mic; (F, E) W (F,, E;)), and

(12) (M (Fi, E4)) U (F, E) =Mie; (F;, Ei) U (F, E)).



BIBLIOGRAPHY



BIBLIOGRAPHY

Ali; M. 1., Feng, F., Liu, X., Min, W. K., and Shabir, M. (2009). On some
new operations in soft set theory. Comput. Math. Appl., 57, 1547
- 1553.

Ahmad, B. and Kharal, A. (2009). On fuzzy soft sets. Advances in Fuzzy
Systems, 2009, Article ID 586507.

Ansari, M. A., Haidar, A., and Koam, A. N. A. (2018). On a graph associated
to UP-algebras. Math. Comput. Appl., 23(4), 61.

Dokkhamdang, N., Kesorn, A., and lampan, A. (2018). Generalized fuzzy sets
in UP-algebras. Ann. Fuzzy Math. Inform., 16(2), 171 - 190.

Endam, J. C. and Manahon, M. D. (2016). On fuzzy JB-semigroups. Int.
Math. Forum, 11(8), 379 - 386.

Endam, J. C. and Vilela, J. P. (2015). On JB-semigroups. Appl. Math. Sci.,
9(59), 2901 - 2911.

Guntasow, T., Sajak, S., Jomkham, A.; and lampan, A. (2017). Fuzzy trans-
lations of a fuzzy set in UP-algebras. J. Indones. Math. Soc., 23(2),
1-19.

Tampan, A. (2017). A new branch of the logical algebra: UP-algebras. J.
Algebra Relat. Top., 5(1), 35 - 54.

[ampan, A. (2018). Introducing fully UP-semigroups. Discuss. Math., Gen.
Algebra Appl., 38(2), 297 - 306.

[10] Tampan, A. (2018). (Submitted). Multipliers and near UP-filters of UP-

algebras.



[11]

[12]

[13]

[14]

[15]

111
Imai, Y. and Iséki, K. (1966). On axiom systems of propositional calculi.
XIV. Proc. Japan Academy, 42, 19 - 22.

Iséki, K. (1966). An algebra related with a propositional calculus. Proc.
Japan Acad., 42(1), 26 - 29.

Jianming, Z. and Dajing, X. (2004). Intuitionistic fuzzy associative I-ideals

of IS-algebras. Sci. Math. Jpn. Online, 10, 93 - 98.

Jun, Y. B., Ahn, S. S., Kim, J. Y., and Kim, H. S. (1998). Fuzzy I-ideals in
BCl-semigroups. Southeast Asian Bull. Math., 2, 147 - 153.

Jun, Y. B., Hong, S. M., and Roh, E. H. (1993). BCI-semigroups. Honam
Math. J., 15(1), 59 - 64.

Jun, Y. B. and Hong, S. M. (2001). Fuzzy subalgebras of BCK/BCI-
algebrasredefined. Sci. Math. Jpn. Online, 4, 769 - 775.

Jun, Y. B. and Kondo, M. (2003). On transfer principle of fuzzy BCK/BCI-
algebras. Sci. Math. Jpn. Online, 9, 95 - 100.

Jun, Y. B., Lee, K. J., and Park, C. H. (2010). Fuzzy soft set theory applied
to BCK/BCl-algebras. Comput. Math. Appl., 59, 3180 - 3192.

Jun, Y. B., Oztiirk, M. A., and Muhiuddin, G. (2016). A generalization of
(€, € Vq)-fuzzy subgroups. Int. J. Math. Stat., 5(1), 7 - 18.

Jun, Y. B., Xin, X. L., and Roh, E. H. (1998). A class of algebras related to
BCl-algebras and semigroups. Soochow J. Math., 24(4), 309 - 321.

Kim, K. H. (2006). On structure of KS-semigroups. Int. Math. Forum,
1(2), 67 - 76.

Kuroki, N. (1991). On fuzzy semigroups. Inf. Sci., 53, 203 - 236.



[23]

[24]

[25]

[20]

[27]

[31]

32]

112

Lee, K. H. (2005). First course on fuzzy theory and applications. South

Korea: Springer-Verlag Berlin Heidelberg,

Maji, P., Biswas, R., and Roy, A. (2001). Fuzzy soft sets. J. Fuzzy Math.,
9(3), 589 - 602.

Molodtsov, D. (1999). Soft set theory-first results. Comput. Math. Appl.,
37. 19 - 31.

Neggers, J. and Kim, H. S. (2002). On B-algebras. Mat. Vesnik, 54, 21 -
29.

Prabpayak, C. and Leerawat, U. (2009). On ideals and congruences in KU-
algebras. Sci. Magna, 5(1), 54 - 57.

Rehman, A.; Abdullah, S.,; Aslam, M., and Kamran, M. S. (2013). A study
on fuzzy soft set and its operations. Ann. Fuzzy Math. Inform.,

6(2), 6339 - 362.

