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บทคัดย่อ 

 กระบวนการทำซำ้จุดตรึงเป็นหนึ่งในเทคนิคท่ีใช้แก้สมการไม่เชิงเส้น ทฤษฎีนี้ถูกนำไปประยุกต์ใช้ในหลายสาขา เช่น 

คณิตศาสตร์ประยุกต์ ชีววิทยา เคมี เศรษฐศาสตร์ วิศวกรรมศาสตร ์และทฤษฎีเกม ในงานนี้เราสนใจที่จะศึกษาจุดตรึงและ

วิธีการประมาณคา่จุดตรึงสำหรับการส่งแบบไม่เชิงเส้น โดยลำดับการทำซ้ำถูกสร้างขึ้นตามขั้นตอนวิธีใหม่ด้วยเทคนิคเฉื่อย 

และวิธีการทำซำ้ผสมแบบใหม่ในปริภูมิบานาค  

 วัตถุประสงค์แรกของวิทยานิพนธ์นี้ คือ การพิสูจน์ว่าลำดับที่เกิดจากข้ันตอนวิธีแบบใหม่ด้วยเทคนิคเฉื่อยนั้นลู่เข้า

อย่างเข้มไปยังจุดตรึงของการส่งแบบไม่ขยายในปริภมูิบานาคนูนแบบเอกรูปค่าจริง ภายใต้การ์โตนอรม์ที่สามารถหาอนุพันธ์ได้

แบบเอกรูป นอกจากน้ียังได้ค่าศูนย์ของการส่งแบบแอคครีทีฟ ข้ันตอนวิธีที่นำเสนอนี้ได้ถูกนำไปทดสอบด้วยการจำลองเชิง

ตัวเลขใน MATLAB ผลการจำลองแสดงให้เห็นว่าอัลกอริทึมลู่เข้าภายใต้เงื่อนไขท่ีเหมาะสม แสดงให้เห็นถึงประสิทธิภาพของ

อัลกอริทึมท่ีได้นำเสนอ 

 วัตถุประสงค์ที่สอง เป็นการนำเสนอและศึกษาวิธีการทำซำ้แบบใหม่ที่เรียกว่า วิธีการทำซำ้ผสมแบบปีการ์ SP (เรียก

ย่อว่า PSPHM) วิธีการทำซ้ำใหม่นีเ้ป็นการผสมระหว่างวิธีการทำซ้ำของปีการ์และวิธีการทำซำ้แบบ SP เราได้ทำการ

เปรียบเทยีบอัตราการลู่เข้าระหว่างวิธีการทำซ้ำที่นำเสนอและวิธีการทำซ้ำอื่น ๆ ทีมีอยู่ โดยให้ตัวอย่างเชิงตัวเลข โดยเฉพาะ

ผลลัพธ์หลักได้แสดงให้เห็นว่า PSPHM ลู่เข้าเร็วกว่า วิธีการทำซ้ำแบบนูร์ และ วิธีการทำซ้ำแบบ SP ในความหมายของเบอร์

เลนเด นอกจากน้ี เรายังให้ผลลัพธ์เสถียรสำหรับวิธีการทำซ้ำท่ีพัฒนาใหม่นี้ ยิ่งไปกว่าน้ันยังได้นำวิธีการนำเสนอไปใช้ในการ

สร้างภาพของโพลโินมิโอกราฟ 
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ABSTRACT

The fixed point iterative procedure is one of the techniques employed to solve non-

linear equations. This theory has found applications beyond mathematics, spanning fields

such as Applied Mathematics, Biology, Chemistry, Economics, Engineering, and Game Theory.

We interest in inverstigating the fixed point and approximate iterative approaches for nonlinear

mappings. The sequence was created iteratively by a novel algorithm with an inertial technique,

and a new hybrid iterative method is also discussed in Banach spaces.

The first purpose of this dissertation is to prove that a novel algorithm with an in-

ertial approach, used to generate an iterative sequence, strongly converges to a fixed point of

a nonexpansive mapping in a real uniformly convex Banach space with a uniformly Gâteaux

differentiable norm. Furthermore, zeros of accretive mappings are obtained. The proposed

algorithm has been implemented and tested via numerical simulation in MATLAB. The simu-

lation results show that the algorithm converges to the optimal configurations and shows the

effectiveness of the proposed algorithm.

The second purpose is to introduce and study a new fixed point iterative method

named Picard-SP hybrid iterative method (PSPHM for short). This new iterative process

can be seen as a hybrid of Picard and SP iterative processes. We also compare the rate of

convergence between the proposed iteration and some other iteration processes in the literature

via a numerical example. Specifically, our main result shows that PSPHM converges faster than

Noor and SP iterations in Berinde’s sense. Moreover, we also established a stable result for our

newly developed iterative process. As an application, we apply the proposed method to the

visualization of polynomiographs.

The results presented in this paper extend, unify and generalize some previous works

from the current existing literature.
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CHAPTER I

INTRODUCTION

Let C be a nonempty closed and convex subset of a real Banach space B

with dual B∗. Let J : B → 2B
∗
denote the normalized duality mapping given by

J(v) =
{
κ ∈ B∗ : ⟨v,κ⟩ = ∥v2∥ = ∥κ2∥

}
,

where ⟨·, ·⟩ denotes the generalized duality pairing (see for example [24]). J is

single valued if B∗ is strictly convex and in what follows we denote single valued

normalized duality mapping by J . A Banach space B is said to be uniformly

convex [5, 84] if, for any sequences {vm} and {℘m} in B with ∥vm∥ = ∥℘m∥ = 1

and lim
m→∞

∥vm + ℘m∥ = 2 imply lim
m→∞

∥vm − ℘m∥ = 0. The modulus of smoothness

ρB(·) of B is the function ρB : [0,+∞) → [0,+∞) defined by

ρB(τ) = sup

{
1

2
(∥v + ℘∥+ ∥v − ℘∥)− 1 : v, ℘ ∈ B, ∥v∥ = 1, ∥℘∥ ≤ τ

}
.

It is well known that B is uniformly smooth if and only if ρB(τ)
τ

→ 0, as τ → 0.

Let q > 1 be a real number. A Banach space B is said to be q-uniformly smooth

if there exists a positive constant Kq such that ρB(τ) ≤ Kqτ
q for any τ > 0. It

is obvious that q-uniformly smooth Banach space must be uniformly smooth. A

mapping T : C → C is said to be L − Lipschitzian if there exists L ≥ 0 such

that

∥T v − T ℘∥ ≤ L∥v − ℘∥, ∀v, ℘ ∈ C.

T is said to be a contraction if L ∈ [0, 1) and T is said to be nonexpansive if
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L = 1 (see [5, 10, 18, 24, 64, 84]).

We are interested in formulating a numerical method for solving the fixed

point problem

find v ∈ C such that v = T (v), (1.0.1)

where T : C → C is a nonexpansive mapping. We consider F(T ) ̸= ∅ and

designate F(T ) by the set of all fixed points of T , which is F(T ) := {v ∈

C | v = T (v)}.

The most naive approach when looking for a fixed point of a contraction

mapping T : ℏ → ℏ defined on a complete metric space (ℏ,L) has a unique fixed

point, where L is the distance that describes the mapping T is the following

process, also called Banach-Picard iteration,

vm+1 = T (vm), ∀m ≥ 0, (1.0.2)

where v0 ∈ ℏ is a starting point.

According to the Banach-Picard fixed point theorem, if T is a contrac-

tion, namely, T is Lipschitz continuous with modulus δ ∈ [0, 1), then the sequence

{vm}m≥0 generated by (1.0.2) converges strongly to the unique fixed point of T

with linear convergence rate.

If T is just nonexpansive, then this statement is no longer true. To

illustrate this, it is enough to choose T = −Id, where Id denotes the identity

mapping, and v0 ̸= 0, in which case the Banach-Picard iteration not only fails

approach a fixed point of T .

In order to overcome the restrictive contraction assumption on T , Kras-

noselskii proposed in [54] to apply the Banach-Picard iteration (1.0.2) to the

operator 1
2
Id+ 1

2
T instead of T . The Krasnoselskii-Mann iteration is written as
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follows :

vm+1 = (1− ηm)vm + ηmT (vm), ∀m ≥ 0, (1.0.3)

where {ηm} is a sequence in (0, 1). This iteration is often said to be a segmenting

Mann iteration (see [42, 46, 59]) or to be of Krasnoselskii-type (see e.g., [17,

31, 32, 33, 34, 35, 47]). It was found that the sequence {vm} created by (1.0.3)

weakly converges to a fixed point of T under the conditions of F(T ) ̸= ∅ and

mild assumptions imposed on {ηm} .

It turned out that a fundamental step in proving the convergence of the

iterates of (1.0.3) is to show that vm − T (vm) → 0 as m → +∞ , as it was

done by Browder and Petryshyn in [21] in the constant case ηm ≡ η ∈ (0, 1).

The weak convergence of the iterates was then studied in various settings in

[9, 16, 42, 49, 68].

It should be noted that, even in real Hilbert spaces, all previous modifica-

tions to the Krasnoselskii-Mann method for nonexpansive mappings only provide

weak convergence; for further information, see [40].

Bot et al. [15] recently presented a new form for Manns method to

address the previously mentioned issues. Let v0 be arbitrary in a real Hilbert

space H, ∀m ≥ 0,

vm+1 = ηmvm + ζm

(
T (ηmvm)− ηmvm

)
. (1.0.4)

They proved that the iterative sequence {vm} produced by (1.0.4) is strongly

convergent using appropriate {ηm} and {ζm} assumptions. Sequence {ζm}, also

known as the Tikhonov regularization sequence, plays a significant role in acceler-

ation (1.0.4). Dong et al. [30], Fan et al. [38], and Polyak [71] have cited several

theoretical and numerical conversations to examine strong convergence utilizing
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the Tikhonov regularization algorithm.

Recent years have seen the development and introduction of additional

algorithms, such as the inertial algorithm initially presented by Polyak [71]. He

minimized a smooth convex function by use of inertial extrapolation. It is impor-

tant to note that these simple adjustments improved the efficiency and efficacy of

these algorithms. Researchers have been able to study several vital applications

after adopting this concept. For example, see [2, 6, 30, 38, 44, 57, 60, 80, 83, 85].

An operator Υ : D(Υ) ⊆ B → R(Υ) ⊆ B is called accretive (see [24]) if

for all t > 0 and for all v, ℘ ∈ D(Υ), where D(Υ) denotes the domain of Υ, we

have

∥v − ℘∥ ≤ ∥v − ℘+ t(Υv −Υ℘)∥.

Furthermore, Υ is accretive if and only if for each v, ℘ ∈ D(Υ) , there exists

j(v − ℘) ∈ J(v − ℘) such that

⟨Υv −Υ℘, j(v − ℘)⟩ ≥ 0.

