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บทคัดยอ 

 ปญหาค่าสมดลุนั้น เปนแนวคิดที่กวางขวาง และมีความครอบคลมุ สามารถประยกุตใช้ไดกบัปญหา

หลายประเภท เช่น ปญหาอสมการการแปรผัน ปญหาจุดอานมา ปญหาการหาค่าต่ำที่สุดแบบมีเงื่อนไข 

ปญหาความสมบูรณ และปญหาค่าสมดุลของแนช ปญหาค่าสมดุลเปนแนวคิดพื้นฐานที่มีความสำคัญใน

หลากหลายสาขาวิชา เช่น ฟสิกส เคมี ชีววิทยา และเศรษฐศาสตร โดยสะทอนถึงสภาวะที่แรงตรงข้ามอยู

รวมกันได เพื ่อรักษาความเสถียร และความสมดุลในระบบนั้นๆ นอกจากนี ้ยังมีบทบาทสำคัญในการ

แก้ปญหาในโลกแหงความเปนจริง เช่น การกู้คืนสัญญาณ การประมวลผลภาพ และการเรียนรูของเครื่อง 

จุดมุงหมายของวิทยานิพนธนี้ คือ การสรางอัลกอริทึมที่มีประสิทธิภาพ 5 แบบสำหรับแก้ปญหาค่าสมดุล

ดังนี้ (1) วิธีการปรับปรุงแบบเอ็กซ์ตราเกรเดียนตเชิงหนืดที่เสริมดวยเทคนิคเฉื่อยสำหรับการแก้ปญหาค่า

สมดุลเพื่อประยุกตใช้กับการจำแนกโรคเบาหวานในวิธีการเรียนรูของเครื่อง (2) อัลกอริทึมการปรับปรุงแบบ

ซับเกรเดียนตเอ็กซ์ตราเกรเดียนตเชิงหนืดที่เสริมดวยเทคนิคเฉื่อยสำหรับการแก้ปญหาค่าสมดุลที่ไมเปนโม

โนโทนเพื่อประยุกตใช้ในการจำแนกโรคหัวใจและหลอดเลือด (3) อัลกอริทึมมานนแบบฉายที่เสริมดวย

เทคนิคเฉื ่อยสำหรับการแก้ปญหาค่าสมดุลแยกสวนเพื ่อประยุกตใช้ในการจำแนกโรคพารกินสัน (4) 

อัลกอริทึมแบบหนืดที่เสริมดวยเทคนิคเฉื่อยผอนปรนสองขั้นรูปแบบใหมสำหรับการแก้ปญหาค่าสมดุลแยก

สวนเพื่อประยุกตใช้ในการจำแนกโรคกระดูกพรุน (5) อัลกอริทึมมานนที่เสริมดวยเทคนิคเฉื่อยสองขั้นสำหรับ

การแก้ปญหาค่าสมดุลแยกสวนเพื่อประยุกตใช้ในการตรวจคัดกรองมะเร็งเตานม โดยทฤษฎีบทการลูเข้าของ

อัลกอริทึมที่เสนอทั้งหมดไดถูกพิสูจนภายใตเงื่อนไขที่เหมาะสมในปริภูมิฮิลเบิรต 
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ABSTRACT 

 
 Equilibrium problems is very general in the sense that it includes, as special cases, the variational 

inequality problem, saddle point problems, constrained minimization, complementarity problem,  as well 

as the Nash equilibrium problem. Equilibrium is a fundamental concept across disciplines such as physics, 

chemistry, biology, and economics, representing a state of balance where opposing forces coexist in 

harmony to maintain stability. It also plays a critical role in solving real-world problems, including signal 

recovery, image processing, and machine learning. Our aim in this thesis is to construct five new efficient 

algorithms for solving equilibrium problems as follows: (i) A modified inertial viscosity extragradient type 

method for equilibrium problems application to classification of diabetes mellitus: Machine learning methods 

(ii) A modified viscosity type inertial subgradient extragradient algorithm for nonmonotone equilibrium 

problems and application to cardiovascular disease detection (iii) An inertial projective Mann algorithm for 

solving split equilibrium problems classification to Parkinson's disease (iv) A new double relaxed inertial 

viscosity type algorithm for solving split equilibrium problems application to osteoporosis detection (v) A 

double inertial Mann algorithm for split equilibrium problems application to breast cancer screening. Under 

some suitable conditions in Hilbert spaces, the convergence theorems of the proposed algorithms are 

proved. 
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CHAPTER 1

INTRODUCTION

Equilibrium problems (EP) was first invented by Ky Fan (1972) [43],

which is also often called the Ky Fan inequality. This general problem was named

the “equilibrium problems” by Blum and Oettli (1994) [18], who stressed this uni-

fying feature and provided a thorough investigation of its theoretical properties.

At that time, this format did not receive much attention, and a few mathemati-

cians were interested. One is Nikaido and Isoda (1955) [94] characterized Nash

equilibria as the solutions of (EP) for an appropriate auxiliary bifunction but they

did not consider the problem itself. Gwinner (1983) [57] introduced it just as a

tool to develop a unified treatment of penalization techniques for optimization

and variational inequalities. Antipin (1990) [6] formulated an inverse optimiza-

tion problem as a noncooperative game and therefore in the (EP) format via the

Nikaido-Isoda bifunction and provided a solution method for the general problem

in [4, 6].

Indeed, equilibrium problems started to gain real interest only after the

publication of the seminal paper of Blum and Oettli (1994) [18]. Actually, the

possibility to exploit results and algorithms developed for one class of problems in

another framework was not a novelty at all: this kind of bridge already finds roots

in the analytical development of variational inequalities through the connection

with optimization via complementarity problems. Anyway, a large number of ap-

plications has been described successfully via the concept of equilibrium solution

and therefore many researchers devoted their efforts to studying (EP). In fact,

nowadays there is a good theory for equilibria and a rapidly increasing number

of algorithms for finding them.



 

 

 
2

This problem is very general in the sense that it includes, as special

cases, the variational inequality problem, fixed point problem, saddle point prob-

lems, constrained minimization, complementarity problem, optimization problem

as well as the Nash equilibrium problem, see, e.g., in Blum and Oettli (1994) [18],

Muu and Oettli (1992) [90]. Equilibrium problems theory provides us with a uni-

fied, natural, innovative and general framework to study a wide class of problems

arising in physics, chemistry, engineering, finance, economics, network analysis,

transportation, elasticity, optimization, image restoration, signal recovery. For

instance, it may refer to physical or mechanical structures, chemical processes,

the distribution of traffic over computer and telecommunication networks or over

public roads (see, for in- stance, [16, 34, 44, 91, 96, 109, 120]). In economics

it often refers to production competition or the dynamics of offer and demand

[7], exploiting the mathematical model of noncooperative games and the corre-

sponding equilibrium concept by Nash [92, 93]. This theory has witnessed an

explosive growth in theoretical advances and applications across all disciplines of

pure and applied sciences. In recent years, several numerical techniques including

projection, resolvent and auxiliary principle have been developed and analyzed

for solving variational inequalities, which can be solved by the problem (EP), see

[2], [4], [5], [7], [9]-[18], [49]-[54], [72], [93]. Many solving methods have been pro-

posed for approximating a solution of problem (EP), for example, the proximal

point methods (Konnov 2003 [71]; Moudafi 1999 [86]), the extragradient methods

(or the proximal-like methods; Anh 2013 [3]; Flam and Antipin 1997 [45]; Hieu

2017d; Quoc et al. 2008 [99]; Korpelevich 1976 [72]; Tran et al 2008 [119]), the

hybrid methods (Hieu et al. 2016 [60]; Hieu 2017b [61], c; Vuong et al. 2012), the

projected subgradient methods (Hieu 2017a [62], 2018; Santos and Scheimberg

2011 [104]), halpern subgradient extragradient method (Kraikaew and Saejung

[73]; Hieu [63]), viscosity-type method with the extragradient (Muangchoo [89]),

inertial extragradient method (Shehu et al. [107]).
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The aim of this work is to design new efficient optimization algorithms

for solving equilibrium problems. We prove the convergence theorems under some

suitable conditions in Hilbert spaces. Finally, we apply the proposed algorithm

to solve data classification in machine learning.



 

 

 

CHAPTER 2

REVIEW OF RELATED LITERATURE

AND RESEARCH

Let H be a real Hilbert space and C be a nonempty closed and convex

subset of a real Hilbert space H. We denote R for a real number set. The

equilibrium problem (EP) is to find an element x∗ ∈ C introduced by Ky Fan

[43] such that

f(x∗, y) ⩾ 0, ∀y ∈ C, (2.1.1)

where f : C × C → R is a bifunction and satisfying f(z, z) = 0 for all z ∈ H,

and EP (f, C) is denoted for a solution set of EP(2.1.1). EP(2.1.1) generalizes

many various problems in optimization problems such as variational inequalities

problems, fixed point problems, Nash equilibrium problems, linear programming

problems, among others.

Many real-world problems can be solved via formulation in the EP(2.1.1).

To address such problems, various algorithms have been proposed. One of the

famous algorithms, introduced by Korpelevich [72], is the Extragradient Method

(EM), solving the variational inequality problem which is a special case of equi-

librium problems. Korpelevich proved the weak convergence of the generated

sequence under the assumptions of Lipschitz continuity and monotonicity. This

method was generated by x0 ∈ H and,


yk = argmin

y∈C
{λf(xk, y) +

1

2
∥xk − y∥2},

xk+1 = argmin
y∈C

{λf(yk, y) +
1

2
∥xk − y∥2}, ∀k ⩾ 0,

where λ ⊂ (0, 1
L
) with L is the Lipschitz-type constants. The EM has two major
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limitations. The first is that the step-size is depends on the Lipschitz constant

and the second is that, calculation of two projections are involved. These lim-

itations affect the computational efficiency of the method. In other to avoid

these setbacks, many methods have been studied in the last few decades (see in

[27, 28, 53]).

Building upon the idea of the extragradient method, Tran et al. [119]

introduced the Two-Step Extragradient Method (TSEM). This method extends to

the equilibrium problems when the bifunction f is pseudomonotone and satisfies

Lipschitz-type continuous conditions with positive constants c1 and c2. This

method was generated by x0 ∈ C and,


yk = argmin

y∈C
{λf(xk, y) +

1

2
∥xk − y∥2},

xk+1 = argmin
y∈C

{λf(yk, y) +
1

2
∥xk − y∥2}, ∀k ⩾ 0,

where 0 < λ < min{ 1
2c1

, 1
2c2

}, c1, c2 = L
2
, and λ is some constant depending on

the Lipschitz constant of the involved bifunction. The TSEM is an extension

of the EM to increase the ability to solve more complex problems, especially

in cases where the EM is non-monotonicity bifunction. The EM was able to

replace the strong monotonicity assumption on f by a weaker assumption called

pseudo-monotonicity, that is the TSEM.

One of the drawbacks of the Extragradient Method and the Two-Step

Extragradient Method is the necessity of two projections onto the set C in each

iterate. It is not easy to compute when the structure of the set C is complicated.

Therefore, Censor et al. [27] modified the EM to the Subgradient Extragradient

Method (SEM), replacing two projections onto C with one projection onto C and

one onto a half-space and allows a clear computation. This method is defined by
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x0 ∈ H and


yk = argmin

y∈C
{λf(xk, y) +

1

2
∥xk − y∥2},

Tk = {v ∈ H : ⟨xk − λtk − yk, v − yk⟩ ⩽ 0}, tk ∈ ∂2f(xk, yk),

xk+1 = argmin
y∈Tk

{λf(yk, y) +
1

2
∥xk − y∥2}, ∀k ⩾ 0,

where λ ⊂ (0, 1
L
) with L-Lipschitz constant and f is monotone bifunction.