Roh, E. H., Jun, Y. B., and Shim, W. H. (1999). Some ideals in [S-algebras.
Sci. Math., 2(3), 315 - 320.

Roh, E. H., Jun, Y. B., and Shim, W. H. (2000). Fuzzy associative I-ideals
of IS-algebras. Int. J. Math. Math. Sci., 24(11), 729 - 735.

Rosenfeld, A. (1971). Fuuzy groups. J. Math, Anal. Appl., 35, 512 - 517.

Satirad, A., Mosrijai, P., and Tampan, A. (2019). Formulas for finding UP-
algebras. Int. J. Math. Comput. Sci., 14(2), 403 - 409.

Satirad, A., Mosrijai, P., and lampan, A. (2019). Generalized power UP-
algebras. Int. J. Math. Comput. Sci., 14(1), 17 - 25.



113

[34] Somjanta, J., Thuekaew, N., Kumpeangkeaw, P., and Iampan, A. (2016).
Fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform., 12(6), 739
- 756.

[35] Williams, D. R. P. and Husain, S. (2007). On fuzzy KS-semigroups. Int.
Math. Forum, 2(32), 1577 - 1586.

36] Zadeh, L. A. (1965). Fuzzy sets. Inf. Cont., 8, 338 - 353.



BIOGRAP




BIOGRAPHY

Name Surname Akarachai Satirad

Date of Birth January 4, 1995

Place of Birth Phayao Province, Thailand
Address 111 Moo 11, Fai Kwang Subdistrict,

Chiang Kham District, Phayao Province 56110,
Thailand
Education Background
2019 M.Sc. (Mathematics), University of Phayao,
Phayao, Thailand
2016 B.Sc. (Mathematics), University of Phayao,
Phayao, Thailand
Publications

Articles

1. Satirad, A. and lampan, A. (2019). Fuzzy soft sets over fully UP-
semigroups. Eur. J. Pure Appl. Math., 12(2), 294 - 331.

In process

1. Satirad, A. and lampan, A. (2019). (Submitted). Properties of

operations for fuzzy soft sets over fully UP-semigroups.

2. Satirad, A. and lampan, A. (2018). (Accepted). Fuzzy sets in fully
UP-semigroups. Ital. J. Pure Appl. Math.



116

Others

1. Satirad, A., Mosrijai, P., and lampan, A. (2019). Generalized
power UP-algebras. Int. J. Math. Comput. Sci., 14(1), 17 -
25.

2. Satirad, A., Mosrijai, P., and Iampan, A. (2019). Formulas for
finding UP-algebras. Int. J. Math. Comput. Sci., 14(2), 403
- 409.

3. Satirad, A. and lampan, A. (2019). (Accepted). Topological UP-
algebras. Discuss. Math., Gen. Algebra Appl.

4. lampan, A., Mosrijai, P., and Satirad, A. (2018). Introducing par-
tial transformation UP-algebras. Eur. J. Pure Appl. Math.,
11(3), 876 - 881.

5. Mosrijai, P., Satirad, A., and lampan, A. (2018). New types of
hesitant fuzzy sets on UP-algebras. Math. Morav., 22(2), 29
- 39.

6. Mosrijai, P., Satirad, A., and Tampan, A. (2018). The new UP-
isomorphism theorems for UP-algebras in the meaning of the

congruence determined by a UP-homomorphism. Fundam. J.

Math. Appl., 1(1), 12 - 17.

7. Mosrijai, P., Satirad, A., and lampan, A. (2018). Partial constant
hesitant fuzzy sets on UP-algebras. J. New Theory, 22, 39 -
50.

8. Satirad, A., Mosrijai, P., Kamti, W., and Tampan, A. (2017). Level
subsets of a hesitant fuzzy set on UP-algebras. Ann. Fuzzy

Math. Inform., 14(3), 279 - 302.



117

9. Mosrijai, P., Kamti, W., Satirad, A., and lampan, A. (2017). Hesi-
tant fuzzy sets on UP-algebras. Konuralp J. Math., 5(2), 268
- 280.

Conference presentations

1. Satirad, A. (May 23 - 24, 2019). Topological UP-algebras. In The
11th National Science Research Conference. Srinakharinwirot

University, Bangkok, Thailand.

2. Satirad, A. (May 24 - 25, 2018). Fuzzy soft sets over fully UP-
semigroups. In The 10th National Science Research Confer-

ence. Mahasarakham University, Mahasarakham, Thailand.

3. Satirad, A. (May 25 - 26, 2017). Level subsets of a hesitant fuzzy
set on UP-algebras. In The 9th National Science Research

Conference. Burapha University, Chonburi, Thailand.



	Special subsets of fully UP-semigroups
	Fuzzy sets in fully UP-semigroups
	Properties of fuzzy sets in UP-algebras
	Fuzzy soft sets over fully UP-semigroups
	Properties of operations for fuzzy soft sets over fully UP-semigroups