An accretive operetor Υ is said to be m-accretive (see for example [24]) if R(I +

eΥ) = B for all e > 0, where R(I+eΥ) is the range of (I+eΥ). Υ is said to satisfy

the range condition if D(Υ) ⊆ R(I + eΥ) for all e > 0, where D(Υ) is the closure

of the domain of Υ. Moreover, if Υ is accretive [27], then JΥ : R(I+Υ) → D(Υ),

which defined by JΥ = (I +Υ)−1 is a single-valued nonexpansive and F(JΥ) =

N(Υ), where N(Υ) = {v ∈ D(Υ) : 0 ∈ Υv} and F(JΥ) = {v ∈ B : JΥv = v}.

Browder [19] and Kato [52] independently introduced the accretive oper-

ators. Due to their close relation to the existence theory for nonlinear equations

of evolving in Banach spaces, the study of such mappings is very fascinating.

Under suitable Banach spaces, accretive operators play a crucial role in
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many physically relevant situations that may be characterized as initial boundary

value problems as follows:

dµ

dτ
+Υµ = 0, µ(0) = µ0. (1.0.5)

Many embedded models of evolution equations exist, including the Schrodinger,

heat, and wave equations [72]. According to Browder [19], (1.0.5) has a solution if

Υ is locally Lipschitzian and accretive on B. He also proved that Υ is m-accretive

and there is a solution to the equation below

Υµ = 0. (1.0.6)

Ray [72] uses the fixed point theory of Caristi [23] to elegantly and precisely

improve Browder’s conclusions. Robert and Martin [77] show that the problem

(1.0.5) is solved in the space B if Υ is continuous and accretive. Utilizing this

result, Martin [61] proved that if Υ is continuous and accretive, then Υ is m-

accretive.

See Browder [20] and Deimling [28] for further information on the theo-

rems for zeros of accretive operators.

One should note that, if µ is independent of τ in (1.0.5), then dµ
dτ

=

0. Because of this, (1.0.5) simplifies to (1.0.6), which solution illustrates the

problem’s stable or equilibrium state. This in turn is tremendously fascinating

in a variety of beautiful applications, including, but not limited to, economics,

physics, and ecology. Significant efforts have been undertaken to solve (1.0.6)

when Υ is accretive. Researchers were interested in investigating the fixed point

and approximate iterative approaches for zeros of m-accretive mappings since Υ,

in general, is nonlinear and there is no known process to discover a close solution

to this equation. As a result, research in the field has flourished up to the present.
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Some of the related work can be found in [86, 88] and the references therein.

Based on the previous research, in the first part of this dissertation, the

sequence was created iteratively by a novel algorithm with an inertial technique,

and a strong convergence using the proposed algorithm is also discussed in a real

uniformly convex Banach space with Gâteaux differentiable norm. In addition,

we find zeros of accretive mappings. Moreover, a numerical example is presented

to illustrate the behavior of our algorithm.

Banach [7] outlined a very basic idea of contraction mapping and proved

the well known Banach contraction principle. This result is the basis of fixed

point theory, which guarantees not only the fixed point of contraction mapping

but also the uniqueness of the fixed point. Browder [18], Gohde [41], and Kirk

[53] extended the idea of Banach and introduced new research dimensions in the

field of fixed point theory.

In the second part of this dissertation, we will denote C to be a nonempty

closed convex subset of a real Banach space X.

Let {xn} be a bounded sequence in X. For x ∈ X the asymptotic radius

of {xn} at x is the number r (x, {xn}) = lim sup
n→∞

∥x− xn∥. The real number

r (C, {xn}) = inf {r (x, {xn}) : x ∈ C}

is called the asymptotic radius of {xn} relative to C and finally the set

A (C, {xn}) = {x ∈ C : r (x, {xn}) = r (C, {xn})} ,

is called the asymptotic center of {xn} relative to C. It has been proven by

Edelstein [35] that, for a nonempty, closed, and convex subset of a uniformly

convex Banach space and for each bounded sequence {xn}, the set A (C, {xn}) is
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a singleton.

Following Banach’s work in 1922, various schemes for approximating

fixed points of contractive maps emerged. We will mention a few works directly

related to the proposed scheme.

In 1953, Mann [59] defined the following one step iteration process for

sequence {xn}

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.0.7)

where the sequence {αn} belongs to (0, 1). Mann showed that after taking αn = 1

in (1.0.7), it converts into Picard’s iterative process. Thus they claim that Mann

iteration is generalization of Picard iteration process.

Ishikawa [48] extended Mann’s result by introducing the two-step itera-

tive scheme: x1 ∈ C,

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1, (1.0.8)

where {αn} and {βn} ∈ [0, 1). The goal was to achieve convergence for Lip-

schitzian pseudo-contractive maps where the Mann iterative algorithm fails to

converge. If βn = 0 for all n ≥ 1 in equation (1.0.8), the Ishikawa iterative

scheme reduces to the Mann iterative scheme (1.0.7).

In 2000, Noor [63] introduced a three-step iterative scheme (also known

as the Noor Iteration). This scheme extends the results of Banach [7], Mann [59],

and Ishikawa [48]. The scheme is defined as follows: t1 ∈ C,

vn = (1− γn)tn + γnTtn,
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un = (1− βn)tn + βnTvn,

tn+1 = (1− αn)tn + αnTun, n ≥ 1, (1.0.9)

where {αn}, {βn} and {γn} ∈ [0, 1). Similarly, if γn = 0 for all n ≥ 1, then (1.0.9)

reduces to (1.0.8).

In 2011, Phuengrattana and Suantai [70] introduced the following new

three-step iteration process known as the SP-iteration: u1 ∈ C,

wn = (1− γn)un + γnTun,

vn = (1− βn)wn + βnTwn,

un+1 = (1− αn)vn + αnTvn, n ≥ 1, (1.0.10)

where {αn}, {βn}, and {γn} are in (0,1).

In 2019, Kanayo Stella and Husdson (see [36]) gave the idea of a hy-

brid iteration process called Picard−Noor iteration process, which generates the

sequence {xn} given as: x1 ∈ C,

wn = (1− γn)xn + γnTxn,

zn = (1− βn)xn + βnTwn,

yn = (1− αn)xn + αnTzn,

xn+1 = Tyn, n ≥ 1, (1.0.11)

where {αn}, {βn}, and {γn} are in (0,1).

The hybrid iterative scheme (1.0.11) motivate us to introduce a new

fixed point iterative method, named Picard-SP hybrid iterative method (PSPHM

for short). This new iterative process can be seen as a hybrid of Picard and SP



 

 

 
9

iterative processes (1.0.10), respectively. The scheme is defined as follow: x1 ∈ C,

wn = (1− γn)xn + γnTxn,

zn = (1− βn)wn + βnTwn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 1, (1.0.12)

where {αn}, {βn}, and {γn} are in (0,1).

We show that our Picard-SP hybrid method (1.0.12) gives faster rate

of convergence than existing iterative processes (1.0.9) and (1.0.10). We show

this by comparison tables using the MATLAB programming. Moreover, we also

show that our iteration (1.0.12) is T-Stable. Furthermore, we show the use of the

proposed method to generate polynomiographs.

As reviewed, it is therefore the main objectives in this dissertation to

introduce and study two type of iterative procedures for given mappings in Banach

spaces. Furthermore, we then establish strong convergence theorems under some

mild conditions in Banach spaces. And finally, we also present some examples,

using MATHLAB programing. We have also given a graphical representation for

this.

The results presented here extend and improve some related results in

the literature.



 

 

 

CHAPTER II

PRELIMINARIES

2.1 Metric spaces and Banach spaces

Now, we recall some well known concepts and results.

Definition 2.1.1. [55] A metric space is a pair (X, d), where X is a set and d

is a metric on X (or distance function on X), that, a real valued function defined

on X ×X such that for all x, y, z ∈ X we have:

(1) d(x, y) ≥ 0,

(2) d(x, y) = 0 if and only if x = y,

(3) d(x, y) = d(y, x) (symmetry),

(4) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Definition 2.1.2. [55] A sequence {xn} in a metric space X = (X, d) is said to

be convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0

x is called the limit of {xn} and we write

lim
n→∞

xn = x or, simple xn → x

we say that {xn} converges to x. If {xn} is not convergent, it is said to be

divergent.

Definition 2.1.3. [55] A sequence (xn) in a metric space X = (X, d) is said to

be Cauchy if for every ϵ > 0 there is an N(ϵ) ∈ N such that d(xm, xn) < ϵ for

every m,n ≥ N(ϵ).

Definition 2.1.4. [55] A metric space (X, d) is said to be complete if every

Cauchy sequence in X converges.
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Definition 2.1.5. [55] Every convergent sequence in a matric space is a Cauchy

sequence.

Theorem 2.1.6 [62] Let {xn} be a sequence in R. If every subsequence {xnk
} of

{xn} has a convergent subsequence, then {xn} is convergent.

Definition 2.1.7. [62] Let X be a matric space and A be any nonempty subset

of X. For each x in X, the distance d(x,A) from x to A is inf{d(x, y)|y ∈ A}.

Definition 2.1.8. [62] Let X be a linear space (or vector space). A norm on X

is a real-valued function ∥ ·∥ on X such that the following conditions are satisfied

by all members x and y of X and each scalar α:

(1) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0,

(2) ∥αx∥ = |α|∥x∥,

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).

The ordered pair (X, ∥ · ∥) is called a normed space or normed vector space or

normed linear space.

Definition 2.1.9. [62] Let X be normed space. The metric induced by the norm

of X is the metric d on X defined by the formula d(x, y) = ∥x−y∥ for all x, y ∈ X.

The norm topology of X is the topology obtained from this metric.

Definition 2.1.10. [62] A Banach norm or complete norm is a norm that induces

a complete metric. A normed space is a Banach space or B-space or complete

normed space if its norm is a Banach norm.

A real normed linear space B is said to have a Gâteaux differentiable

norm if the limit

lim
τ→∞

∥v + τ℘∥ − ∥v∥
τ

,

exists for all v, ℘ ∈ ℵ, where ℵ denotes the unit sphere of B (i.e., ℵ = {v ∈ B : ∥v∥ = 1}),

in this case B is called smooth. It is also said to be uniformly smooth if the limit
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is attained uniformly for v, ℘ ∈ ℵ, and B is said to have a uniformly Gâteaux

differentiable norm.

If B is smooth, it is clear that every duality mapping on B is a single-

valued mapping. If B has a uniformly Gâteaux differentiable norm, then the

duality mapping is norm-to-weak* uniformly continuous on bounded subsets of

B.