One of the famous strongly convergent algorithm is the Halpern iteration

[58]. Using the idea of this algorithm, Hieu [63] proposed the Halpern Subgradient

Extragradient Method (HSEM) which was modified from the HSEM of Kraikaew

and Saejung [73] for variational inequalities. This method is defined by u, x0 ∈ H

and

yk = argmin
y∈C

{λf(xk, y) +
1

2
∥xk − y∥2},

Tk = {v ∈ H : ⟨xk − λtk − yk, v − yk⟩ ⩽ 0}, tk ∈ ∂2f(xk, yk),

zk = argmin
y∈Tk

{λf(yk, y) +
1

2
∥xk − y∥2},

xk+1 = αku+ (1− αk)zk, ∀k ⩾ 0,

(2.1.2)

where λ is still some constant depending on the interval that makes the bifunction

f satisfies the Lipschitz condition and {αk} ⊂ (0, 1) which satisfies the principle

conditions

lim
k→∞

αk = 0,
+∞∑
k=1

αk = +∞.

Another famous strongly convergent algorithm is the Viscosity Method

[86], Muangchoo [89] modified HSEM to Viscosity-Type Subgradient Extragradi-

ent Method (VSEM), which was generated by x1 ∈ H. This method is defined
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by



yk = argmin
y∈C

{λkf(xk, y) +
1

2
∥xk − y∥2},

Tk = {v ∈ H : ⟨xk − λktk − yk, v − yk⟩ ⩽ 0}, tk ∈ ∂2f(xk, yk),

zk = argmin
y∈Tk

{µλkf(yk, y) +
1

2
∥xk − y∥2},

xk+1 = αkV (xk) + (1− αk)zk,

(2.1.3)

where µ ∈ (0, σ) ⊂
(
0,min

{
1, 1

2c1
, 1
2c2

})
, V is a contraction function on H with

contraction constant α ∈ (0, 1), (∥V (x) − V (y)∥ ⩽ α∥x − y∥, ∀x, y ∈ H), {αk}

satisfies the principle conditions lim
k→∞

αk = 0 and
+∞∑
k=1

αk = +∞, and the step-

sizes {λk} is developed by updating the step-sizes method without knowing the

Lipschitz-type constants of the bifunction f which satisfies the following:

λk+1 =

 min{σ, µf(yk,zk)Sk
}, if µf(yk,zk)

Sk
> 0,

λ0, otherwise,

where Sk = f(xk, zk)− f(xk, yk)− c1∥xk − yk∥2 − c2∥zk − yk∥2 + 1.

One technique to speed up the convergence of an algorithm is the well-

known inertial technique, which appeared in the heavy ball method introduced

by Polyak [98] in 1964. The algorithm was generated by x0, x1 ∈ H, rk > 0 and

xk+1 = xk + θk(xk − xk−1)− rk∇F (xk), ∀k ∈ N, (2.1.4)

where F : H → H is differentiable and {θk} ⊂ [0, 1) is the extrapolation coef-

ficient of the inertial step θk(xk − xk−1). Later, the inertial technique was used

to modify the algorithm to speed up the convergence of the algorithms by many

mathematicians [8, 20, 80, 97]. The inertial techniques have been proposed for

solving the equilibrium problems, see in [64, 87].
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Finding technique to speed up the convergence of the algorithm is the

way that many mathematicians are interested. One of that is an inertial which

was first introduced by Polyak [98]. Very recently, Shehu et al. [107] modified the

inertial technique with the Halpern-type algorithm and subgradient extragradient

method for obtaining strong convergence to a solution of EP (f, C) such that f

is pseudomonotone. This method is defined by u ∈ H and



wk = αku+ (1− αk)xk + δk(xk − xk−1),

yk = argmin
y∈C

{
λkf(wk, y) +

1

2
∥wk − y∥2

}
,

Tk = {v ∈ H : ⟨(wk − λktk)− yk, v − yk⟩}, tk ∈ ∂2f(wk, yk),

zk = argmin
y∈Tk

{
λf(yk, y) +

1

2
∥wk − y∥2

}
,

xk+1 = τwk + (1− τ)zk,

(2.1.5)

where the inertial parameter {δk} ⊂ [0, 1
3
), τ ∈ (0, 1

2
], the update step-size {λk}

satisfies the following:

λk+1 =

 min{µ
2
∥wk−yk∥2+∥zk−yk∥2

Pk
, λk}, if Pk > 0,

λk, otherwise,

where Pk = f(wk, zk)− f(wk, yk)− f(yk, zk) and {αk} still satisfies the principle

conditions lim
k→∞

αk = 0 and
+∞∑
k=1

αk = +∞.

Nowadays, mathematicians have created many methods. In 2024, Yao

et al. [124] presented two computationally efficient proximal-type algorithms to

solve equilibrium problems with pseudo-monotone bifunction in Hilbert spaces.

The first algorithm converges weakly and obtains a linear rate of convergence.

The second method was designed as a viscosity version of the first algorithm and

obtained strong convergence results. This method is defined by λ1 > 0, w0, y0 ∈
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H, x1 = x0 ∈ C as follows:


yk = xk + η(wk−1 − xk),

zk = yk + δk(yk − yk−1),

xk+1 = argmin
y∈C

{λkf(xk, y) +
1

2
∥y − zk∥2},

where
∞∑
k=1

tk < ∞, µ ∈ (0, 1), θ ∈ (0, 1),−1 < δk ⩽ δk+1 ⩽ 0 and η ∈ [ (
√
5−1)
2

, 1)

with stepsizes

λk+1 =


λk + tk, if Ok ⩽ 0,

min

{
µθ
4

(∥xk−xk+1∥2+∥xk−xk−1∥2)
Ok

, λk + tk

}
, otherwise,

where Ok = f(xk−1, xk+1)− f(xk−1, xk)− f(xk, xk+1).

Due to the numerous applications of the theory of the EP(2.1.1), many

authors have extended and generalized it in various directions. For instance, the

split equilibrium problem (SEP), the SEP enables us to split the solution between

two different subsets of spaces. We assume that H1 and H2 are real Hilbert

spaces. Let C and Q be nonempty subsets of H1 and H2, respectively. Given

f : C × C → R and g : Q × Q → R be two bifunctions. Suppose A : H1 → H2

be a bounded linear operator. In 2011, the spilt equilibrium problems (SEP)

introduced by Moudafi [88] is to find x∗ ∈ C such that

f(x∗, y) ⩾ 0, ∀y ∈ C (2.1.6)

and such that

µ∗ = Ax∗ ∈ Q solves g(µ∗, z) ⩾ 0, ∀z ∈ Q. (2.1.7)

We denote problem (2.1.6) is the classical equilibrium problem by solution set
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EP (f). Denote problem (2.1.7) is solution set by EP (g). The solution set of the

split equilibrium problem (2.1.6) and (2.1.7) denoted by ω = {x ∈ EP (f) : Ax ∈

EP (g)}.

To solve the split equilibrium problems, He [59] proposed the following

proximal point method, when f and g are monotone. He showed that the gen-

erated sequence converges weakly to a solution of the SEP under some certain

conditions on the control parameters. This method was defined as follows: select

x0 ∈ C and


yk ∈ C such that (yk, y) +

1
rk
⟨y − yk, yk − xk⟩ ⩾ 0, ∀y ∈ C,

uk ∈ Q such that g(uk, z) +
1
rk
⟨z − uk, uk − Ayk⟩ ⩾ 0, ∀z ∈ Q,

xk+1 = PC(yk + βAT (uk − Ayk), ∀k ⩾ 0,

where β ⊂ (0, 1
∥A∥2 ), {rk} ⊂ (0,+∞) with lim inf

k→∞
rk > 0, and PC s a projection

operator from H1 into C. He obtained the converges weakly to a solution of the

split equilibrium problems. Here, the algorithm of He [59] will be called the PPA

Algorithm.

In recent years, many authors have made several efforts to develop im-

plementable iterative methods for solving all these problems. In 2016, Suantai

et al. [114] propose an iterative algorithm for solving common solution of fixed

point problem of nonspreading multi-valued mapping and the SEP as follows:


x1 ∈ C,

zk = T f
rk
(xk − βAT (I − T g

rk
)Axk),

xk+1 = αkxk + (1− αk)Wzk, ∀k ⩾ 1,

(2.1.8)

where I is an identity mapping, W is a 1
2
−nonspreading multivalued mapping

(W : C → K(C) be a k-nonspeading multi-valued mapping such that k ∈ (0, 1
2
]),

I−T g
rk
is 1-inverse strongly monotone, β ⊂ (0, 1

L
) such that L is the spectal radius
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of ATA and AT is the adjoint of A, {rk} ⊂ (0,∞), and {αk} ⊂ (0, 1). Under

the conditions this algorithm get converges weakly to an element of the common

solution of split equilibrium problem and fixed point problem.

Recently, Dang [35] propose algorithm to solving spilt equilibrium prob-

lem which combines the proximal method, the projection method, and the diag-

onal subgradient method to converges strongly to solution of SEP, where f is a

pseudomonotone bifunction. This algorithm is designed as follows: select x0 ∈ C,

wk ∈ ∂ϵkf(xk, ·)(xk) and


yk = max{ρk, ∥wk∥}, dk =

µk

yk
,

zk = PC(xk − dkwk),

xk+1 = PC(zk − βkA
T (I − T g

rk
)Azk),

where ∂ϵf(x, ·)(x) is ϵ-diagonal subdifferential of f at x ∈ C, ρk ⩾ ρ > 0, µk >

0, ϵk > 0, rk ⩾ r > 0, and 0 < a ⩽ βk ⩽ b < 2
∥A∥2 .

In this dissertation, we study two problems: (1) equilibrium problem

in which the bifunction is pseudomonotone and (2) split equilibrium problem in

which the bifunction is monotone. We focus on using the step size and Lipschitz

condition. This flexibility makes it particularly suitable for data classification

tasks in machine learning, especially when the dataset has a finite number of

features.



 

 

 

CHAPTER 3

PRELIMINARIES

In this section, we provide some basic concepts, definitions, and lemmas

that will be used in the following sections.

3.1 Fundamentals

Definition 3.1.1 [1](Normed space) Let X be a vector space over field S (R

or C) and ∥ · ∥ : X → [0,∞) be a function. Then ∥ · ∥ is said to be a norm if the

following properties hold: for all x, y ∈ X and α ∈ S,

1. ∥x∥ ⩾ 0;

2. ∥x∥ = 0 ⇔ x = 0;

3. ∥αx∥ = |α|∥x∥;

4. ∥x+ y∥ ⩽ ∥x∥+ ∥y∥.

∥x∥ is called the norm of x. (X, ∥ · ∥) denotes the normed space just defined.

Example 3.1.2 Rn is a normed space with the following norms:

∥x∥1 =
n∑

k=1

|xk| for all x = (x1, x2, .., xn) ∈ Rn;

∥x∥p =
( n∑

k=1

|xk|p
)1/p

for all x = (x1, x2, .., xn) ∈ Rn and p ∈ (1,∞);

∥x∥∞ = max
1≤k≤n

|xk| for all x = (x1, x2, .., xn) ∈ Rn.

Example 3.1.3 Let X = ℓ1, the linear space whose elements consist of all abso-

lutely convergent sequences (x1, x2, ..., xk, ...) of scalars (R or C),

ℓ1 = {x : x = (x1, x2, ..., xk, ...) and
∞∑
k=1

|xk| < ∞}.
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Then ℓ1 is a normed space with the norm defined by ∥x∥1 =
∞∑
k=1

|xk|.

Example 3.1.4 Let X = ℓp (1 < p < ∞) be the linear space whose elements

consist of all presumable sequences (x1, x2, ..., xk, ...) of scalars (R or C),

ℓp = {x : x = (x1, x2, ..., xk, ...) and
∞∑
k=1

|xk|p < ∞}.