Let ∆ be a nonempty, closed, convex and bounded subset of a real Banach

space B and the diameter of ∆ defined by d (∆) = sup {∥v − ℘∥, v, ℘ ∈ ∆} . The

Chebyshev radius of ∆ given by w (∆) = inf {w (v, ℘) , v ∈ ∆} , where v ∈ ∆,

w(v,∆) = sup {∥v − ℘∥, ℘ ∈ ∆} .

Bynum [22] proposed the normal structural coefficient N(B) of B as follows:

N (B) = inf

{
d (∆)

w (∆)
: d (∆) > 0

}
.

If N(B) > 1, then B has a uniform normal structure.

Every space with a uniform normal structure is reflexive, which means

that all uniformly convex and uniformly smooth Banach spaces have a uniform

normal structure. See [24, 56] for more details.

Let now state some definitions and lemmas that will be useful in the

coming theories.

Lemma 2.1.11 ([89]) Suppose that B is a real uniformly convex Banach space.

For arbitrary u > 0, ℵu (0) = {v ∈ B : ∥v∥ ≤ u} and α ∈ [0, 1]. Then there is a

continuous strictly increasing convex function r : [0, 2u] → R, r (0) = 0 such that

||αv + (1− α)℘||2 ≤ α||v||2 + (1− α)||℘||2 − α(1− α)r(||v − ℘||).
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Lemma 2.1.12 ([28]) Suppose that B is a real normed linear space. Then for

any v, ℘ ∈ B, j(v + ℘) ∈ J(v + ℘), we have the following inequality holds

||v + ℘||2 ≤ ||v||2 + 2⟨℘, j(v + ℘)⟩.

Lemma 2.1.13 ([18]) Let B be a uniformly convex Banach space and ∆ a nonempty,

closed and convex subset of B. Suppose that T : ∆ → ∆ is a nonexpansive map-

ping with a fixed points. Let {vm} be a sequence in ∆ such that vm ⇀ v and

vm − T vm −→ ℘. Then v − T v = ℘.

Lemma 2.1.14 ([56]) Let B be a Banach space with uniform normal structure

and ∆ a nonempty bounded subset of B. Suppose that T : ∆ −→ ∆ is a uniformly

L-Lipschitzian mapping with L < N (B)
1
2 . If there is a nonempty bounded closed

convex subset R of ∆ with the property (D), that is,

v ∈ R ⇒ ϖw (v) ∈ R,

then T has a fixed point in ∆.

Note that ϖw(v) = {℘ ∈ B : y = weak ϖ − limT njv, ∃ nj → ∞} here is

the ϖ-limit set of T at v.

Lemma 2.1.15 ([81]) Suppose that (v0, v1, v2, ...) ∈ l∞, is so that δmvm ≤ 0 for

all Banach limits δ. If lim sup
m→∞

(vm+1 − vm) ≤ 0, then lim sup
m→∞

vm ≤ 0.

Lemma 2.1.16 ([89]) Let {em} be a sequence of non-negative real numbers such

that

em+1 ≤ (1− cm) em + cmσm + πm, m ≥ 1.

If

(i) {cm} ⊂ [0, 1],
∑
cm = ∞, lim sup

m→∞
σm ≤ 0,

(ii) for each m ≥ 0, πm ≥ 0,
∑
πm <∞,
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then lim
m→∞

em = 0.

Lemma 2.1.17 [1] Let {xn} be a sequence of positive real numbers which satisfies:

xn+1 ≤ (1− µn)xn, n ≥ 1.

If {µn} ⊂ (0, 1) and
∞∑
n=1

µn = ∞, then lim
n→∞

xn = 0.

Lemma 2.1.18 [87] Let {an} and {bn} be non-negative real sequences satisfying

the following inequality.

an+1 ≤ (1− cn)an + bn,

where cn ∈ (0, 1), ∀n ∈ N,
∞∑
n=0

cn = ∞ and
bn
cn

→ 0 as n→ ∞. Then lim
n→∞

an = 0.

2.2 Rate of convergance and T-stable

Let {xn} and {yn} be two fixed point iteration processes that converge to a fixed

point p of a given operator T. The sequence {xn} is better than {yn} in the sense

of Rhoades [73] if

∥xn − p∥ ≤ ∥yn − p∥

for all n ∈ N. The definitions presented by Berinde [12] are as follows:

Definition 2.2.1. [12] Let {un} and {vn} be two sequences of real numbers

converging to u and v, respectively. The sequence {un} is said to converge faster

than {vn} if

lim
n→∞

∣∣∣∣un − u

vn − v

∣∣∣∣ = 0.

Definition 2.2.2. [12] Let {xn} and {yn} be two fixed point iteration processes

that converge to a certain fixed point p of a given operator T. Suppose that the

error estimates

∥xn − p∥ ≤ un for all n ∈ N,
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∥yn − p∥ ≤ vn for all n ∈ N,

are available, where {un} and {vn} are two sequences of positive numbers con-

verging to zero. If {un} converges faster than {vn}, then {xn} converges faster

than {yn} to p.

Several authors have presented the comparison of rate of convergence of

various iterative processes (one can see [8, 11, 13, 14, 25, 26, 29, 43, 73, 76, 90]).

Definition 2.2.3. [12] Let T, T̃ : C → C be two operators. We say that T̃ is an

approximate operator for T if, for a fixed ϵ > 0 we have

∥∥∥Tx− T̃ x̃
∥∥∥ ≤ ϵ.

After the advent of computational mathematics, the iterative aspects

of fixed point theory gained unprecedented attention. Following the discussion

above, mathematicians recognized the importance of assessing the stability of

methods used to approximate fixed points of operators before applying them. In

1967, Ostrowski [67] introduced the pioneering result on T-stability. Following

Ostrowskis pioneering result, subsequent researchers made significant contribu-

tions to the study of stability. Notably, Harder and Hicks [45] in 1988 and Rhoades

[74, 75]. In addition to Ostrowskis work, other notable contributions on stability

came from Osilike [65] in 1995, Osilike and Udemene [66]in 1999, and Berinde [10]

in 2002. These researchers provided clear explanations of stability concepts and

introduced simpler approaches compared to Harder and Hicks [45]. The following

definition is credited to Harder and Hicks [45].

Definition 2.2.4. [10] Let X be a Banach space and, T : X → X a self map,

x0 ∈ X and the iteration procedure defined by

xn+1 =f(T, xn), n = 0, 1, 2, . . . (2.2.1)
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such that the generated sequence {xn} converges to a fixed point p of T. Let {yn}

be an arbitrary sequence in X and the set

ϵn = ∥yn+1 − f(T, yn)∥

for n = 0, 1, 2, . . . , then the iteration process (2.2.1) is said to be T -stable or

stable with respect to T if and only if lim
n→∞

ϵn = 0 implies lim
n→∞

yn = p.



 

 

 

CHAPTER III

MAIN RESULTS

3.1 A novel algorithm with an inertial technique for fixed points of

nonexpansive mappings in Banach spaces

In this section, we summarize notations and lemmas which play significant role

in convergence analysis of our algorithm.

Theorem 3.1.1 Let C be a nonempty closed convex subset of a real uniformly

convex Banach space B which has uniformly Gâteaux differentiable norm and

T : C → C a nonexpansive mapping such that F(T ) ̸= ∅. Consider that the fol-

lowing assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈

[l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm <∞.

For arbitrary ν0, ν1 ∈ C. Let {vm} be the sequence generated by


ℏm = vm + πm (vm − vm−1),

ψm = (1− ξm) (1− σm) ℏm,

vm+1 = (1− ρm )ψm + ρmT ψm, m ≥ 1.

(3.1.1)

Then {vm} converges strongly to a point in F(T ).

Proof. Let d ∈ F(T ). Setting ℘m = (1− σm) ℏm. Using (3.1.1), we have

∥vm+1 − d∥ = ∥(1− ρm)(ψm − d) + ρm(T ψm − d)∥

≤ (1− ρm )∥ψm − d∥+ ρm∥T ψm − d∥
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= (1− ρm )∥ψm − d∥+ ρm∥T ψm − d∥

≤ (1− ρm )∥ψm − d∥+ ρm∥ψm − d∥

= ∥ψm − d∥

= ∥(1− ξm )℘m − d∥

= ∥(1− ξm )(℘m − d)− ξmd∥

≤ (1− ξm)∥℘m − d∥+ ξm∥d∥

= (1− ξm)∥(1− σm)ℏm − d∥+ ξm∥d∥

≤ (1− ξm )
(
(1− σm)∥ℏm − d∥+ σm∥d∥

)
+ ξm∥d∥

= (1− ξm )(1− σm)∥ℏm − d∥+ (1− ξm )σm∥d∥+ ξm∥d∥

≤ (1− ξm )(1− σm)∥ℏm − d∥+ (1− ξm )∥d∥+ ξm∥d∥

≤ (1− σm)∥ℏm − d∥+ ∥d∥

≤ (1− σm)∥(vm − d) + πm(vm − vm−1)∥+ ∥d∥

≤ (1− σm)∥vm − d∥+ (1− σm)πm∥vm − vm−1∥+ ∥d∥

≤ max{∥vm − d∥, ∥vm − vm−1∥, ∥d∥}.

By mathematical induction, one can obtain

∥vm − d∥ ≤ max{∥v1 − d∥, ∥v1 − v0∥, ∥d∥}.

This shows that {vm} is bounded, so {ℏm}, {℘m} and {ψm} are also bounded.

By condition (ii). This implies
∞∑

m=1

πm∥νm − νm−1∥ < ∞. Using Lemma 2.1.11,

Lemma 2.1.12 and (3.1.1), we have

∥vm+1 − d∥2 = ∥(1− ρm)(ψm − d) + ρm(T ψm − d)∥2

≤ (1− ρm)∥ψm − d∥2 + ρm∥T ψm − d∥2 − ρm(1− ρm)r(∥T ψm − ψm∥)

≤ (1− ρm)∥ψm − d∥2 + ρm∥ψm − d∥2 − ρm(1− ρm)r(∥T ψm − ψm∥)
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= ∥ψm − d∥2 − ρm(1− ρm)r(∥T ψm − ψm∥)

= ∥℘m − d∥2 + 2ξm⟨℘m − d, j(ψm − d)⟩ − ρm(1− ρm)r(∥T ψm − ψm∥)

≤ ∥ℏm − d∥2 + 2σm⟨ℏm − d, j(℘m − d)⟩+ 2ξm⟨℘m − d, j(ψm − d)⟩

− ρm(1− ρm)r(∥T ψm − ψm∥)

≤ ∥vm − d∥2 + 2πm⟨vm − d, j(ℏm − d)⟩+ 2σm⟨ℏm − d, j(℘m − d)⟩

+ 2ξm⟨℘m − d, j(ψm − d)⟩ − ρm(1− ρm)r(∥T ψm − ψm∥).

On the other hand, one can write

ρm(1− ρm)r(∥T ψm − ψm∥) ≤ ∥vm − d∥2 − ∥vm+1 − d∥2 + 2πm⟨vm − d, j(ℏm − d)⟩

+ 2σm⟨ℏm − d, j(℘m − d)⟩+ 2ξm⟨℘m − d, j(ψm − d)⟩.

(3.1.2)

The boundedness of {vm}, {ℏm}, {℘m} and {ψm} leads to there are constants

Λ1,Λ2,Λ3 > 0 so that for all m ≥ 1,

⟨vm − d, j(ℏm − d)⟩ ≤ Λ1, ⟨ℏm − d, j(℘m − d)⟩ ≤ Λ2, ⟨℘m − d, j(ψm − d)⟩ ≤ Λ3.

(3.1.3)

Applying (3.1.3) in (3.1.2), we have

ρm(1− ρm)r(∥T ψm − ψm∥) ≤ ∥vm − d∥2 − ∥vm+1 − d∥2 + 2πmΛ1 + 2σmΛ2 + 2ξmΛ3.

(3.1.4)

This implies that {vm} converges to d. We consider the following cases in order

to achieve strong convergence:
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Case (a). If the sequence {∥vm − d∥} is monotonically decreasing, then {∥vm − d∥}

is convergent. We see that

∥vm+1 − d∥2 − ∥vm − d∥2 → 0

as m→ ∞. By (3.1.4), we have

ρm(1− ρm)r(∥T ψm − ψm∥) → 0.

Using the property of r and ρm ∈
[
l1, l2

]
⊂ (0, 1), we have

∥T ψm − ψm∥ → 0. (3.1.5)

Combining (3.1.1) and (3.1.5), we find that

∥vm+1 − ψm∥ = ρm(T ψm − ψm) → 0. (3.1.6)

Using (3.1.1) and condition (i), we have

∥ψm − ℘m∥ = ξm∥℘m∥ → 0. (3.1.7)

From (3.1.1) and condition (i) we get

∥℘m − ℏm∥ = σm∥ℏm∥ → 0. (3.1.8)

It follows from (3.1.7) and (3.1.8) that

∥ψm − ℏm∥ ≤ ∥ψm − ℘m∥+ ∥℘m − ℏm∥ → 0. (3.1.9)
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From
∞∑

m=1

πm∥νm − νm−1∥ <∞, we get

∥ℏm − vm∥ = πm∥vm − vm−1∥ → 0. (3.1.10)

Based on (3.1.9) and (3.1.10), we can write

∥ψm − vm∥ ≤ ∥ψm − ℏm∥+ ∥ℏm − vm∥ → 0. (3.1.11)

Using (3.1.6) and (3.1.11), we have

∥vm+1 − vm∥ ≤ ∥vm+1 − ψm∥+ ∥ψm − vm∥ → 0 as m→ ∞.

Using (3.1.5), (3.1.9) and (3.1.10), we have

∥T vm − vm∥ ≤ ∥T vm − T ψm∥+ ∥T ψm − ψm∥+ ∥vm − ψm∥

≤ 2∥vm − ψm∥+ ∥T ψm − ψm∥

≤ 2(∥ψm − ℏm∥+ ∥ℏm − vm∥) + ∥T ψm − ψm∥ → 0.

Since {vm} is bounded, there exists a subsequence {vmb
} ⊂ {vm} such that it

converges weakly to d ∈ B. In addition, using Lemma 2.1.13, we have d ∈ F(T ).

Now, we prove that

lim sup
m→∞

⟨−d, j(℘m − d)⟩ ≤ 0.

Suppose that χ : B → R is given by

χ(v) = δm∥℘m − v∥2, ∀v ∈ B.

Then, χ(v) → ∞ as ∥v∥ → ∞, χ is convex and continuous. Since B is reflexive,
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then there exists ℘∗ ∈ B such that χ(℘∗) = min
a∈B

χ(a). Hence, the set R̂ ̸= ∅ ,

where

R̂ =

{
v ∈ B : χ(v) = min

a∈B
χ(a)

}
.

It following from lim
m→∞

∥T ψm − ψm∥ = 0 and lim
m→∞

∥ψm − ℘m∥ = 0 that

∥T ℘m − ℘m∥ ≤ ∥T ℘m − T ψm∥+ ∥T ψm − ψm∥+ ∥ψm − ℘m∥

≤ ∥℘m − ψm∥+ ∥T ψm − ψm∥+ ∥ψm − ℘m∥

→ 0 (as m→ ∞).

Since lim
m→∞

∥T ℘m−℘m∥ = 0. It follows from induction that lim
m→∞

∥T n℘m−℘m∥ = 0

for all n ≥ 1. Thus, using Lemma 2.1.14, if v ∈ R and ℘ = ϖ − lim
j→∞

T njv, then

from weak lower semicontinuity of χ and lim
m→∞

∥T ℘m − ℘m∥ = 0. Then we get

χ(℘) ≤ lim inf
j→∞

χ(T njv) ≤ lim sup
n→∞

χ(T nv)

= lim sup
n→∞

(δm∥℘m − T nv∥2)

= lim sup
n→∞

(δm∥℘m − T ℘m + T ℘m − T nv∥2)

≤ lim sup
n→∞

(δm∥T ℘m − T nv∥2)

≤ lim sup
n→∞

(δm∥℘m − v∥2) = χ(v) = inf
a∈B

χ(a).

Hence, ℘∗ ∈ R̂. It follows from Lemma 2.1.14 that T has a fixed point in R̂,

and so R̂ ∩ F(T ) ̸= ∅. Without losing the general case, as a particular instance,

suppose that ℘∗ = d ∈ R̂∩F(T ). Consider τ ∈ (0, 1). Then it is easy to see that

χ(d) ≤ χ(d− τd) with the helping of Lemma 2.1.12, we have

∥℘m − d+ τd∥2 ≤ ∥℘m − d∥2 + 2τ⟨d, j(℘m − d+ τd)⟩.
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By the properties of χ, we can write

1

δm
χ(d− τd) ≤ 1

δm
χ(d) + 2τ⟨d, j(℘m − d+ τd)⟩.

By arranging the above inequality, we have

2τδm⟨−d, j(℘m − d+ τd)⟩ ≤ χ(d)− χ(d− τd) ≤ 0.

This leads to

δm⟨−d, j(℘m − d+ τd)⟩ ≤ 0.

In addition,

δm⟨−d, j(℘m − d)⟩ ≤ δm⟨−d, j(℘m − d)− j(℘m − d+ τd)⟩+ δm⟨−d, j(℘m − d+ τd)⟩

≤ δm⟨−d, j(℘m − d)− j(℘m − d+ τd)⟩. (3.1.12)

Since the normalized duality mapping is norm-to-weak* uniformly continuous on

bounded subsets of B, we have, as τ → 0 and for fixed n,

⟨−d, j(℘m − d)− j(℘m − d+ τd)⟩

≤ ⟨−d, j(℘m − d)⟩ − ⟨−d, j(℘m − d+ τd)⟩ → 0.

Thus, for each ϵ > 0, there is ςϵ > 0 such that for all τ ∈ (0, ςϵ),

⟨−d, j(℘m − d)⟩ − ⟨−d, j(℘m − d+ τd)⟩ < ϵ.

Thus,

δm⟨−d, j(℘m − d)⟩ − δm⟨−d, j(℘m − d+ τd)⟩ ≤ ϵ.
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Since ϵ is an arbitrary. Using (3.1.8), we obtain

δm⟨−d, j(℘m − d)⟩ ≤ 0.

By triangle inequality, we have

∥℘m+1 − ℘m∥ ≤ ∥℘m+1 − ℏm+1∥+ ∥ℏm+1 − vm+1∥+ ∥vm+1 − ψm∥+ ∥ψm − ℘m∥.

Using (3.1.4), (3.1.5), (3.1.6) and (3.1.8), we have

lim
m→∞

∥℘m+1 − ℘m∥ = 0.

Again, since the normalized duality mapping is norm-to-weak* uniformly contin-

uous on bounded subsets of B, we have

lim
m→∞

(⟨−d, j(℘m − d)⟩ − ⟨−d, j(℘m+1 − d)⟩) = 0.

Using Lemma 2.1.15, we have

lim sup
m→∞

⟨−d, j(℘m − d)⟩ ≤ 0.

From (3.1.1) we obtain

ψm = (1− ξm)℘m

= (1− ξm)(1− σm)ℏm

≤ (1− σm)ℏm.

Thus
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∥ψm − d∥2 ≤ ∥(1− σm)ℏm − d∥2

≤ ∥(1− σm)(ℏm − d)− σmd∥2. (3.1.13)

Since

∥℘m − d∥2 = ∥(1− σm)(ℏm − d)− σmd∥2,

using (3.1.1), (3.1.13), Lemma 2.1.12 and
∞∑

m=1

πm∥νm − νm−1∥ <∞, we have

∥vm+1 − d∥2 = ∥(1− ρm)(ψm − d) + ρm(T ψm − d)∥2

≤ (1− ρm)∥ψm − d∥2 + ρm∥T ψm − d∥2

≤ ∥ψm − d∥2

≤ ∥(1− σm)(ℏm − d)− σmd∥2

= (1− σm)∥ℏm − d∥2 + 2σm⟨−d, j(℘m − d)⟩

≤ (1− σm)∥(vm − d) + πm(vm − vm−1)∥2 + 2σm⟨−d, j(℘m − d)⟩

≤ (1− σm)∥vm − d∥2 + 2πm⟨vm − vm−1, j(ℏm − d)⟩+ 2σm⟨−d, j(℘m − d)⟩

= (1− σm)∥vm − d∥2 + 2σm⟨−d, j(℘m − d)⟩. (3.1.14)

Applying Lemma 2.1.16, we conclude that {vm} converges strongly to d.

Case (b) Suppose the sequence {∥vm−d∥} is not monotonically decreasing. Let

Ξm = ∥vm − d∥2. Suppose that Π : N → N is defined by

Π(m) = max {ℏ ∈ N : ℏ ≤ m, Ξℏ ≤ Ξℏ+1} .