Then ℓp is a normed space with the norm defined by ∥x∥p = (
∞∑
k=1

|xk|p)1/p.

Example 3.1.5 Let X = ℓ∞ be the linear space whose elements consist of all

bounded sequences (x1, x2, ..., xk, ...) of scalars (R or C),

ℓ∞ = {x : x = (x1, x2, ..., xk, ...) and {xk}∞k=1 is bounded}.

Then ℓ∞ is a normed space with the norm defined by ∥x∥∞ = sup
k∈N

|xk|.

Example 3.1.6 Let X = L2[a, b] be the linear space of all continuous real-valued

functions on [a, b] forms a normed space X with norm defined by

∥x∥ =
(∫ b

a

x(t)2dt
) 1

2
.

Definition 3.1.7 [1](Cauchy sequence) A sequence {xk} in a normed space

X is said to be Cauchy if lim
m,k→∞

∥xm − xk∥ = 0, i.e., for ε > 0, there exists an

integer n0 ∈ N such that ∥xm − xk∥ < ε for all m, k ⩾ n0.

Definition 3.1.8 [1](Convergent sequence) A sequence {xk} in a normed

space X is said to be convergent to x if lim
k→∞

∥xk − x∥ = 0. In this case, we write

xk → x or lim
k→∞

xk = x.

Definition 3.1.9 [115](Strong convergence) Let H be an inner product space

and let x ∈ H. A sequence {xk} in H is said to be converges strongly to x,

denoted by xk → x, if ∥xk − x∥ → 0.
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Definition 3.1.10 [74](Weak convergence)A sequence {xk} in a normed space

X is said to be weakly convergent if there is an x ∈ X such that for every f in

the dual space X
′
,

lim
k→∞

f(xk) = f(x).

Definition 3.1.11 [1](Completeness) The space X is said to be complete if

every Cauchy sequence in X converges strongly.

Example 3.1.12 The Euclidean space Rn is complete with

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn.

Example 3.1.13 The sequence space ℓ∞ is complete.

Example 3.1.14 The sequence space ℓp is complete.

Definition 3.1.15 [1](Inner product space) Let X be a vector space over field

S (R or C) and ⟨., .⟩ : X ×X → S be a function. Then ⟨., .⟩ is said to be an inner

product if the following properties hold: for all x, y ∈ X and α ∈ S,

1. ⟨x, x⟩ ⩾ 0;

2. ⟨x, x⟩ = 0 ⇔ x = 0;

3. ⟨αx, y⟩ = α⟨x, y⟩;

4. ⟨x, y⟩ = ⟨y, x⟩;

5. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

⟨x, y⟩ is called the inner product of x and y, and ⟨y, x⟩ is conjugate symmetry of

⟨x, y⟩. (X, ∥ · ∥) denotes the inner product space just defined.

Definition 3.1.16 [1](Hilbert space) An inner product space H is said to be a

Hilbert space if it is complete, i.e., every Cauchy sequence is strongly convergent

sequence in H.
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Example 3.1.17 The Euclidean space Rn is a Hilbert space with inner product

defined by

⟨x, y⟩ =
n∑

k=1

xkyk,

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn.

Example 3.1.18 The space l2 is a Hilbert space with inner product defined by

⟨x, y⟩ =
∞∑
k=1

xkyk,

where x, y ∈ l2.

Example 3.1.19 The space L2[a, b] is a Hilbert space with inner product defined

by

⟨x, y⟩ =
∫ b

a

x(t)y(t)dt,

where a, b ∈ [−∞,+∞] and a < b.

Proposition 3.1.20 [1] Let X be an inner product space. Then the function

∥.∥ : X → [0,+∞) defined by

∥x∥ =
√

⟨x, x⟩, x ∈ X

is a norm on X.

Proposition 3.1.21 [24](The Cauchy-Schwarz inequality) Let X be an in-

ner product space. The following inequality holds for all x, y ∈ X:

|⟨x, y⟩| ⩽ ∥x∥∥y∥.

Proposition 3.1.22 [24](Properties of the inner product) The following

equalities hold: for all x, y ∈ H and α ∈ [0, 1],

1. ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩,
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2. ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩,

3. ⟨x+ y, x− y⟩ = ∥x∥2 − ∥y∥2,

4. ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2),

5. ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Definition 3.1.23 [11](Bounded sequence) Let H be an inner product space.

A sequence {xk} in H is said to be bounded if there is M > 0 such that for all

k ∈ N,

∥xk∥ ≤ M.

Definition 3.1.24 [1](Bounded linear operator) Let X and Y be normed

spaces and T : X → Y be a linear operator. The operator T is said to be

bounded if there is a real number M > 0 such that for all x ∈ X,

∥Tx∥ ⩽ M∥x∥.

Definition 3.1.25 [1](Convex subsets) Let H be a Hilbert space. A subset

C ⊆ H is said to be convex, if (1 − λ)x + λy ∈ C for all x, y ∈ C and for all

λ ∈ [0, 1].

Definition 3.1.26 [1](Closed set) Let H be an inner product space. A subset

C of H is said to be closed if for each a sequence {xk} in C with xk → x implies

that x ∈ C.

Definition 3.1.27 [12](Weak convergence in a Hilbert space) A sequence

{xk} in a Hilbert space H is said to converge weakly to a point x in H if

⟨xk, y⟩ → ⟨x, y⟩

for all y ∈ H and denote that xk ⇀ x.

Proposition 3.1.28 [24] LetH be a Hilbert space. Then every bounded sequence

{xk} in H, there exists a weakly convergent subsequence {xkm} of {xk}.
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Definition 3.1.29 [24] Let H be a Hilbert space. Let T : H → H be an operator.

Then 1. The operator T is called L-Lipschitz continuous with L > 0 if

∥Tx− Ty∥ ⩽ L∥x− y∥, ∀x, y ∈ H.

If L = 1, then T is called nonexpansive.

If L ∈ [0, 1), then T is called a contraction mapping.

2. The operator T is called monotone if

⟨Tx− Ty, x− y⟩ ⩾ 0, ∀x, y ∈ H.

3. The operator T is called firmly nonexpansive if

∥Tx− Ty∥2 ⩽ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2,

or equivalently

⟨Tx− Ty, x− y⟩ ⩾ ∥Tx− Ty∥2, ∀x, y ∈ C.

4. d-cocoercive or d-inverse strongly monotone if dT is firmly nonexpansive

when d > 0.

Definition 3.1.30 [24] Let C be a nonempty subset of H and x ∈ H. If there

exists a point x∗ ∈ C such that

∥x∗ − x∥ ⩽ ∥y − x∥, ∀y ∈ C,

then x∗ is called a metric projection of x on C, denoted by PCx. It PCx exists

and is unique for all x, then the function PC of H onto C is called the metric

projection.
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Theorem 3.1.31 [47] Let C be a nonempty closed convex subset of H. Then,

for any x ∈ H there exists a metric projection PCx onto C and it is unique.

Proposition 3.1.32 [115] Let C be a nonempty convex subset of H and let

x ∈ H, x∗ ∈ C. Then,

x∗ = PCx ⇔ ⟨x− x∗, y − x∗⟩ ⩽ 0, ∀y ∈ C.

Definition 3.1.33 [12](Proximal operator) Let f : Rn → R ∪ {+∞} be a

closed proper convex function, The proximal operator of f is defined by

proxf (y) = argmin
x

(
f(x) +

1

2
∥x− y∥22

)
,

and the proximal operator of the scalar function γf , where γ > 0, which can be

expressed as

proxγf (y) = argmin
x

(
f(x) +

1

2γ
∥x− y∥22

)
,

then proxγf is call the proximal operator of f with parameter γ.

Definition 3.1.34 [112](The sum rule) If f and g are both differentiable, then

∂

∂x
[f(x, y) + g(x, y)] =

∂f

∂x
+

∂g

∂x
,

∂

∂y
[f(x, y) + g(x, y)] =

∂f

∂y
+

∂g

∂y
.

Definition 3.1.35 [30] Let H be a real Hilbert space, and f : H → R ∪ {+∞}.

The effective domain of f is defined by dom(f) = {a ∈ H : f(a) < +∞}.

Then, f is called proper if dom(f) ̸= ∅.

Definition 3.1.36 [30] Let H be a real Hilbert space, and let f : H → R ∪

{−∞,+∞}. The following statements are equivalent:

(i) f is lower semicontinuous;

(ii) f is closed;
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(iii) for any δ ∈ R, the level set lev(f, δ) = {a ∈ H : f(a) ⩽ δ} is closed.

Let us begin with some concepts of monotonicity of a bifunction [18, 90].

Let C be a nonempty, closed and convex subset ofH. A bifunction f : H×H → R

is said to be:

(i) strongly monotone on C if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ⩽ −γ∥x− y∥2, ∀x, y ∈ C;

(ii) mototone on C if f(x, y) ⩽ −f(y, x),∀x, y ∈ C;

(iii) pseudomonotone on C if f(x, y) ⩾ 0 =⇒ f(y, x) ⩽ 0,∀x, y ∈ C;

(iv) satisfying Lipschitz-type condition on C if there exist two positive constants

c1, c2 such that

c1∥x− y∥2 + c2∥y − z∥2 ⩾ f(x, z)− f(x, y)− f(y, z), ∀x, y, z ∈ C.

For every x ∈ H, the metric projection PCx of x onto C is the nearest point of x

in C , that is, PCx = argmin{∥y − x∥ : y ∈ C}.

A differentiable function f is convex if and only if there holds the inequality

f(z) ⩾ f(x) + ⟨▽f(x), z − x⟩, ∀z ∈ H.

Definition 3.1.37 [24](Subdifferential) Let f : H → R be convex. The subset

∂f(x) = {g ∈ H : ⟨g, y − x⟩ ⩽ f(y)− f(x) for all y ∈ H}

is called a subdifferential of f at x ∈ H. The function f is said to be subdiffer-

entiable at x if ∂f(x) ̸= ∅. An element of the subdifferential ∂f(x) is called a

subgradient of f at x.
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Definition 3.1.38 [12] Let H be a real Hilbert space and let f : H → R, function

f is said to be lower semi-continuous at x if xk → x, then f(x) ⩽ lim inf
k→∞

f(xk).

Definition 3.1.39 [13](Fermat’s rule) Let f : H → (−∞,+∞] be proper.

Then

argminf = {x ∈ H : 0 ∈ ∂f(x)}.

Definition 3.1.40 [42] Let C be a convex subset of a real Hilbert space H and

g : C → R be subdifferentiable on C. Then x∗ is a solution to the following

convex problem:

min{g(x) : x ∈ C}

if and only if 0 ∈ ∂g(x∗) + NC(x
∗), where ∂g(·) denotes the subdifferential of g

and NC(x
∗) is the mormal cone of C at x∗ ∈ C.

For each x, z ∈ H, by ∂2f(z, x), we denote the subdifferential of convex

function f(z, .) at x, i.e.

∂2f(z, x) = {u ∈ H : f(z, y) ⩾ ⟨u, y − x⟩+ f(z, x), ∀y ∈ H}.

In particular, for z ∈ C,

∂2f(z, z) = {u ∈ H : f(z, y) ⩾ ⟨u, y − z⟩, ∀y ∈ H}.

The normal cone NC to C at a point x ∈ C is defined by NC(x) = {w ∈ H :

⟨y − x,w⟩ ⩾ 0, ∀y ∈ C}.

Assumption 3.1.41 [18] Let f : C × C → R be a bifunction satisfying the

following assumptions:

(1) f is monotone, i.e., f(x, y) + f(y, x) ⩽ 0 for all x ∈ C;

(2) f(x, x) = 0 for all x ∈ C;
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(3) for each x ∈ C, y → f(x, y) is convex and lower semi-continuous;

(4) for each x, y, z ∈ C, lim supk→0+ f(kz + (1− k)x, y) ⩽ f(x, y).