Obviously, Π is a non-decreasing sequence so that lim
m→∞

Π(m) = ∞ and ΞΠ(m) ≤
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ΞΠ(m)+1 for m ≥ m0 (for some m0 large enough ). Using (3.1.4), we have

ρΠ(m)

(
1− ρΠ(m)

)
r
(
∥T ψΠ(m)

− ψΠ(m)
∥
)
≤ ∥vΠ(m) − d∥2 − ∥vΠ(m+1) − d∥2 + 2πΠ(m)Λ1

+ 2σΠ(m)Λ2 + 2ξΠ(m)
Λ3

= ΞΠ(m) − ΞΠ(m)+1 + 2πΠ(m)Λ1 + 2σΠ(m)Λ2

+ 2ξΠ(m)
Λ3

≤ 2πΠ(m)Λ1 + 2σΠ(m)Λ2 + 2ξΠ(m)
Λ3

→ 0 as m→ ∞.

In addition, we get

∥T ψΠ(m) − ψΠ(m)∥ → 0 as m→ ∞.

Using the same circumstances as in Case (a), we can show that vΠ(m) ⇀ d as

Π(m) → ∞ and lim sup
Π(m)→∞

⟨−d, j(℘Π(m) − d)⟩ ≤ 0. For all m ≥ m0, we obtain by

(3.1.14) that

0 ≤
∥∥∥vΠ(m)+1 − d

∥∥∥2

−
∥∥∥vΠ(m) − d

∥∥∥2

≤ σΠ(m)

[
2⟨−d, j(℘Π(m)−d)⟩−

∥∥∥vΠ(m) − d
∥∥∥2
]
.

This implies that ∥∥∥vΠ(m) − d
∥∥∥2

≤ 2⟨−d, j(℘Π(m) − d)⟩.

Since lim sup
Π(m)→∞

⟨−d, j(℘Π(m) − d)⟩ ≤ 0, taking the limit as m → ∞ in the above

inequality, we have

lim
m→∞

∥∥∥vΠ(m) − d
∥∥∥2

= 0.

Thus

lim
m→∞

ΞΠ(m) = lim
m→∞

ΞΠ(m)+1 = 0.

Moreover, for all m ≥ m0, it is easy to notice that Ξm ≤ ΞΠ(m)+1 if m ̸= Π(m),
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that is, Π(m) < m, since Ξi > Ξi+1 for Π(m) + 1 ≤ i ≤ m. As a result, for all

m ≥ m0, we get

0 ≤ Ξm ≤ max{ΞΠ(m),ΞΠ(m)+1} = ΞΠ(m)+1.

Hence, lim
m→∞

Ξm = 0. This concludes that {vm} converges strongly to a point d.

This finishes the proof.

Since every uniformly convex Banach space has a uniformly Gâteaux

differentiable norm, our theorem can be stated in a uniformly convex Banach

space, which is also uniformly smooth. Therefore, we can also obtain the following

result without proof.

Corollary 3.1.2 Let C be a nonempty closed convex subset of a real uniformly

convex Banach space B which is also uniformly smooth and T : C → C a nonex-

pansive mapping such that F(T ) ̸= ∅. Let {vm} be a sequence generated iteratively

by (3.1.1). Then {vm} converges strongly to a point in F(T ).

In the remainder of this section, we prove the following theorem for find-

ing zeros of accretive mappings.

Theorem 3.1.3 Let C be a nonempty closed convex subset of a real uniformly

convex Banach space B which has uniformly Gâteaux differentiable norm and

Υ : C → C a continuous and accretive mapping such that N(Υ) ̸= ∅. For arbitrary

v0, v1 ∈ 0, let {vm} be the sequence generated by


ℏm = vm + πm (vm − vm−1),

ψm = (1− ξm) (1− σm) ℏm,

vm+1 = (1− ρm )ψm + ρmJΥψm, m ≥ 1,
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where JΥ = (I +Υ)−1. Consider that the following assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈

[l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm <∞.

Then {vm} converges strongly to a point in N(Υ).

Proof. According to the results of Martin [20, 61, 77] and Cioranescu [27], Υ ism-

accretive. This implies that JΥ = (I +Υ)−1 is nonexpansive and F(JΥ) = N(Υ).

Setting JΥ = T in Theorem 3.1.1. Using the same approach going forward, we

obtain the desired result.

Using the following experiment, we examine the algorithm’s behavior

3.1.1 for approximating the fixed point. We show the convergence results dis-

cussed in this study graphically and with a table of numerical values.

Example 3.1.4 Consider that a fixed point problem taken from [79] in which

B = R through the usual real number space R with the usual norm. A mapping

T : B → B is defined by

T (v) = (5v2 − 2v + 48)
1
3 ,∀v ∈ A,

where A = {v : 0 ≤ v ≤ 50}.
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Experiment 1. For the control parameter ξm = σm = 1
(km+2)

in this

experiment, we used several values for k = 1, 2, 3, 5, 10. Consider ρm = 0.80, v0 =

v1 = 10, πm = 10
(m+1)2

and Dm = ∥vm − vm−1∥.

k number of iteration (n) elapsed time

1 449 0.013728

2 319 0.011591

3 262 0.021587

5 204 0.024854

10 145 0.036621

Table 3.1.1: The sequence generated by algorithm (3.1) while ξm = σm = 1
(km+2)

and elapsed time for the indicated values of n.

Figure 3.1.1: The convergence of algorithm (3.1) while ξm = σm = 1
(km+2) and the number

of iteration are 449, 319, 262, 204, 145.
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Experiment 2. We use several values for k = 0.15, 0.35, 0.55, 0.75, 0.95

for the control parameter ρm = k. Also, consider ξm = σm = 1
(2m+2)

, v0 = v1 = 10,

πm = 10
(m+1)2

and Dm = ∥vm − vm−1∥.

k number of iteration (n) elapsed time

0.15 897 0.026490

0.35 557 0.019869

0.55 419 0.024898

0.75 336 0.028761

0.95 276 0.022688

Table 3.1.2: The sequence generated by algorithm (3.1) while ρm = k and elapsed
time for the indicated values of n.

Figure 3.1.2: The convergence of algorithm (3.1) while ρm = k and the number of iteration
are 897, 557, 419, 336, 276.
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Symmetry considerations can be related to signal processing, especially

when signals satisfy certain symmetries. Now, we focus on applying algorithm

(3.1.1) to signal recovery problems. In signal processing, compressed sensing can

be modeled as the following under determined linear equation system:

y = Av + ν,

where v ∈ Rn is the original signal with n components to be recovered, ν, y ∈ Rm

are noise and the observed signal with noise for m components, respectively,

and A ∈ Rm×n is a degraded matrix. Finding the solutions of the previous

underdetermined linear equation system can be viewed as solving the LASSO

problem:

min
v∈RN

1

2
∥y − Av∥22 + λ∥v∥1,

where λ > 0. Various techniques and iterative schemes have been developed

to solve the LASSO problem. Our method for solving the LASSO problem can

be applied by setting T v = proxµg(v − µ∇f(v)), where f(v) = ∥y − Av∥22/2,

g(v) = λ∥v∥1, and ∇f(v) = AT (Av − y).

A straightforward observation confirms the satisfaction of all conditions

in 3.1.1 Next, we conduct experiments to showcase the convergence and effec-

tiveness of the proposed algorithm in recovering the k-sparse signal vk recovery

problem with k = 70, 35, 18, 9.
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Figure 3.1.3: The k-sparse signal with k = 70, 35, 18, 9, respectively.

A signal of size n = 1024 elements, generated uniformly within the interval [−2, 2],

is utilized to produce observation signals yk = Avk + ν, where m = 512 (see on

Figure 3.1.4).
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Figure 3.1.4: Degraded of k-sparse signal with k = 70, 35, 18, 9, respectively.
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The white Gaussian noise ν is depicted in Figure 3.1.5.
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Figure 3.1.5: Noise Signal ν.

The process starts with randomly selected initial signal data v0 and v1, each

comprising n = 1024 randomly chosen elements (see Figure 3.1.6).
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Figure 3.1.6: Initial Signals v0 and v1.

In addressing the challenge of recovering k-sparse signals, we reconstructed the

observed signals depicted in Figure 3.1.4 to obtain the k-nonzero signal shown

in Figure 3.1.3. Throughout this recovery process, we carefully considered the

optimal regularization parameter, denoted as λ, to maximize the Signal-to-Noise

Ratio (SNR). The performance of the proposed method at mth iteration is mea-

sured quantitatively by means of the signal-to-noise ratio (SNR), which is defined

by

SNR(vm) = 20 log10

(
∥vm∥2

∥vm − v∥2

)
,

where vm is the recovered signal at the mth iteration using the proposed method.

The SNR quality influenced by the regularization parameter λ within the range

[5, 75], are visualized in Figure 3.1.7.
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Figure 3.1.7: The plots of best SNR quality of the proposed method effected with regularize
parameter λ during 1,000 iterations.

The most recent figure illustrates that the proposed algorithms can solve the

sparse signal recovery challlenge. Moreover, we present the evolution of the (SNR)

and relative error plot using max-norm over the number of iterations during the

recovery of k-sparse signals with k = 70, 35, 18, 9. This is done while identifying

the optimal regularization parameter, denoted as λ, to achieve the highest SNR

quality, as illustrated in the figure above.
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Figure 3.1.8: The SNR and relative error norm plots of the proposed algorithm effected with
the optimal regularize parameter λ in recovering the observed sparse signal.
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Notably, the plot of the signal’s relative error exhibits a continuous decrease until

it reaches convergence to a constant value. In the SNR quality plot, it is evident

that the SNR value progressively rises until it stabilizes at a constant value.

Additionally, the last figure demonstrate the best recovery of k-sparse signals

with k = 70, 35, 18, 9 during 400 iterations using the proposed algorithm along

with its optimal regularization parameter λ.
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Figure 3.1.9: The best recovering of k-sparse signals with with k = 70, 35, 18, 9, respectively
being used the proposed algorithm during 400th iterations.

Based on these findings, it can be inferred that the proposed algorithm success-

fully enhances the quality of the recovered signal in solving the signal recovery

problem.

3.2 Convergence and stability results of the Picard-SP hybrid itera-

tive process with applications

In this section, we are now ready to prove the theorem of strong convergence of

a Picard-SP hybrid iterative method (PSPHM) to a fixed point for a contraction

mapping in a Banach space. We will also show that PSPHM is stable. And
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finally, we shall prove that PSPHM gives the faster rate of convergence than the

earlier existing schemes. In addition, we also present an example using MATLAB

programing. We have also given a graphical representation for this.

Theorem 3.2.1 Let C be a nonempty closed convex subset of a Banach space X

and T : C → C be a contraction mapping. Let {xn} be the sequence generated by

(1.0.12) with real sequences {αn}, {βn} and {γn} in (0, 1) satisfying
∞∑
n=1

γn = ∞.

Then {xn} converges strongly to a unique fixed point of T .

Proof. We know that a unique p ∈ F (T ) exists (by Banach contraction theorem).