Proposition 3.1.42 [125] Let A : H → H be an d-inverse strongly monotone

mapping, then

(i) If β is any constant in (0, 2d], then the mapping I−βA is nonexpansive, where

I is the identity mapping on H.

(ii) A is an 1
d
-Lipschitz continuous and monotone mapping.

A mapping A : C → H1 is called ρ−inverse strongly monotone if there

exists ρ > 0 such that ⟨x− δ, Ax− Aδ⟩ ⩾ ρ∥Ax− Aδ∥2, ∀x, δ ∈ C.

3.2 Lemmas

Lemma 3.2.1 [12] For each x ∈ H and λ > 0,

1

λ
⟨x− proxλg(x), y − proxλg(x)⟩ ⩽ g(y)− g(proxλg(x)), ∀y ∈ C,

where proxλg(x) = argmin{λg(y) + 1
2
∥x− y∥2 : y ∈ C}.

Lemma 3.2.2 [106, 107] Let S ⊆ R be a nonempty, closed, and convex subset of

a real Hilbert space H. Let u ∈ H be arbitrarity given, z = PSu, and Ω = {x ∈

H : ⟨x− u, x− z⟩ ⩽ 0}. Then Ω ∩ S = {z}.

Lemma 3.2.3 [122] Let {ak} and {ck} be nonnegative sequences of real numbers

such that
∑∞

k=1 ck < ∞, and let {bk} be a sequence of real numbers such that

lim sup
k→∞

bk ⩽ 0. If for any k ∈ N such that

ak+1 ⩽ (1− γk)ak + γkbk + ck,

where {γk} is a sequence in (0, 1) such that
∞∑
k=1

γk = ∞, then lim
k→∞

ak = 0.
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Lemma 3.2.4 [95] Let {ak}, {bk} and {ck} be positive sequences, such that

ak+1 ⩽ (1 + ck)ak + bk, k ⩾ 1.

If
∞∑
k=1

ck < +∞ and
∞∑
k=1

bk < +∞; then, lim
k→+∞

ak exists.

Lemma 3.2.5 [113] Let X be a Banach space which satisfies Opial’s condition

and {xk} be a sequence in X. Let y, z ∈ X be such that lim
k→∞

∥xk − y∥ and

lim
k→∞

∥xk − z∥ exist. If {xkn} and {xln} are subsequences of {xk} which converge

weakly to y and z, respectively, then y = z.

Lemma 3.2.6 [32] Let f : C × C → R satisfy Assumption 3.1.41. Denote a

mapping T f
r : H1 → C, for each r > 0 and e ∈ H1, as follows:

T f
r (e) = {x ∈ C : f(x, y) +

1

r
⟨y − x, x− e⟩ ⩾ 0, ∀y ∈ C}.

Then the following hold:

(1) T f
r is nonempty and single-valued;

(2) T f
r is firmly nonexpansive, i.e., ∃ e, v ∈ H1,

∥T f
r e− T f

r v∥2 ⩽ ⟨T f
r e− T f

r v, e− v⟩;

(3) EP (f, C) = F (T f
r );

(4) EP (f, C) is convex and closed.

Further, let g : Q×Q → R satisfy Assumption 3.1.41. Define a mapping

T g
s : H2 → Q, for each s > 0 and b ∈ H2, as follows:

T g
s (b) = {h ∈ Q : g(h, p) +

1

s
⟨p− h, h− b⟩ ⩾ 0, ∀p ∈ Q}.
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Then we easily observe that:

(1) T g
s is nonempty and single-valued;

(2) T g
s is firmly nonexpansive;

(3) F (T g
s ) = EP (g,Q);

(4) EP (g,Q) is closed and convex.

Lemma 3.2.7 [116] Let {ak}, {bk} be sequences of nonnegative real numbers such

that

ak+1 ⩽ ak + bk, k ∈ N.

If
∞∑
k=1

bk < ∞, then lim
k→∞

ak exists.

Lemma 3.2.8 [126] Let f : C × C → R be an equilibrium function, and let T f
r

be defined as in Lemma 3.2.6 for r > 0. Let x, y ∈ H and r1, r2 > 0, then

∥T f
r2
(y)− T f

r1
(x)∥ ⩽ ∥y − x∥+

∣∣∣∣r2 − r1
r2

∣∣∣∣∥T f
r2
(y)− x∥.

Lemma 3.2.9 [30] Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be

nonempty, closed, and convex subset of H1 and H2, respectively, and let A : H1 →

H2 be a bounded linear operator. Let f : C×C → R, g : Q×Q → R be bifunction

satisfying Assumption 3.1.41, and let T f
r be defined as in Lemma 3.2.6. Then,

the following hold: (i) x∗ ∈ ω if only if x∗ = T f
r (I − βAT (I − T g

r )A)x
∗ for all

β ∈ (0, 1
L
), where L is the spectral radius of ATA and AT is the adjoint of A;

(ii) if 0 < β < 2
L
, then T f

r (I − βAT (I − T g
r )A) is nonexpansive.
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Lemma 3.2.10 [123] Let {ak} ⊂ [0,∞), {bk} ⊂ [0,∞) and {ck} ⊂ [0, 1) be

sequences of real numbers such that

ak+1 ⩽ (1− ck)ak + bk, k ∈ N,
∞∑
k=1

ck = ∞ and
∞∑
k=1

bk < ∞

Then lim
k→∞

ak = 0.



 

 

 

CHAPTER 4

MAIN RESULTS

This chapter is to present our results for equilibrium problems. We have

3 section; pseudomonotone equilibrium problems, split equilibrium problems, nu-

merical example. Also, we provide some applications in data classification includ-

ing the numerical experiments for supporting our main theorems.

4.1 Pseudomonotone equilibrium problems

The convergence of algorithms will be given under the conditions that

Condition 4.1.1 (A1) f is pseudomonotone on C with int(C) ̸= ∅ or f(x, ·) is

continuous at some z ∈ C for every x ∈ C;

(A2) f satisfies Lipschitz-type condition on H with two constants c1 and

c2;

(A3) f(·, y) is sequentially weakly upper semicontinuous on C for each

fixed point y ∈ C, i.e. if {xk} ⊂ C is a sequence converging weakly to x ∈ C,

then f(x, y) ⩾ lim sup
k→∞

f(xk, y);

(A4) for x ∈ H, f(x, ·) is convex and lower semicontinuous, subdifferen-

tiable on H;

(A5) V : H → H is contraction with contraction constant α.

4.1.1 A modified inertial viscosity extragradient type method for equi-

librium problems application to classification of diabetes melli-

tus: machine learning methods
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Algorithm 4.1.2 (Modified viscosity type inertial extragradient algo-

rithm for EP)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {αk} ⊂ (0, 1), and

{θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = αkV (xk) + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.

Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

Replace k by k + 1 and return to Step1.

For the rest of this thesis, we assume the following condition.

Condition 4.1.3 (i) {αk} ⊂ (0, 1] is non-increasing with lim
k→∞

αk = 0 and
∞∑
k=1

αk =

∞;

(ii) 0 ⩽ θk ⩽ θk+1 ⩽ θ < 1
3
and lim

k→∞

θk
αk

∥xk − xk−1∥ = 0;

(iii) EP (f, C) ̸= ∅.
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Before we prove the strong convergence result, we need some lemmas

below.

Lemma 4.1.4 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 4.1.2. Then there exists N > 0 such that

∥xk+1 − u∥2 ⩽ ∥wk − u∥2 − ∥xk+1 − wk∥2, ∀u ∈ EP (f, C), k ⩾ N.

Proof. By the definition of yk, and Lemma 3.2.1, we have

1

λk

⟨wk − yk, y − yk⟩ ⩽ f(wk, y)− f(wk, yk), ∀y ∈ C. (4.1.1)

Putting y = zk into (4.1.1), we obtain

1

λk

⟨yk − wk, yk − zk⟩ ⩽ f(wk, zk)− f(wk, yk). (4.1.2)

By the definition of zk, we have

1

λk

⟨wk − zk, y − zk⟩ ⩽ f(yk, y)− f(yk, zk), ∀y ∈ C. (4.1.3)

(4.1.2) and (4.1.3) imply that

2

λk

⟨wk − zk, y − zk⟩+
2

λk

⟨yk − wk, yk − zk⟩

⩽ 2f(yk, y) + 2(f(wk, zk)− f(wk, yk)− f(yk, zk)). (4.1.4)

If f(wk, zk)− f(wk, yk)− f(yk, zk) > 0, then

f(wk, zk)− f(wk, yk)− f(yk, zk) ⩽ c1∥wk − yk∥2 + c2∥zk − yk∥2. (4.1.5)

Observe that (4.1.5) is also satisfied if f(wk, zk) − f(wk, yk) − f(yk, zk) ⩽ 0. By
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(4.1.4) and (4.1.5), we have

⟨wk − zk, y − zk⟩+ ⟨yk − wk, yk − zk⟩

⩽ λkf(yk, y) + λkc1∥wk − yk∥2 + λkc2∥zk − yk∥2. (4.1.6)

Note that

⟨wk − zk, zk − y⟩ = 1

2
(∥wk − y∥2 − ∥wk − zk∥2 − ∥zk − y∥2) (4.1.7)

and

⟨wk − yk, zk − yk⟩ =
1

2
(∥wk − yk∥2 + ∥zk − yk∥2 − ∥wk − zk∥2). (4.1.8)

Using (4.1.7) and (4.1.8) in (4.1.6), we obtain, for all y ∈ C,

∥zk − y∥2 ⩽ ∥wk − y∥2 − (1− 2λkc1)∥wk − yk∥2

− (1− 2λkc2)∥zk − yk∥2 + 2λkf(yk, y). (4.1.9)

Taking y = u ∈ EP (f, C) ⊂ C, one has f(u, yk) ⩾ 0,∀k. By (A1), we obtain

f(yk, u) ⩽ 0, ∀k. Hence, we obtain from (4.1.9) that

∥zk −u∥2 ⩽ ∥wk −u∥2− (1− 2λkc1)∥wk − yk∥2− (1− 2λkc2)∥zk − yk∥2. (4.1.10)

It follows from λk ∈ (0, 1
2max{c1,c2}) and (4.1.10), we have

∥zk − u∥ ⩽ ∥wk − u∥.

On the other hand, we have

∥xk+1 − u∥2 = (1− τ)∥wk − u∥2 + τ∥zk − u∥2 − (1− τ)τ∥zk − wk∥2. (4.1.11)
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Substituting (4.1.10) into (4.1.11), we obtain

∥xk+1 − u∥2 ≤ ∥wk − u∥2 − τ∥wk − u∥2 + τ∥wk − u∥2 − τ(1− 2λkc1)∥wk − yk∥2

− τ(1− 2λkc2)∥zk − yk∥2 − (1− τ)τ∥zk − wk∥2. (4.1.12)

Moreover, we have zk − wk =
1
τ
(xk+1 − wk), which together with (4.1.12) gives

∥xk+1 − u∥2 ⩽ ∥wk − u∥2 − τ(1− 2λkc1)∥wk − yk∥2 − τ(1− 2λkc2)∥zk − yk∥2

− (1− τ)τ
1

τ 2
∥xk+1 − wk∥2

⩽ ∥wk − u∥2 − 1− τ

τ
∥xk+1 − wk∥2

⩽ ∥wk − u∥2 − x∥xk+1 − wk∥2, ∀k ⩾ N, (4.1.13)

where x = 1−τ
τ
.