We will prove that xn → p as n→ ∞. Using (1.0.12) we have

∥wn − p∥ = ∥(1− γn)xn + γnTxn − p∥

≤ (1− γn)∥xn − p∥+ γn∥Txn − Tp∥

≤ (1− γn)∥xn − p∥+ γnθ∥xn − p∥

= (1− γn(1− θ))∥xn − p∥. (3.2.1)

Using (3.2.1), we have

∥zn − p∥ = ∥(1− βn)wn + βnTwn − p∥

≤ (1− βn)∥wn − p∥+ βn∥Twn − Tp∥

≤ (1− βn)∥wn − p∥+ βnθ∥wn − p∥

≤ (1− βn)∥wn − p∥+ βn∥wn − p∥

= ∥wn − p∥

≤ (1− γn(1− θ))∥xn − p∥. (3.2.2)

From (3.2.2), we obtain

∥yn − p∥ = ∥(1− αn)zn + αnTzn − p∥
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≤ (1− αn)∥zn − p∥+ αn∥Tzn − Tp∥

≤ (1− αn)∥zn − p∥+ αnθ∥zn − p∥

≤ (1− αn)∥zn − p∥+ αn∥zn − p∥

= ∥zn − p∥

≤ (1− γn(1− θ))∥xn − p∥. (3.2.3)

By (3.2.3), we have

∥xn+1 − p∥ = ∥Tyn − p∥

= ∥Tyn − Tp∥

≤ θ∥yn − p∥

≤ ∥yn − p∥

≤ (1− γn(1− θ))∥xn − p∥. (3.2.4)

Let µn = γn(1 − θ). We observe that µn < 1. Since
∞∑
n=1

γn = ∞, using Lemma

2.1.17, we obtain lim
n→∞

∥xn − p∥ = 0. So, xn → p as n → ∞. This completes the

proof.

Now, we prove the stability of our iteration process (1.0.12).

Theorem 3.2.2 Let C be a nonempty closed convex subset of a Banach space X

and T : C → C be a contraction mapping. Let {xn} be the sequence generated by

(1.0.12) with real sequences {αn}, {βn} and {γn} in (0, 1) satisfying
∞∑
n=1

γn = ∞.

Then the iterative process (1.0.12) is T -stable.

Proof. Suppose (1.0.12) generate the sequence xn+1 = f(T, xn) which converges

to a unique x∗ ∈ F (T ) (by Theorem 3.2.1). Let {tn} be any sequence in C and

ϵn = ∥tn+1 − f(T, tn)∥. We will show that lim
n→∞

ϵn = 0 ⇔ lim
n→∞

tn = x∗.
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Let lim
n→∞

ϵn = 0. By using (3.2.4) we get

∥tn+1 − x∗∥ ≤ ∥tn+1 − f(T, tn)∥+ ∥f(T, tn)− x∗∥

≤ ϵn + (1− γn(1− θ))∥tn − x∗∥.

Define an = ∥tn − x∗∥, cn = γn(1 − θ) ∈ (0, 1) and bn = ϵn, ∀n ∈ N which

implies that bn
cn

→ 0 as n → ∞. Thus by the conditions of Lemma 2.1.18 we get

lim
n→∞

tn = x∗.

Conversely, letting lim
n→∞

tn = x∗, we have

ϵn = ∥tn+1 − f(T, tn)∥

≤ ∥tn+1 − x∗∥+ ∥f(T, tn)− x∗∥

≤ ∥tn+1 − x∗∥+ (1− γn(1− θ))∥tn − x∗∥.

This implies that lim
n→∞

ϵn = 0. Hence, (1.0.12) is T -stable. The proof is completed.

In the remainder of this section, we prove that (1.0.12) converges faster

than (1.0.9) and (1.0.10) in Berindes sense.

Theorem 3.2.3 Let C be a nonempty closed convex subset of a Banach space

X and T : C → C be a contraction mapping. Suppose that each of the iterative

processes (1.0.9), (1.0.10) and (1.0.12) converge to the same fixed point p of

T, where {αn}, {βn} and {γn} are sequences in (0, 1) such that α ≤ αn < 1,

β ≤ βn < 1 and γ ≤ γn < 1 for some α, β, γ > 0 and for all n ∈ N. Then the

Picard-SP hybrid iterative process (1.0.12) converges faster than all the other two

iterative processes.
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Proof. Suppose that p is the fixed point of T . By using (1.0.12), we have

∥xn+1 − p∥ = ∥Tyn − p∥

≤ θ∥yn − p∥ (3.2.5)

and

∥wn − p∥ = ∥(1− γn)xn + γnTxn − p∥

≤ (1− γn)∥xn − p∥+ γn∥Txn − Tp∥

≤ (1− γn)∥xn − p∥+ γnθ∥xn − p∥

= (1− γn(1− θ))∥xn − p∥. (3.2.6)

In addition, using (3.2.6) and γn(1 − θ) > 0, we have ∥wn − p∥ ≤ ∥xn − p∥.

Moreover, from (3.2.6), we have

∥zn − p∥ = ∥(1− βn)wn + βnTwn − p∥

≤ (1− βn)∥wn − p∥+ βn∥Twn − Tp∥

≤ (1− βn)∥wn − p∥+ βnθ∥wn − p∥

≤ (1− βn)∥xn − p∥+ βnθ [(1− γn(1− θ))∥xn − p∥]

=
[
1− βn + βnθ(1− γn(1− θ))

]
∥xn − p∥

=
[
1− βn(1− θ)(1 + γnθ)

]
∥xn − p∥. (3.2.7)

In addition, using (3.2.2) and γn(1 − θ) > 0, we have ∥zn − p∥ ≤ ∥xn − p∥.

Moreover, from (3.2.7), we have

∥yn − p∥ = ∥(1− αn)zn + αnTzn − p∥

≤ (1− αn)∥zn − p∥+ αn∥Tzn − Tp∥

≤ (1− αn)∥zn − p∥+ αnθ∥zn − p∥
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≤ (1− αn)∥xn − p∥+ αnθ [1− βn(1− θ)(1 + γnθ)] ∥xn − p∥

=
[
1− αn + αnθ(1− βn(1− θ)(1 + γnθ))

]
∥xn − p∥

=
[
1− αn(1− θ)(1 + βnθ(1 + γnθ)

]
∥xn − p∥. (3.2.8)

It follows from (3.2.5) and (3.2.8) that

∥xn+1 − p∥ = ∥Tyn − p∥

≤ θ∥yn − p∥

≤ θ
[
1− αn(1− θ)(1 + βnθ(1 + γnθ)

]
∥xn − p∥

≤
[
1− αn(1− θ)(1 + βnθ(1 + γnθ)

]
∥xn − p∥

...

≤
[
1− α(1− θ)(1 + βθ(1 + γθ)

]n∥x1 − p∥.

Let

an =
[
1− α(1− θ)(1 + βθ(1 + γθ)

]n∥x1 − p∥.

Using (1.0.9), we have

∥tn+1 − p∥ = ∥(1− αn)tn − αnTun − p∥

≤ (1− αn)∥tn − p∥+ αn∥Tun − Tp∥

≤ (1− αn)∥tn − p∥+ αnθ∥un − p∥

≤ (1− αn)∥tn − p∥+ αn∥un − p∥ (3.2.9)

and

∥vn − p∥ = ∥(1− γn)tn + γnTtn − p∥
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≤ (1− γn)∥tn − p∥+ γn∥Ttn − Tp∥

≤ (1− γn)∥tn − p∥+ γnθ∥tn − p∥

= (1− γn(1− θ))∥tn − p∥. (3.2.10)

It follows from (3.2.10) that

∥un − p∥ = ∥(1− βn)tn + βnTvn − p∥

≤ (1− βn)∥tn − p∥+ βn∥Tvn − Tp∥

≤ (1− βn)∥tn − p∥+ βnθ∥vn − p∥

≤ (1− βn)∥tn − p∥+ βnθ
[
(1− γn(1− θ))∥tn − p∥

]
≤

[
1− βn + βnθ(1− γn(1− θ))

]
∥tn − p∥

=
[
1− βn(1− θ)(1 + γnθ)

]
∥tn − p∥. (3.2.11)

Using (3.2.9) and (3.2.11), we have

∥tn+1 − p∥ ≤ (1− αn)∥tn − p∥+ αn

[
1− βn(1− θ)(1 + γnθ)

]
∥tn − p∥

=
[
1− αnβn(1− θ)(1 + γnθ)

]
∥tn − p∥

...

≤
[
1− αβ(1− θ)(1 + γθ)

]n∥t1 − p∥.

Let

bn =
[
1− αβ(1− θ)(1 + γθ)

]n∥t1 − p∥.

Hence

an
bn

=

[
1− α(1− θ)(1 + βθ(1 + γθ)

]n∥x1 − p∥[
1− αβ(1− θ)(1 + γθ)

]n∥t1 − p∥
→ 0 as n→ ∞.
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Therefore, the Picard-SP hybrid iterative process (1.0.12) converges faster than

the Noor iterative process (1.0.9).

Now, for the sequence {un} generated by (1.0.10), we have the following

∥wn − p∥ = ∥(1− γn)un + γnTun − p∥

≤ (1− γn)∥un − p∥+ γn∥Tun − Tp∥

≤ (1− γn)∥un − p∥+ γnθ∥un − p∥

= (1− γn(1− θ))∥un − p∥. (3.2.12)

In addition, using (3.2.12) and γn(1 − θ) > 0, we have ∥wn − p∥ ≤ ∥un − p∥.

Moreover, from (3.2.12), we have

∥vn − p∥ = ∥(1− βn)wn + βnTwn − p∥

≤ (1− βn)∥wn − p∥+ βn∥Twn − Tp∥

≤ (1− βn)∥wn − p∥+ βnθ∥wn − p∥

≤ (1− βn)∥un − p∥+ βnθ [(1− γn(1− θ))∥un − p∥]

=
[
1− βn + βnθ(1− γn(1− θ))

]
∥un − p∥

=
[
1− βn(1− θ)(1 + γnθ)

]
∥un − p∥. (3.2.13)

In addition,

∥vn − p∥ ≤ (1− βn)∥wn − p∥+ βnθ∥wn − p∥

≤ (1− βn)∥wn − p∥+ βn∥wn − p∥

= ∥wn − p∥

≤ ∥un − p∥. (3.2.14)
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It follows from (3.2.13) and (3.2.14) that

∥un+1 − p∥ = ∥(1− αn)vn − αnTvn − p∥

≤ (1− αn)∥vn − p∥+ αn∥Tvn − Tp∥

≤ (1− αn)∥vn − p∥+ αnθ∥vn − p∥

≤ (1− αn)∥vn − p∥+ αnθ
[
1− βn(1− θ)(1 + γnθ)

]
∥un − p∥

≤ (1− αn)∥un − p∥+ αn

[
1− βn(1− θ)(1 + γnθ)

]
∥un − p∥

=
[
1− αnβn(1− θ)(1 + γnθ)

]
∥un − p∥

...