Lemma 4.1.5 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 4.1.2. Then, for all u ∈ EP (f, C),

−2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ αk+1∥V (xk)− xk+1∥2 − αk∥xk − V (xk)∥2 − θk∥xk − u∥2

+ θk−1∥xk−1 − u∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2. (4.1.14)

Proof. By Lemma 3.2.4, we have

∥xk+1 − u∥2 ⩽ ∥wk − u∥2 − ∥xk+1 − wk∥2. (4.1.15)

Moreover, from the definition of wk, we obtain that

∥wk − u∥2 = ∥xk − u∥2 + ∥θk(xk − xk−1)− αk(xk − V (xk))∥2
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+ 2⟨xk − u, θk(xk − xk−1)− αk(xk − V (xk))⟩

= ∥xk − u∥2 + ∥θk(xk − xk−1)− αk(xk − V (xk))∥2

+ 2θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩. (4.1.16)

Replacing u by xk+1 in (4.1.16), we have

∥wk − xk+1∥2

= ∥xk − xk+1∥2 + ∥αk(xk − V (xk))− θk(xk − xk−1)∥2

+ 2θk⟨xk − xk+1, xk − xk−1⟩ − 2αk⟨xk − xk+1, xk − V (xk)⟩. (4.1.17)

Substituting (4.1.16) and (4.1.17) into (4.1.15), we have

∥xk+1 − u∥2

⩽ ∥xk − u∥2 + ∥θk(xk − xk−1)− αk(xk − V (xk))∥2 + 2θk⟨xk − u, xk − xk−1⟩

− 2αk⟨xk − u, xk − V (xk)⟩ − ∥xk − xk+1∥2 − 2θk⟨xk − xk+1, xk − xk−1⟩

+ 2αk⟨xk − xk+1, xk − V (xk)⟩ − ∥αk(xk − V (xk))− θk(xk − xk−1)∥2

= ∥xk − u∥2 − ∥xk − xk+1∥2 + 2θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩

+ 2αk⟨xk − xk+1, xk − V (xk)⟩+ θk∥xk − xk+1∥2 + θk∥xk − xk−1∥2

− θk∥xk − xk+1 + (xk − xk−1)∥2.

Therefore, we obtain

∥xk+1 − u∥2 − ∥xk − u∥2 − θk∥xk − xk−1∥2 + ∥xk − xk+1∥2 − θk∥xk − xk+1∥2

⩽ 2θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩+ 2αk⟨xk − xk+1, xk − V (xk)⟩

= −2αk⟨xk − u, xk − V (xk)⟩ − θk∥xk−1 − u∥2 + θk∥xk − u∥2 + θk∥xk − xk−1∥2

− αk∥V (xk)− xk+1∥2 + αk∥xk+1 − xk∥2 + αk∥xk − V (xk)∥2.
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It follows that

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 − θk∥xk − xk−1∥2 + ∥xk − xk+1∥2

− θk∥xk − xk+1∥2 + θk∥xk−1 − u∥2 − θk∥xk − u∥2 − θk∥xk − xk−1∥2

+ αk∥V (xk)− xk+1∥2 − αk∥xk+1 − xk∥2 − αk∥xk − V (xk)∥2

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ θk(∥xk−1 − u∥2 − ∥xk − u∥2) + αk(∥V (xk)− xk+1∥2 − ∥xk − V (xk)∥2)

+ (1− θk − 2θk+1 − αk)∥xk+1 − xk∥2.

Since θk is non-decreasing and αk is non-increasing, we then obtain

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ αk+1∥V (xk)− xk+1∥2 − αk∥xk − V (xk)∥2 − θk∥xk − u∥2

+ θk−1∥xk−1 − u∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2.

Lemma 4.1.6 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then

{xk} generated by Algorithm 4.1.2 is bounded.

Proof. From (4.1.13) and Condition 4.1.3 (ii), there exists K > 0 such that

∥xk+1 − u∥ ⩽ ∥wk − u∥

= ∥αkV (xk) + (1− αk)xk + θk(xk − xk−1)− u∥

⩽ αk∥V (xk)− u∥+ (1− αk)∥xk − u∥+ θk∥xk − xk−1∥

= αk∥V (xk)− u∥+ (1− αk)∥xk − u∥+ αk
θk
αk

∥xk − xk−1∥
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⩽ αk∥V (xk)− u∥+ (1− αk)∥xk − u∥+ αkK

⩽ αk(∥V (xk)− V (u)∥+ ∥V (u)− u∥) + (1− αk)∥xk − u∥+ αkK

⩽ (1− αk(1− α))∥xk − u∥+ αk(1− α)(
∥V (u)− u∥+K

1− α
)

⩽ max{∥xk − u∥, ∥V (u)− u∥+K

1− α
}.

This implies that ∥xk+1−u∥ ⩽ max{∥x1−u∥, ∥V (u)−u∥+K
1−α

}. This shows that {xk}

is bounded.

Lemma 4.1.7 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 4.1.2. For each k ⩾ 1, define

uk = ∥xk − u∥2 − θk−1∥xk−1 − u∥2 + 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2.

Then uk ⩾ 0.

Proof. Since {θk} is non-decreasing with 0 ⩽ θk <
1
3
, and 2⟨x, y⟩ = ∥x∥2+∥y∥2−

∥x− y∥2 for all x, y ∈ H, we have

uk = ∥xk − u∥2 − θk−1[∥xk−1 − xk∥2 + ∥xk − u∥2 + 2⟨xk−1 − xk, xk − u⟩]

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

= ∥xk − u∥2 − θk−1[2∥xk−1 − xk∥2 + 2∥xk − u∥2 − ∥xk−1 − 2xk + u∥2]

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

⩾ ∥xk − u∥2 − 2θk∥xk−1 − xk∥2 −
2

3
∥xk − u∥2 + θk−1∥xk−1 − 2xk + u∥2

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

⩾ 1

3
∥xk − u∥2 + αk∥xk − V (xk)∥2

⩾ 0.

This completes the proof.
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Lemma 4.1.8 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 4.1.2. Suppose

lim
k→∞

∥xk+1 − xk∥ = 0,

and

lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2) = 0.

Then {xk} converges strongly to u ∈ EP (f, C).

Proof. By our assumptions, we have

0 = lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2)

= lim
k→∞

[(∥xk+1 − u∥+
√

θk∥xk − u∥)(∥xk+1 − u∥ −
√

θk∥xk − u∥)]. (4.1.18)

In the case

lim
k→∞

(∥xi+1 − u∥+
√
θi∥xi − u∥) = 0,

this implies that {xk} converges strongly to u immediately. Assume this limit

does not hold. Then there is a subset N∗ ⊆ N and a constant ρ > 0 such that

∥xk+1 − u∥+
√
θk∥xk − u∥ ⩾ ρ, ∀k ∈ N∗. (4.1.19)

Using (4.1.18) and θk ⩽ θ < 1. For k ∈ N∗, it then follows that

0 = lim
k→∞

(∥xk+1 − u∥ −
√

θk∥xk − u∥)

⩾ lim sup
k→∞

(∥xk − u∥ − ∥xk+1 − xk∥ −
√
θk∥xk − u∥)
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⩾ lim sup
k→∞

((1−
√
θ)∥xk − u∥ − ∥xk+1 − xk∥)

= (1−
√
θ) lim sup

k→∞
∥xk − u∥ − lim

k→∞
∥xk+1 − xk∥

= (1−
√
θ) lim sup

k→∞
∥xk − u∥.

Consequently, we have lim sup
k→∞

∥xk −u∥ ⩽ 0. Since lim inf
k→∞

∥xk −u∥ ⩾ 0 obviously

holds, it follows that lim
k→∞

∥xk − u∥ = 0. This implies (by (4.1.19))

∥xk+1 − xk∥ ⩾ ∥xk+1 − u∥ − ∥xk − u∥

= ∥xk+1 − u∥+
√

θk∥xk − u∥ − (1 +
√

θk)∥xk − u∥

⩾ ρ

2
,

for all k ∈ N∗ sufficiently large, a contradiction to the assumption that lim
k→∞

∥xk+1−

xk∥ = 0. This completes the proof.

We now give the following strong convergence result of Algorithm 4.1.2.

Theorem 4.1.9 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then

{xk} generated by Algorithm 4.1.2 strongly converges to the solution u = PEP (f,C)V (u).

Proof. From Lemma 4.1.7 and (4.1.14), we have

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ uk+1 − uk − αk+1∥xk+1 − V (xk+1)∥2 + αk+1∥V (xk)− xk+1∥2

+ (1− 3θk+1 − αk)∥xk − xk+1∥2. (4.1.20)

Since PEP (f,C)V is a contraction, by the Banach fixed point theorem, there exists

a unique u = PEP (f,C)V (u). It follows from Lemma 4.1.4 that
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∥xk+1 − u∥2

⩽ ∥wk − u∥2

= ∥αk(V (xk)− u) + (1− αk)(xk − u) + θk(xk − xk−1)∥2

⩽ ∥(1− αk)(xk − u) + θk(xk − xk−1)∥2 + 2⟨αk(V (xk)− u), wk − u⟩

= ∥(1− αk)(xk − u) + θk(xk − xk−1)∥2 + 2αk⟨V (xk)− V (u), wk − u⟩

+ 2αk⟨V (u)− u,wk − u⟩

⩽ ∥(1− αk)(xk − u) + θk(xk − xk−1)∥2 + 2αk⟨V (u)− u,wk − u⟩

+ 2αkα∥xk − u∥∥wk − u∥

⩽ ∥(1− αk)(xk − u) + θk(xk − xk−1)∥2 + 2αk⟨V (u)− u,wk − u⟩

+ αkα(∥xk − u∥2 + ∥wk − u∥2)

⩽ 1

1− αkα

(
∥(1− αk)(xk − u) + θk(xk − xk−1)∥2 + αkα∥xk − u∥2

+ 2αk⟨V (u)− u,wk − u⟩
)

⩽ 1

1− αkα

(
∥(1− αk)(xk − u)∥2 + 2⟨θk(xk − xk−1), (1− αk)(xk − u)

+ θk(xk − xk−1)⟩+ αkα∥xk − u∥2 + 2αk⟨V (u)− u,wk − u⟩
)

=
(1− αk)

2 + αkα

1− αkα
∥xk − u∥2 + 1

1− αkα

(
2⟨θk(xk − xk−1),

(1− αk)(xk − u) + θk(xk − xk−1)⟩+ 2αk⟨V (u)− u,wk − u⟩
)

=
(
1− (

2αk(1− α)

1− αkα
− (αk)

2

1− αkα
)
)
∥xk − u∥2 + 1

1− αkα

(
2⟨θk(xk − xk−1),

(1− αk)(xk − u) + θk(xk − xk−1)⟩+ 2αk⟨V (u)− u,wk − u⟩
)

⩽
(
1− 2αk(1− α)

1− αkα

)
∥xk − u∥2 + 2αk(1− α)

1− αkα

(
αk

2(1− α)
∥xk − u∥2

+
1

αk(1− α)
⟨θk(xk − xk−1), (1− αk)(xk − u) + θk(xk − xk−1)⟩

+
1

1− α
⟨V (u)− u,wk − u⟩

)
. (4.1.21)
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We will consider into 2 cases.