≤
[
1− αβ(1− θ)(1 + γθ)

]n∥u1 − p∥.

Let

cn =
[
1− αβ(1− θ)(1 + γθ)

]n∥u1 − p∥.

Thus

an
cn

=

[
1− α(1− θ)(1 + βθ(1 + γθ)

]n∥x1 − p∥[
1− αβ(1− θ)(1 + γθ)

]n∥u1 − p∥
→ 0 as n→ ∞.

Hence {xn} converges faster than {un} to p. That is, the Picard-SP hybrid iter-

ative process (1.0.12) converges faster than SP iterative process (1.0.10).

In order to demonstrate the improved performance of the proposed PSPHM

(1.0.12), we consider a numerical example in which we compare our method with

the Noor (1.0.9), SP (1.0.10), and PicardNoor (1.0.11) iteration processes.

Example 3.2.4 Let C = [1, 7] ⊆ X = R and T : C → C be defined by Tx =

3
√
x+ 6 for all x ∈ C. Choose αn = βn = γn = 0.9 for each n ∈ N with initial

value x1 = 5. Clearly, T is a contraction mapping and F (T ) = {2}.
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The results show that each iteration scheme gets closer to the fixed point

but at various speeds. Table 3.2.1 and the graphical figure 3.2.1 representation

show that the PSPHM process (1.0.12) converges faster than all of the SP, Picard-

Noor and Noor iterative processes, which found the fixed point in 6 iterations.

The second best method is the SP iteration, which needed eight iterations, fol-

lowed by the Picard-Noor iteration. The worst convergence speed is observed for

the Noor iteration, which required 10 iterations to find the fixed point.

Step PSPHM SP Picard-Noor Noor
1 5.00000000000000 5.00000000000000 5.00000000000000 5.00000000000000
2 2.00126623535433 2.01520444639402 2.02671797466055 2.32491786957709
3 2.00000056550360 2.00008145968302 2.00024150721951 2.03524174735882
4 2.00000000025256 2.00000043657222 2.00000218331062 2.00382309861342
5 2.00000000000011 2.00000000233975 2.00000001973792 2.00041474551741
6 2.0000000000000 2.00000000001254 2.00000000017844 2.00004499339710
7 2.00000000000007 2.00000000000161 2.00000488108043
8 2.0000000000000 2.00000000000001 2.00000052952096
9 2.0000000000000 2.00000005744475
10 2.00000000623186

Table 3.2.1: The comparison of the convergence rates of the Noor (1.0.9), SP
(1.0.10), Picard−Noor (1.0.11) and PSPHM (1.0.12) iterative processes.
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Figure 3.2.1: Convergence behavior of PSPHM (1.0.12), SP (1.0.10), Picard-Noor
(1.0.11), Noor (1.0.9) iteration processes corresponding to Table 3.2.1.

Since the 1980s, the visualization patterns formed by finding polynomial
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roots have gained recognition, particularly in computer graphics, as noted in ref-

erences [58, 82, 91]. By 2000, the term polynomiographs was coined to describe

the visuals derived from these root-finding methods, with the overarching tech-

nique being polynomiography. Kalantari first introduced these concepts [50]. He

defined polynomiography as both an art and a science that visualizes the ap-

proximations of zeros of complex polynomials by creating fractal and non-fractal

images, capitalizing on the mathematical convergence attributes of iterative func-

tions.

To create a polynomiograph, we first select a specific region in the com-

plex plane, represented as A ⊂ C. Within this region, each point z0 serves as

the initial point for an iterative root-finding method, noted as R = T for (1.0.9),

(1.0.10), (1.0.11) and (1.0.12), with n ranging from 0 to M. The iteration contin-

ues until it meets predefined convergence criteria or reaches the maximum number

of iterations allowed. After the iterations conclude, we colour the initial point

(z0) using a specific colouring function. Two primary types of colouring functions

are utilized:

1. Iteration-Based Coloring: This method uses a set colour map to assign

colours based on the number of iterations completed.

2. Basins of Attraction Coloring: This method assigns a distinct colour to

each polynomial root, and the colour assigned to a point is determined by

the closest root to that point when the iterations cease.

In polynomiography, the core component of the generation algorithm is

the method used for finding roots. Numerous root-finding techniques are docu-

mented in scholarly literature. Let’s review some of these methods for a complex

polynomial p:

1) The Newton method [51]
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N(z) = z − p(z)
p′(z)

.

2) The Halley method [51]

H(z) = z − 2p′(z)p(z)
2p′(z)2−p′′(z)p(z)

.

3) The B4 method (the fourth element of the Basic Family introduced by

Kalantari [51])

B4(z) = z − 6p′(z)2p(z)−3p′′(z)p(z)2

p′′′(z)p(z)2+6p′(z)3−6p′′(z)p′(z)p(z))
.

4) The EzzatiSaleki method (Es for short) [37]

Es(z) = N(z) + p(N(z))
(

1
p′(z)

− 4
p′(z)+p′(N(z))

)
.

Visual analysis is a common technique in the contemporary examination

of root-finding methods, often utilized to evaluate the stability and convergence

of these methods (see [69]). This approach allows for the observation of an area

rather than just a single point, providing a broader perspective on the behaviour

of the method across that area, which enhances our understanding of it. In the

context of polynomials, this type of visual analysis is known as polynomiography,

and the individual images produced are termed polynomiographs.

In this section, we visually analyze the PSPHM, SP, Noor and Picard-

Noor methods, comparing their stability and convergence against the Newton,

Halley, B4, and Es root-finding methods.

To assess stability, we employ basins of attraction (see [3]). Within these

basins, each root is assigned a unique colour, and we introduce an additional

colour (black in our case) to indicate points of divergence. This colouring scheme

provides insights into which root each starting point converges towards.
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In our analysis, we compute specific numerical metrics, among which the

convergence area index (CAI) is notably prevalent. The CAI is defined as the

proportion of starting points that successfully converged to a root relative to the

total number of points within the specified area, as discussed in [4]. The formula

for the CAI is as follows:

CAI =
Nc

N
,

where Nc is the number of points in the polynomiograph that have converged,

and N is the overall count of points in the polynomiograph. The CAI values

range from 0 (indicating no convergence among the points) to 1 (all points have

converged). Moreover, using the polynomiograph, we can calculate an average

number of iterations (ANI) (see [39]).

We use four root-finding methods in the considered example: Newton,

Halley, B4 and the Es family. And we generate polynomiographs for a cubic

polynomial p3(z) = z3 − 1, with roots: 1, −0.5000 ± 0.8660i and a complex

polynomial p4(z) = z4 + 4, with roots: ±1± 1i.

After each iteration, we proceed with the iteration process till the con-

vergence test is satisfied or the maximum number of iterations is reached. The

standard convergence test has the following form:

|xn+1 − xn| < ε,

where ε > 0 is the accuracy of the computations.

The polynomiographs were generated for three different settings of values

of the iterations parameters: (1) αn = 0.01, βn = 0.01, γn = 0.01, (2) αn = 0.5,

βn = 0.5, γn = 0.5, (3) αn = 0.95, βn = 0.95, γn = 0.95. All the other parameters

needed to generate the polynomiographs were ε = 0.001, resolution of 100× 100

pixels and K is maximum number of iterations.
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Figures 3.2.3, 3.2.7, and 3.2.11 display polynomiographs, revealing three

separate basins of attraction for p3(z) = z3 − 1. Figures 3.2.5, 3.2.9, and 3.2.13

display polynomiographs, revealing four separate basins of attraction for p4(z) =

z4 + 4. These basins correspond to the individual roots of the polynomial. The

generated polynomiographs for the parameters in the three settings are presented

in Figures 3.2.2, 3.2.6, 3.2.10, 3.2.4, 3.2.8 and 3.2.12, where as CAI and ANI values

calculated from the polynomiographs are gathered in Table 3.2.2 and Table 3.2.3,

respectively. (a), (b), (c), (d) come from the use of Noor iteration, (e), (f), (g),

(h) come from the use of SP iteration, (i), (j), (k), (l) come from the use of

Picard-Noor iteration and (m), (n), (o), (p) come from the use of PSPHM.
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αn = βn = γn = 0.01 αn = βn = γn = 0.5 αn = βn = γn = 0.95
Iterations Root-finding methods

CAI ANI CAI ANI CAI ANI
Newton 0.0182 29.5852 1 10.1394 1 4.2372
Hallay 0.0214 29.5086 1 9.8398 1 3.8840
B4 0.0198 29.5554 1 9.8072 1 3.8356

Noor

Es 0.0946 28.7020 0.9620 11.682 1 4.6058
Newton 0.0068 29.9084 1 5.1092 1 3.3078
Hallay 0.0070 29.8986 1 4.6590 1 2.4776
B4 0.0066 29.9102 1 4.6004 1 2.2330

SP

Es 0.1056 28.3330 0.9992 5.6822 1 3.1926
Newton 0.9996 6.4808 1 4.0040 1 2.8336
Hallay 1 4.1096 1 3.0152 1 2.1314
B4 1 3.3986 1 2.7782 1 2.0268

Picard-Noor

Es 0.9982 5.2742 1 3.8536 1 2.7104
Newton 1 6.0908 1 3.2446 1 2.7376
Hallay 1 4.0304 1 2.3510 1 2.1270
B4 1 3.3390 1 2.0674 1 2.0264

PSPHM

Es 0.9988 4.8392 1 2.8792 1 2.6706

Table 3.2.2: CAI and ANI values calculated from polynomiographs for p3(z) =
z3 − 1 presented in Figures 3.2.2, 3.2.3, 3.2.6, 3.2.7, 3.2.10 and 3.2.11.

αn = βn = γn = 0.01 αn = βn = γn = 0.5 αn = βn = γn = 0.95
Iterations Root-finding methods

CAI ANI CAI ANI CAI ANI
Newton 0.0460 58.4296 0.9864 10.7916 1 4.8184
Hallay 0.0524 58.0228 1 9.7496 1 3.8660
B4 0.0480 58.2848 1 9.6240 1 3.7808

Noor

Es 0.2568 49.5092 0.8172 15.3612 0.9912 6.5176
Newton 0.0548 59.1368 0.9996 5.7588 1 3.9084
Hallay 0.0500 59.0836 1 4.6112 1 2.5200
B4 0.0536 59.1284 1 4.5520 1 2.2456

SP

Es 0.2376 49.348 0.9516 8.6372 0.9960 5.1528
Newton 1 7.6740 1 4.4168 1 3.2688
Hallay 1 4.1736 1 3.0624 1 2.1960
B4 1 3.3492 1 2.6380 1 2.0368

Picard-Noor

Es 0.9516 8.6372 0.9712 6.8724 0.9988 4.2688
Newton 1 6.8668 1 3.6088 1 3.2008
Hallay 1 4.0856 1 2.3796 1 2.1816
B4 1 3.2908 1 2.0960 1 2.0360

PSPHM

Es 0.9912 8.4180 0.9936 4.9752 0.9988 4.1036

Table 3.2.3: CAI and ANI values calculated from polynomiographs for p4(z) =
z4 + 4 presented in Figures 3.2.4, 3.2.5, 3.2.8, 3.2.9, 3.2.12 and 3.2.13.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.2: Polynomiographs for p3(z) = z3 − 1 generated using various root
finding methods with the parameters αn = 0.01, βn = 0.01 and γn = 0.01 for
K = 30.



 

 

 
51

(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.3: Basins of attraction for p3(z) = z3 − 1 generated using various root
finding methods with αn = 0.01, βn = 0.01 and γn = 0.01 for K = 30.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.4: Polynomiographs for p4(z) = z4 + 4 generated using various root
finding methods with the parameters αn = 0.01, βn = 0.01 and γn = 0.01 for
K = 60.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.5: Basins of attraction for p4(z) = z4 + 4 generated using various root
finding methods with αn = 0.01, βn = 0.01 and γn = 0.01 for K = 60.

For low values of the parameters (αn = 0.01, βn = 0.01, γn = 0.01), we

see that two of the iterations (Noor and SP) have not converged to any of the roots

of p3(z) (see Figure 3.2.2) and p4(z) (see Figure 3.2.4), i.e., we see a uniform red

colour, which corresponds to the maximal of iterations. We see a different speed

convergence for the other two iterations (Picard-Noor and PSPHM). Based on

the visual analysis, we can observe that the fastest convergence speed is obtained

by the proposed PSPHM, followed by the Picard-Noor iteration. The ANI values

confirm these observations in Table 3.2.2 and Table 3.2.3. In Table 3.2.2, the
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lowest ANI value, 3.3390 for the B4, is obtained by the PSPHM, followed by

the Picard-Noor (3.3986) iteration. Furthermore, it is noteworthy that the ANI

values for PSPHM, which are 6.0908, 4.0340, 3.3390, and 4.8392 for the Newton,

Halley, B4, and Es methods, respectively, also yield better results than the ANI

values of the Picard-Noor, SP, and Noor iterations. Similarly, in Table 3.2.3, the

lowest ANI value, 3.2908 for the B4, is obtained by the PSPHM, followed by the

Picard-Noor (3.3492) iteration. Tables 3.2.2 and 3.2.3 also found that the ANI

values for the Noor and SP iterations for the Newton, Halley, B4, and Es methods

are relatively high compared to the Picard-Noor and PSPHM iterations.

Upon analyzing the polynomiographs presented in Figure 3.2.3 and Fig-

ure 3.2.5, we see that the best stability in finding the roots is the PSPHM. This

phenomenon is especially pronounced in the PSPHM mode for the Newton, Hal-

ley and B4 methods, where CAI achieves a perfect score of 1 (see Tables 3.2.2

and 3.2.3). While characteristic braids are visible in each case, their shapes vary

among the methods. The most intricate braids are observed with the Es method,

resulting in the largest interweaving of basins. Except in Noor and SP iterations,

a small percentage of the starting points did not converge to any roots (black

colour indicate points of divergence).
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.6: Polynomiographs for p3(z) = z3 − 1 generated using various root
finding methods with the parameters αn = 0.5, βn = 0.5 and γn = 0.5 for K = 30.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.7: Basins of attraction for p3(z) = z3 − 1 generated using various root
finding methods with αn = 0.5, βn = 0.5 and γn = 0.5 for K = 30.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.8: Polynomiographs for p4(z) = z4 + 4 generated using various root
finding methods with the parameters αn = 0.5, βn = 0.5 and γn = 0.5 for K = 60.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.9: Basins of attraction for p4(z) = z4 + 4 generated using various root
finding methods with αn = 0.5, βn = 0.5 and γn = 0.5 for K = 60.

For polynomiographs for the second parameters setting (αn = 0.5, βn =

0.5, γn = 0.5) presented in Figure 3.2.6 and Figure 3.2.8, we see that the Noor

iteration obtains the slowest speed of convergence. In Figure 3.2.6, the poly-

nomiograph contains red colours, indicating a high number of performed itera-

tions. When we look at the polynomiographs presented in Figure 3.2.6 and Figure

3.2.8, we see that the fastest among the analyzed iterations is the PSPHM. In

the polynomiographs, we can observe darker blue colours than in the case of the

other iteration processes, which shows a smaller number of performed iterations.
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The ANI values in Table 3.2.2 and Table 3.2.3 confirm this observation because

the PSPHM obtains the lowest value. The second best iteration, in terms of con-

vergence speed, is the Picard-Noor iteration, followed by SP and Noor iterations.

The lowest value of ANI equal to 2.0674 (Table 3.2.2) and 2.0960 (Table 3.2.3)

for the B4 are obtained by the PSPHM.

In Figure 3.2.8 and Figure 3.2.11, the interweaving of the basins around

the braids is minimal for the Halley and B4 methods, and the braids appear

similar in Noor, SP, Picard-Noor and PSPHM iterations. Outside the braided

regions, the behaviour of the methods is quite similar. Thus, the Halley and

B4 methods exhibit the most stable behaviour. We can also observe this by

looking at the values of CAI in Tables 3.2.2 and 3.2.3. Regarding CAI value in

Table 3.2.2, the best two methods were Picard-Noor and PSPHM, which obtained

convergence of all starting points, i.e., CAI value equal to 1.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.10: Polynomiographs for p3(z) = z3 − 1 generated using various root
finding methods with the parameters αn = 0.95, βn = 0.95 and γn = 0.95 for
K = 30.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.11: Basins of attraction for p3(z) = z3−1 generated using various root
finding methods with αn = 0.95, βn = 0.95 and γn = 0.95 for K = 30.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.12: Polynomiographs for p4(z) = z4 + 4 generated using various root
finding methods with the parameters αn = 0.95, βn = 0.95 and γn = 0.95 for
K = 60.
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(a) Newton method (b) Halley method (c) B4 method (d) Es method

(e) Newton method (f) Halley method (g) B4 method (h) Es method

(i) Newton method (j) Halley method (k) B4 method (l) Es method

(m) Newton method (n) Halley method (o) B4 method (p) Es method

Figure 3.2.13: Basins of attraction for p4(z) = z4+4 generated using various root
finding methods with αn = 0.95, βn = 0.95 and γn = 0.95 for K = 60.

In the last parameter setting, we use high values of the parameters

(αn = 0.95, βn = 0.95, γn = 0.95). Like for the other two parameter settings, for

the polynomiographs, we see that the Noor iteration obtains the slowest speed

of convergence. On the other hand, the PSPHM again obtains the fastest con-

vergence speed. In the case of each polynomiograph, we can observe darker blue

colours than for the two other parameter settings, which shows a smaller number

of performed iterations. This shows that for higher values of the parameters, all

the iterations need fewer iterations to find the roots. We can also observe this by
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looking at the values of ANI in Tables 3.2.2 and 3.2.3. We see that the PSPHM

obtains the lowest ANI value for high values of the parameters. The lowest values

for the other iterations are also obtained for high values of the parameters.

Examining the values in Table 3.2.2, we find that CAI indicates the best

performance for every method in Noor, SP, Picard-Noor and PSPHM iterations.

It achieves convergence for all starting points within the area, with a CAI value

1. In Table 3.2.3, the Es method demonstrated a favourable convergence ratio

with CAI values ranging from 0.9912, 0.996 to 0.9988 for Noor, SP, Picard-Noor

and PSPHM iterations. This also indicates that there were instances where a

small portion of the initial points did not converge to any of the roots. It is noted

that although the Halley, B4, and Newton methods give good CAI values, the Es

method produces beautiful images with more artistic value.



 

 

 

CHAPTER IV

CONCLUSIONS

4.1 Conclusion

The following results are all main theorems of this thesis:

Theorem 4.1.1 Let C be a nonempty closed convex subset of a real uniformly

convex Banach space B which has uniformly Gâteaux differentiable norm and

T : C → C a nonexpansive mapping such that F(T ) ̸= ∅. Consider that the fol-

lowing assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈

[l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm <∞.

For arbitrary ν0, ν1 ∈ C. Let {vm} be the sequence generated by


ℏm = vm + πm (vm − vm−1),

ψm = (1− ξm) (1− σm) ℏm,

vm+1 = (1− ρm )ψm + ρmT ψm, m ≥ 1.

(4.1.1)

Then {vm} converges strongly to a point in F(T ).

Theorem 4.1.2 Let C be a nonempty closed convex subset of a real uniformly

convex Banach space B which has uniformly Gâteaux differentiable norm and

Υ : C → C a continuous and accretive mapping such that N(Υ) ̸= ∅. For arbitrary
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v0, v1 ∈ 0, let {vm} be the sequence generated by


ℏm = vm + πm (vm − vm−1),

ψm = (1− ξm) (1− σm) ℏm,

vm+1 = (1− ρm )ψm + ρmJΥψm, m ≥ 1,

where JΥ = (I +Υ)−1. Consider that the following assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈

[l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm <∞.

Then {vm} converges strongly to a point in N(Υ).

Theorem 4.1.3 Let C be a nonempty closed convex subset of a Banach space X

and T : C → C be a contraction mapping. Let {xn} be the sequence generated by

(1.0.12) with real sequences {αn}, {βn} and {γn} in (0, 1) satisfying
∞∑
n=1

γn = ∞.

Then {xn} converges strongly to a unique fixed point of T .

Theorem 4.1.4 Let C be a nonempty closed convex subset of a Banach space X

and T : C → C be a contraction mapping. Let {xn} be the sequence generated by

(1.0.12) with real sequences {αn}, {βn} and {γn} in (0, 1) satisfying
∞∑
n=1

γn = ∞.

Then the iterative process (1.0.12) is T -stable.

Theorem 4.1.5 Let C be a nonempty closed convex subset of a Banach space

X and T : C → C be a contraction mapping. Suppose that each of the iterative

processes (1.0.9), (1.0.10) and (1.0.12) converge to the same fixed point p of

T, where {αn}, {βn} and {γn} are sequences in (0, 1) such that α ≤ αn < 1,

β ≤ βn < 1 and γ ≤ γn < 1 for some α, β, γ > 0 and for all n ∈ N. Then the

Picard-SP hybrid iterative process (1.0.12) converges faster than all the other two

iterative processes.
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