Case 1. In the case of uk+1 ⩽ uk + tk for all k ⩾ k0 for some k0 ∈

N, tk ⩾ 0 and
∑∞

k=1 tk < +∞. Then uk ⩾ 0, ∀k ⩾ 1 by Lemma 3.2.4, we

have lim
k→∞

uk = lim
k→∞

uk+1 exists. Since {xk} is bounded by Lemma 4.1.6, there

exists M1 > 0 such that 2|⟨xk − u, xk − V (xk)⟩| ⩽ M1 and M2 > 0 such that

∥xk+1 − V (xk+1)∥2 + ∥V (xk) − xk+1∥2 ⩽ M2. Since 0 ⩽ θk ⩽ θk+1 ⩽ θ < 1
3
and

lim
k→∞

αk = 0, there exist N ∈ N and γ1 > 0 such that 1− 3θk+1 − αk ⩾ γ1 for all

k ⩾ N . Therefore, for k ⩾ N , we obtain from (4.1.20) that

γ1∥xk+1 − xk∥2 ⩽ αkM1 + αk+1M2 + uk − uk+1 → 0, (4.1.22)

as k → ∞. Hence lim
k→∞

∥xk+1 − xk∥ = 0. For u ∈ EP (f, C), we have

∥wk − u∥2

= ∥αkV (xk) + (1− αk)xk + θk(xk − xk−1)− u∥2

⩽ ∥αkV (xk) + (1− αk)xk − u∥2 + 2⟨θk(xk − xk−1), wk − u⟩

⩽ αk∥V (xk)− u∥2 + (1− αk)∥xk − u∥2 + 2θk∥xk − xk−1∥∥wk − u∥

⩽ αk∥V (xk)− u∥2 + (1− αk)∥xk − u∥2 + 2
θk
αk

∥xk − xk−1∥∥wk − u∥

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2
θk
αk

∥xk − xk−1∥∥wk − u∥,

and from (4.1.12), we have

∥xk+1 − u∥2 = ∥wk − u∥2 − τ(1− 2λkc1)∥wk − yk∥2 − τ(1− 2λkc2)∥zk − yk∥2

− (1− τ)τ
1

τ 2
∥xk+1 − wk∥2

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2
θk
αk

∥xk − xk−1∥∥wk − u∥

− τ(1− 2λkc1)∥wk − yk∥2 − τ(1− 2λkc2)∥zk − yk∥2

− 1− τ

τ
∥xk+1 − wk∥2.
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This implies that

τ(1− 2λkc1)∥wk − yk∥2 + τ(1− 2λkc2)∥zk − yk∥2 +
1− τ

τ
∥xk+1 − wk∥2

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2
θk
αk

∥xk − xk−1∥∥wk − u∥ − ∥xk+1 − u∥2.

By our condition and (4.1.22), we obtain

lim
k→∞

∥wk − yk∥ = lim
k→∞

∥zk − yk∥ = lim
k→∞

∥xk+1 − wk∥ = 0. (4.1.23)

Since {xk} is bounded, that is, there exists a subsequence {xki} of {xk} such that

xki ⇀ x∗ for some x∗ ∈ H. From (4.1.22) and (4.1.23), we get wki ⇀ x∗ and

yki ⇀ x∗ as i → ∞. By the definition of zk and (4.1.5), we have

λkif(yki , y)

⩾ λkif(yki , zki) + ⟨wki − zki , y − zki⟩

⩾ λkif(wki , zki)− λkif(wki , yki)− c1∥wki − yki∥2 − c2∥zki − yki∥2

+ ⟨wki − zki , y − zki⟩

⩾ ⟨yki − wki , yki − zki⟩+ ⟨wki − zki , y − zki⟩ − c1∥wki − yki∥2 − c2∥zki − yki∥2.

It follows from {zki} is bounded, 0 < λki ⩽ λ < 1
2max{c1,c2} and Condition 4.1.1

(A3) that 0 ⩽ lim sup
k→∞

f(yki , y) ⩽ f(x∗, y) for all y ∈ H. This implies that

f(x∗, y) ⩾ 0 for all y ∈ C. This shows that x∗ ∈ EP (f, C). Then, we have

lim sup
k→∞

⟨V (u)− u,wk − u⟩ = lim
k→∞

⟨V (u)− u,wki − u⟩

= ⟨V (u)− u, x∗ − u⟩ ⩽ 0, (4.1.24)

by u = PEP (f,C)V (u). Applying (4.1.24) to the inequality (4.1.21) with Lemma

3.2.3, we can conclude that xk → u = PEP (f,C)V (u) as k → ∞.
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Case 2. In another case of {uk}, we let ϕ : N → N be the map defined

for all k ⩾ k0 (for some k0 ∈ N large enough) by

ϕ(k) = max{i ∈ N : i ⩽ k, uk + tk ⩽ uk+1}.

Clearly, ϕ(k) is a non-decreasing sequence such that ϕ(k) → ∞ for k → ∞ and

uϕ(k) + tϕ(k) ⩽ uϕ(k)+1 for all k ⩾ k0. Hence, similar to the proof of Case 1, we

therefore obtain from (4.1.22) that

γ1∥xϕ(k)+1 − xϕ(k)∥2 ⩽ αϕ(k)M1 + αϕ(k)+1M2 + uϕ(k) − uϕ(k)+1 → 0

for some constant M1,M2 > 0. Thus

lim
k→∞

∥xϕ(k)+1 − xϕ(k)∥ = 0. (4.1.25)

By the same proof of Case 1, one also derive

lim
k→∞

∥xϕ(k)+1 − wϕ(k)∥ = lim
k→∞

∥wϕ(k) − xϕ(k)∥ = lim
k→∞

∥xϕ(k) − zϕ(k)∥ = 0. (4.1.26)

Again observe that for j ⩾ 0 by (4.1.20), we have uj+1 < uj + tj when xj /∈

Ω = {x ∈ H : ⟨x − x0, x − u⟩ ⩽ 0} (note that this Ω is the same set as in

Lemma 3.2.2). Hence xϕ(k) ∈ Ω for all k ⩾ k0 since uϕ(k) + tϕ(k) ⩽ uϕ(k)+1. Sine

{xϕ(k)} is bounded, there exist subsequence {xϕ(k)} of {xϕ(k)} which converges

weakly to some x∗ ∈ H. As Ω is a closed and convex set, it is then weakly closed

and so x∗ ∈ Ω. Using (4.1.26), one can see as in Case 1 that zϕ(k) ⇀ x∗ and

x∗ ∈ EP (f, C). Consequently, we have x∗ ∈ Ω ∩ EP (f, C). In view of Lemma

3.2.2, the intersection Ω∩EP (f, C) contains u as its only element. We therefore

have x∗ = u. Furthermore,
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∥xϕ(k) − u∥2 = ⟨xϕ(k) − V (xk), xϕ(k) − u⟩ − ⟨u− V (xk), xϕ(k) − u⟩

⩽ −⟨u− V (xk), xϕ(k) − u⟩

due to xϕ(k) ∈ Ω. This gives

lim sup
k→∞

∥xϕ(k) − u∥ ⩽ 0.

Hence

lim
k→∞

∥xϕ(k) − u∥ = 0. (4.1.27)

By definition, uϕ(k)+1, we have

uϕ(k)+1 = ∥xϕ(k)+1 − u∥2 − θϕ(k)∥xϕ(k) − u∥2 + 2θϕ(k)+1∥xϕ(k)+1 − xϕ(k)∥2

+ αϕ(k)+1∥xϕ(k)+1 − Vϕ(k)+1∥2

⩽ (∥xϕ(k)+1 − xϕ(k)∥+ ∥xϕ(k) − u∥)2 − θϕ(k)∥xϕ(k) − u∥2

+ 2θϕ(k)+1∥xϕ(k)+1 − xϕ(k)∥2 + αϕ(k)+1∥xϕ(k)+1 − Vϕ(k)+1∥2.

By our Condition 4.1.3 (i), (4.1.25) and (4.1.27), we obtain limk→∞ uϕ(k)+1 = 0.

We next show that we actually have lim
k→∞

uk = 0. To this end, first observe that,

for k ⩾ k0, one has uk + tk ⩽ uϕ(k)+1 if k ̸= ϕ(k). It follows that for all k ⩾ k0,

we have uk ⩽ max{uϕ(k), uϕ(k)+1} = uϕ(k)+1 → 0, since limk→∞ tk = 0, hence

lim sup
k→∞

uk ⩽ 0. On the other hand, Lemma 4.1.7 implies that lim inf
k→∞

uk ⩾ 0.

Hence, we obtain lim
k→∞

uk = 0. Consequently, the boundedness of {xk}, lim
k→∞

αk =

0, and (4.1.20) show that ∥xk − xk+1∥ → 0, as k → ∞. Hence the definition of

uk yields (∥xk+1 − u∥2 − θk∥xk − u∥2) → 0, as k → ∞. By using Lemma 4.1.8,

we obtain the desired conclusion immediately.
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Setting V (x) = x0, ∀x ∈ H, then we obtain the following modified

Halpern inertial extragradient algorithm for EPs:

Algorithm 4.1.10 (Modified Halpern inertial extragradient algorithm

for EP)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {αk} ⊂ (0, 1), and

{θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = αkx0 + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.

Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

Replace k by k + 1 and return to Step1.

From Algorithm 4.1.2, the convergence depends on the parameter {λk}

with the condition 0 < λk ⩽ λ < 1
2max{c1,c2} . So, the step size {λk} can be

considered in many ways. Applying step size concept of Shehu et al. [107], we

then obtain the following modified viscosity type inertial extragradient stepsize

algorithm for EPs:
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Algorithm 4.1.11 (Modified viscosity type inertial extragradient step-

size algorithm for EP)

Initialization: Select λk ∈ (0, 1
2max{c1,c2}), µ ∈ (0, 1), τ ∈ (0, 1

2
], {αk} ⊂ (0, 1),

and {θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1

as follows:

Step1. Compute:

wk = αkV (xk) + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.

Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

and

λk+1 =


min{µ

2
∥wk−yk∥2+∥zk−yk∥2

f(wk,zk)−f(wk,yk)−f(yk,zk)
, λk}, if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, Otherwise.

Replace k by k + 1 and return to Step1.
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Remark 4.1.12 (i) Since V (x) = x0, ∀x ∈ H is a contraction, thus the mod-

ified Halpern inertial extragradient algorithm 4.1.10 converges strongly to x∗ =

PEP (f,C)x0 with Condition 4.1.1 and Condition 4.1.3;

(ii) Since the step size {λk} in Algorithm 4.1.11 is a monotonically decreasing

sequence with lower bound min{λ1,
1

2max{c1,c2}} [107], thus Algorithm 4.1.11 con-

verges strongly to the solution x0 = PEP (f,C)V (x0) by Theorem 4.1.9.

4.1.2 A modified viscosity type inertial subgradient extragradient al-

gorithm for nonmonotone equilibrium problems and application

to cardiovascular disease detection

Algorithm 4.1.13 (Modified viscosity type inertial subgradient extra-

gradient algorithm - MVISE)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {θk} ⊂ [0, 1

3
), {αk} ⊂

(0, 1) Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

yk = αkV (xk) + (1− αk)wk,

and

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − yk∥2}.

Step 2. Choose ok ∈ ∂2f(yk, ·)(zk) such that there exists sk ∈ NC(zk) satisfying

sk = yk − λkok − zk,
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and construct a half-space

Γk = {e ∈ H : ⟨yk − λkok − zk, e− zk⟩ ⩽ 0}.

Compute

ek = argmin
y∈Γk

{λkf(zk, y) +
1

2
∥y − yk∥2},

Step 3. Calculate:

xk+1 = (1− τ)yk + τek.

Replace k by k + 1 and return to Step1.

Next, we give some useful lemmas for proving our main results.

Lemma 4.1.14 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 4.1.13. Then, for all u ∈ EP (g, C), there

exists N > 0 such that

∥xk+1 − u∥2 ⩽ ∥yk − u∥2 − ∥xk+1 − yk∥2, k ⩾ N.

Proof. By Lemma 3.2.1, and the definition of zk, we get

1

λk

⟨yk − zk, y − zk⟩ ⩽ f(yk, y)− f(yk, zk), ∀y ∈ C. (4.1.28)

Putting y = ek in (4.1.28), we obtain

1

λk

⟨zk − yk, zk − ek⟩ ⩽ f(yk, ek)− f(yk, zk). (4.1.29)
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By the definition of ek, we get

1

λk

⟨yk − ek, y − ek⟩ ⩽ f(zk, y)− f(zk, ek), ∀y ∈ Γk. (4.1.30)

(4.1.29) and (4.1.30) imply that

2

λk

⟨yk − ek, y − ek⟩+
2

λk

⟨zk − yk, zk − ek⟩

⩽ 2f(zk, y) + 2(f(yk, ek)− f(yk, zk)− f(zk, ek)). (4.1.31)

If f(yk, ek)− f(yk, zk)− f(zk, ek) > 0, then

f(yk, ek)− f(yk, zk)− f(zk, ek) ⩽ c1∥yk − zk∥2 + c2∥ek − zk∥2. (4.1.32)

If f(yk, ek) − f(yk, zk) − f(zk, ek) ⩽ 0, then (4.1.32) is obviously true. It follows

from (4.1.31) and (4.1.32) that

⟨yk − ek, y − ek⟩+ ⟨zk − yk, zk − ek⟩

⩽ λkf(zk, y) + λkc1∥yk − zk∥2 + λkc2∥ek − zk∥2. (4.1.33)

Note that

⟨yk − ek, ek − y⟩ = 1

2
(∥yk − y∥2 − ∥yk − ek∥2 − ∥ek − y∥2) (4.1.34)

and

⟨yk − zk, ek − zk⟩ =
1

2
(∥yk − zk∥2 + ∥ek − zk∥2 − ∥yk − ek∥2). (4.1.35)

By (4.1.33), (4.1.34), and (4.1.35), we have, ∀y ∈ C,

∥ek − y∥2 ⩽ 2λkf(zk, y)− (1− 2λkc1)∥yk − zk∥2
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− (1− 2λkc2)∥ek − zk∥2 + ∥yk − y∥2. (4.1.36)

With y = u ∈ EP (f, C) ⊂ C, one has f(u, zk) ⩾ 0, ∀k. By Condition 4.1.1 (A1),

we gain f(zk, u) ⩽ 0, ∀k. Thus, we gain from (4.1.36) that

∥ek − u∥2 ⩽ ∥yk − u∥2 − (1− 2λkc1)∥yk − zk∥2 − (1− 2λkc2)∥ek − zk∥2. (4.1.37)

It follows from λk ∈ (0, 1
2max{c1,c2}) and (4.1.37) that we have

∥ek − u∥ ⩽ ∥yk − u∥.

On the other hand, we have

∥xk+1 − u∥2 = (1− τ)∥yk − u∥2 + τ∥ek − u∥2 − (1− τ)τ∥ek − yk∥2. (4.1.38)

By (4.1.37) and (4.1.38), we have

∥xk+1 − u∥2 ⩽ ∥yk − u∥2 − τ∥yk − u∥2 + τ∥yk − u∥2

− τ(1− 2λkc1)∥yk − zk∥2 − τ(1− 2λkc2)∥ek − zk∥2

− (1− τ)τ∥ek − yk∥2. (4.1.39)

Moreover, we have ek − yk =
1
τ
(xk+1 − yk), which, together with (4.1.39), gives

∥xk+1 − u∥2 ⩽ ∥yk − u∥2 − τ(1− 2λkc1)∥yk − zk∥2

− τ(1− 2λkc2)∥ek − zk∥2 − (1− τ)τ
1

τ 2
∥xk+1 − yk∥2

⩽ ∥yk − u∥2 − 1− τ

τ
∥xk+1 − yk∥2

⩽ ∥yk − u∥2 − ϵ∥xk+1 − yk∥2, ∀k ⩾ N, (4.1.40)

where ϵ = 1−τ
τ
.
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Lemma 4.1.15 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 4.1.13. Then, for all u ∈ EP (g, C),

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ (1− αk)θk−1∥xk−1 − u∥2 − θk∥xk − u∥2 + αk+1∥V (xk)− xk+1∥2

− αk∥xk − V (xk)∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2. (4.1.41)

Proof. By Lemma 4.1.14, we get

∥xk+1 − u∥2 ⩽ ∥yk − u∥2 − ∥xk+1 − yk∥2. (4.1.42)

In addition, from the definition of yk, we gain that

∥yk − u∥2

= ∥αkV (xk) + (1− αk)wk − u∥2

= ∥αkV (xk) + (1− αk)xk + (1− αk)θk(xk − xk−1)− u∥2

= ∥xk − u∥2 + ∥(1− αk)θk(xk − xk−1)− αk(xk − V (xk))∥2

+ 2⟨xk − u, (1− αk)θk(xk − xk−1)− αk(xk − V (xk))⟩

= ∥xk − u∥2 + ∥(1− αk)θk(xk − xk−1)− αk(xk − V (xk))∥2

+ 2(1− αk)θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩. (4.1.43)

Replacing u by xk+1 in (4.1.43), we have

∥yk − xk+1∥2 = ∥xk − xk+1∥2 + 2(1− αk)θk⟨xk − xk+1, xk − xk−1⟩

− 2αk⟨xk − xk+1, xk − V (xk)⟩

+ ∥(1− αk)θk(xk − xk−1)− αk(xk − V (xk))∥2. (4.1.44)
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Substituting (4.1.43) and (4.1.44) into (4.1.42), we have

∥xk+1 − u∥2

⩽ ∥xk − u∥2 + ∥(1− αk)θk(xk − xk−1)− αk(xk − V (xk))∥2

+ 2(1− αk)θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩ − ∥xk − xk+1∥2

− 2(1− αk)θk⟨xk − xk+1, xk − xk−1⟩+ 2αk⟨xk − xk+1, xk − V (xk)⟩

− ∥(1− αk)θk(xk − xk−1)− αk(xk − V (xk))∥2

= ∥xk − u∥2 + 2(1− αk)θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩

− ∥xk − xk+1∥2 + 2αk⟨xk − xk+1, xk − V (xk)⟩+ (1− αk)θk∥xk − xk+1∥2

+ (1− αk)θk∥xk − xk−1∥2 − (1− αk)θk∥xk − xk+1 + (xk − xk−1)∥2.

Therefore, we obtain

∥xk+1 − u∥2 − ∥xk − u∥2 − (1− αk)θk∥xk − xk−1∥2 + ∥xk − xk+1∥2

− (1− αk)θk∥xk − xk+1∥2

⩽ 2(1− αk)θk⟨xk − u, xk − xk−1⟩ − 2αk⟨xk − u, xk − V (xk)⟩

+ 2αk⟨xk − xk+1, xk − V (xk)⟩

= −2αk⟨xk − u, xk − V (xk)⟩ − (1− αk)θk∥xk−1 − u∥2 + (1− αk)θk∥xk − u∥2

+ (1− αk)θk∥xk − xk−1∥2 − αk∥V (xk)− xk+1∥2 + αk∥xk − xk+1∥2

+ αk∥xk − V (xk)∥2.

It follows that

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 − (1− αk)θk∥xk − xk−1∥2 + ∥xk − xk+1∥2

− (1− αk)θk∥xk − xk+1∥2 + (1− αk)θk∥xk−1 − u∥2 − (1− αk)θk∥xk − u∥2

− (1− αk)θk∥xk − xk−1∥2 + αk∥V (xk)− xk+1∥2
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− αk∥xk − xk+1∥2 − αk∥xk − V (xk)∥2

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2(1− αk)θk∥xk − xk−1∥2

+ (1− αk)θk∥xk−1 − u∥2 − (1− αk)θk∥xk − u∥2 + αk∥V (xk)− xk+1∥2

− αk∥xk − V (xk)∥2 + (1− (1− αk)θk − 2θk+1 − αk)∥xk+1 − xk∥2

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ (1− αk)θk∥xk−1 − u∥2 − θk∥xk − u∥2 + αk∥V (xk)− xk+1∥2

− αk∥xk − V (xk)∥2 + (1− θk − 2θk+1 − αk)∥xk+1 − xk∥2.

As {αk} is non-increasing and {θk} is non-decreasing, we then gain

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ (1− αk)θk−1∥xk−1 − u∥2 − θk∥xk − u∥2 + αk+1∥V (xk)− xk+1∥2

− αk∥xk − V (xk)∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2.

Lemma 4.1.16 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then,

{xk} generated by Algorithm 4.1.13 is bounded.

Proof. By (4.1.40) and Condition 4.1.3 (ii), we can find K > 0 such that

∥xk+1 − u∥

⩽ ∥yk − u∥

= ∥αkV (xk) + (1− αk)wk − u∥

= ∥αkV (xk) + (1− αk)xk + (1− αk)θk(xk − xk−1)− u∥

⩽ αk∥V (xk)− u∥+ (1− αk)∥xk − u∥+ (1− αk)θk∥xk − xk−1∥

= αk(∥V (xk)− V (u)∥+ ∥V (u)− u∥) + (1− αk)∥xk − u∥
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+ (1− αk)θk∥xk − xk−1∥

⩽ (αkα + (1− αk))∥xk − u∥+ αk∥V (u)− u∥+ αk
(1− αk)θk

αk

∥xk − xk−1∥

⩽ (1− αk(1− α))∥xk − u∥+ αk∥V (u)− u∥+ αkK

⩽ (1− αk(1− α))∥xk − u∥+ αk(1− α)(
∥V (u)− u∥+K

1− α
)

...

⩽ max{∥x1 − u∥, ∥V (u)− u∥+K

1− α
}.

This implies that {xk} is bounded.

Lemma 4.1.17 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 4.1.13. For each k ⩾ 1, define

uk = ∥xk − u∥2 − θk−1∥xk−1 − u∥2 + 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2.

Then uk ⩾ 0, ∀k ≥ 1.

Proof. By the non-decreasingness of {θk} with 0 ⩽ θk < 1
3
, and 2⟨x, y⟩ = ∥x∥2 +

∥y∥2 − ∥x− y∥2 for all x, y ∈ H, we obtain

uk = ∥xk − u∥2 − θk−1[∥xk−1 − xk∥2 + ∥xk − u∥2 + 2⟨xk−1 − xk, xk − u⟩]

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

= ∥xk − u∥2 − θk−1[2∥xk−1 − xk∥2 + 2∥xk − u∥2 − ∥xk−1 − 2xk + u∥2]

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

⩾ ∥xk − u∥2 − 2θk∥xk−1 − xk∥2 −
2

3
∥xk − u∥2 + θk−1∥xk−1 − 2xk + u∥2

+ 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2

⩾ 1

3
∥xk − u∥2 + αk∥xk − V (xk)∥2

⩾ 0.
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Lemma 4.1.18 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 4.1.13. Suppose

lim
k→∞

∥xk+1 − xk∥ = 0,

and

lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2) = 0.

Then {xk} converges strongly to u ∈ EP (f, C).

Proof. By the assumptions, we obtain

lim
k→∞

[(∥xk+1 − u∥ −
√
θk∥xk − u∥)(∥xk+1 − u∥+

√
θk∥xk − u∥)] = 0. (4.1.45)

In the case

lim
k→∞

(∥xk+1 − u∥+
√
θk∥xk − u∥) = 0,

we obtain that {xk} converges strongly to u. Suppose that limk→∞(∥xk+1 − u∥+
√
θk∥xk − u∥) ̸= 0. Then there are a set of natural numbers N∗ and ρ > 0 such

that

∥xk+1 − u∥+
√
θk∥xk − u∥ ⩾ ρ, ∀k ∈ N∗. (4.1.46)

By (4.1.45) and the assumption θk ⩽ θ < 1, for k ∈ N∗ we have

0 = lim
k→∞

(∥xk+1 − u∥ −
√

θk∥xk − u∥)

⩾ lim sup
k→∞

(∥xk − u∥ − ∥xk+1 − xk∥ −
√
θk∥xk − u∥)
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⩾ lim sup
k→∞

((1−
√
θ)∥xk − u∥ − ∥xk+1 − xk∥)

= (1−
√
θ) lim sup

k→∞
∥xk − u∥ − lim

k→∞
∥xk+1 − xk∥

= (1−
√
θ) lim sup

k→∞
∥xk − u∥.

This implies that lim sup
k→∞

∥xk − u∥ ⩽ 0. It is obvious that lim inf
k→∞

∥xk − u∥ ⩾ 0,

we have lim
k→∞

∥xk − u∥ = 0. It follows by (4.1.46) that

∥xk+1 − xk∥ ⩾ ∥xk+1 − u∥ − ∥xk − u∥

= ∥xk+1 − u∥+
√

θk∥xk − u∥ − (1 +
√

θk)∥xk − u∥

⩾ ρ

2
,

for all k ∈ N∗ sufficiently large, which is a contradiction to lim
k→∞

∥xk+1 − xk∥ = 0.

Thus, the proof is Lemma 5.5.15 is completed.

Theorem 4.1.19 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Then,

{xk} generated by Algorithm 4.1.13 strongly converges to the solution u = PEP (f,C)V (u).

Proof. From (4.1.41) and Lemma 5.5.14, we get

uk+1 − uk − θk−1∥xk−1 − u∥2 + (1− αk)θk−1∥xk−1 − u∥2

− αk+1∥xk+1 − V (xk+1)∥2 + αk+1∥V (xk)− xk+1∥2

+ (1− 3θk+1 − αk)∥xk − xk+1∥2

⩽ −2αk⟨xk − u, xk − V (xk)⟩. (4.1.47)

From the Banach fixed point theorem, there exists uniquely u = PEP (f,C)V (u).

By Lemma 4.1.14, we have
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∥xk+1 − u∥2

⩽ ∥yk − u∥2

= ∥αk(V (xk)− u) + (1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2

⩽ ∥(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2

+ 2⟨αk(V (xk)− u), yk − u⟩

= ∥(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2

+ 2αk⟨V (xk)− V (u), yk − u⟩+ 2αk⟨V (u)− u, yk − u⟩

⩽ ∥(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2 + 2αk⟨V (u)− u, yk − u⟩

+ 2αkα∥xk − u∥∥yk − u∥

⩽ ∥(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2 + 2αk⟨V (u)− u, yk − u⟩

+ αkα(∥xk − u∥2 + ∥yk − u∥2)

⩽ 1

1− αkα

(
∥(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)∥2 + αkα∥xk − u∥2

+ 2αk⟨V (u)− u, yk − u⟩
)

⩽ 1

1− αkα

(
∥(1− αk)(xk − u)∥2 + αkα∥xk − u∥2

+ 2αk⟨V (u)− u, yk − u⟩

+ 2⟨(1− αk)θk(xk − xk−1), (1− αk)(xk − u) + (1− αk)θk(xk − xk−1)⟩
)

=
(1− αk)

2 + αkα

1− αkα
∥xk − u∥2 + 1

1− αkα

(
2αk⟨V (u)− u, yk − u⟩

+ 2⟨(1− αk)θk(xk − xk−1), (1− αk)(xk − u) + (1− αk)θk(xk − xk−1)⟩
)

=

(
1− (

2αk(1− α)

1− αkα
− (αk)

2

1− αkα
)

)
∥xk − u∥2

+
1

1− αkα

(
2⟨(1− αk)θk(xk − xk−1),

(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)⟩+ 2αk⟨V (u)− u, yk − u⟩
)
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⩽
(
1− 2αk(1− α)

1− αkα

)
∥xk − u∥2

+
2αk(1− α)

1− αkα

(
αk

2(1− α)
∥xk − u∥2 + 1

αk(1− α)
⟨(1− αk)θk(xk − xk−1),

(1− αk)(xk − u) + (1− αk)θk(xk − xk−1)⟩

+
1

1− α
⟨V (u)− u, yk − u⟩

)
. (4.1.48)

Next, we shall reconsider into 2 cases. Case 1: If uk+1 ⩽ uk + tk for all k ⩾ k0

for some k0 ∈ N, tk ⩾ 0, and
∑∞

k=1 tk < +∞, by Lemma 3.2.4 we have that

lim
k→∞

uk = lim
k→∞

uk+1 exists. Since {xk} is bounded by Lemma 5.5.13, we can find

M1 > 0 such that 2|⟨xk−u, xk−V (xk)⟩|+θk−1∥xk−1−u∥2 ⩽ M1 and M2 > 0 such

that ∥xk+1 − V (xk+1)∥2 ⩽ M2. Since 0 ⩽ θk ⩽ θk+1 ⩽ θ < 1
3
and lim

k→∞
αk = 0,

there exist N ∈ N and γ1 > 0 such that 1− 3θk+1 − αk > γ1 for all k ⩾ N . As a

result, for k ⩾ N , we gain from (4.1.47) that

γ1∥xk+1 − xk∥2 ⩽ αkM1 + αk+1M2 + uk − uk+1 → 0, (4.1.49)

as k → ∞. Thus, lim
k→∞

∥xk+1 − xk∥ = 0. For u ∈ EP (f, C), we have

∥yk − u∥2

= ∥αkf(xk) + (1− αk)xk + (1− αk)θk(xk − xk−1)− u∥2

⩽ ∥αkV (xk) + (1− αk)xk − u∥2 + 2⟨(1− αk)θk(xk − xk−1), yk − u⟩

⩽ αk∥V (xk)− u∥2 + (1− αk)∥xk − u∥2 + 2(1− αk)θk∥xk − xk−1∥∥yk − u∥

⩽ αk∥V (xk)− u∥2 + (1− αk)∥xk − u∥2 + 2(1− αk)θk
αk

∥xk − xk−1∥∥yk − u∥

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2(1− αk)θk
αk

∥xk − xk−1∥∥yk − u∥,



 

 

 
54

and from (4.1.39) we have

∥xk+1 − u∥2 = ∥yk − u∥2 − τ(1− 2λkc1)∥yk − γk∥2 − τ(1− 2λkc2)∥ek − zk∥2

− (1− τ)τ
1

τ 2
∥xk+1 − yk∥2

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2(1− αk)θk
αk

∥xk − xk−1∥∥yk − u∥

− τ(1− 2λkc1)∥yk − zk∥2 − τ(1− 2λkc2)∥ek − zk∥2

− 1− τ

τ
∥xk+1 − yk∥2.

This implies that

τ(1− 2λkc1)∥yk − zk∥2 + τ(1− 2λkc2)∥ek − zk∥2 +
1− τ

τ
∥xk+1 − yk∥2

⩽ αk∥V (xk)− u∥2 + ∥xk − u∥2 + 2(1− αk)θk
αk

∥xk − xk−1∥∥yk − u∥

− ∥xk+1 − u∥2.

Then, it follows from (4.1.49) and our condition that

lim
k→∞

∥yk − zk∥ = lim
k→∞

∥ek − zk∥ = lim
k→∞

∥xk+1 − yk∥ = 0. (4.1.50)

Since {xk} is bounded, we can find a subsequence {xki} of {xk} such that xki ⇀ x∗

for some x∗ ∈ H. From (4.1.49) and (4.1.50), we gain yki ⇀ x∗ and zki ⇀ x∗ as

i → ∞. By (4.1.32) and the definition of ek, we obtain

λkif(zki , y)

⩾ λkif(zki , eki) + ⟨yki − eki , y − eki⟩

⩾ λkif(yki , eki)− λkif(yki , zki)− c1∥yki − zki∥2 − c2∥eki − zki∥2

+ ⟨yki − eki , y − eki⟩

⩾ ⟨zki − yki , zki − eki⟩+ ⟨yki − eki , y − eki⟩ − c1∥yki − zki∥2 − c2∥eki − zki∥2.
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It follows from this that {eki} is bounded, and from 0 < λki ⩽ λ < 1
2max{c1,c2} and

Condition 4.1.1 (A3) that 0 ⩽ lim sup
i→∞

f(zki , y) ⩽ f(x∗, y) ∀y ∈ H. These yield

that f(x∗, y) ⩾ 0 ∀y ∈ C, which implies that x∗ ∈ EP (f, C). Therefore, we gain

lim sup
k→∞

⟨V (u)− u, yk − u⟩ = lim
i→∞

⟨V (u)− u, yki − u⟩

= ⟨V (u)− u, x∗ − u⟩

⩽ 0, (4.1.51)

by u = PEP (f,C)V (u). Using (4.1.51) and (4.1.48), by Lemma 3.2.3 we are able

to summarize that xk → u = PEP (f,C)V (u) as k → ∞.

Case 2: In another case of {uk}, we give ϕ : N → N as the map defined

for all k ⩾ k0 (for some k0 ∈ N large enough) by

ϕ(k) = max{i ∈ N : i ⩽ k, uk + tk ⩽ uk+1}.

By the same proof of Case 1 and using (4.1.49), we have

γ1∥xϕ(k)+1 − xϕ(k)∥2 ⩽ αϕ(k)M1 + αϕ(k)+1M2 + uϕ(k) − xϕ(k)+1 → 0

for some constants M1,M2 > 0. So,

lim
k→∞

∥xϕ(k)+1 − xϕ(k)∥ = 0. (4.1.52)

By the identical proof used in the proof of Case 1, we obtain

lim
k→∞

∥xϕ(k)+1 − yϕ(k)∥ = lim
k→∞

∥yϕ(k) − xϕ(k)∥ = lim
k→∞

∥xϕ(k) − eϕ(k)∥ = 0. (4.1.53)

For j ⩾ 0 by (4.1.47), we have uj+1 < uj + tj when xj /∈ Ω = {x ∈ H :

⟨x − V (x), x − u⟩ ⩽ 0}. Hence, xϕ(k) ∈ Ω for all k ⩾ k0 since uϕ(k) + tϕ(k) ⩽
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uϕ(k)+1. Since {xϕ(k)} is bounded, let {xϕ(k)} be a subsequence of {xϕ(k)} such

that xϕ(k) ⇀ x∗, x∗ ∈ H. Since Ω is a closed and convex set, so x∗ ∈ Ω.

Using (4.1.53), we have eϕ(k) ⇀ x∗. By the same proof in Case 1, we obtain

xϕ(k) ⇀ u = PEP (f,C)V (u). Furthermore,

∥xϕ(k) − u∥2 = ⟨xϕ(k) − V (xk), xϕ(k) − u⟩ − ⟨u− V (xk), xϕ(k) − u⟩

⩽ −⟨u− V (xk), xϕ(k) − u⟩,

due to xϕ(k) ∈ Ω. This gives

lim sup
k→∞

∥xϕ(k) − u∥ ⩽ 0. (4.1.54)

Accordingly,

lim
k→∞

∥xϕ(k) − u∥ = 0.

By definition, we have

uϕ(k)+1 = ∥xϕ(k)+1 − u∥2 − θϕ(k)∥xϕ(k) − u∥2 + 2θϕ(k)+1∥xϕ(k)+1 − xϕ(k)∥2

+ αϕ(k)+1∥xϕ(k)+1 − V (xϕ(k)+1)∥2

⩽ (∥xϕ(k)+1 − xϕ(k)∥+ ∥xϕ(k) − u∥)2 − θϕ(k)∥xϕ(k) − u∥2

+ 2θϕ(k)+1∥xϕ(k)+1 − xϕ(k)∥2 + αϕ(k)+1∥xϕ(k)+1 − V (xϕ(k)+1)∥2.

By our Condition 4.1.3 (i), (4.1.52), and (4.1.54), we gain limk→∞ uϕ(k)+1 = 0.

We shall show that lim
k→∞

uk = 0. For k ⩾ k0, one has uk + tk ⩽ uϕ(k)+1 if

k ̸= ϕ(k), since limk→∞ tk = 0, hence lim sup
k→∞

uk ⩽ 0. By Lemma 5.5.14 we get

lim inf
k→∞

uk ⩾ 0. Hence, we obtain lim
k→∞

uk = 0. It follows from this that {xk} is

bounded, and from lim
k→∞

αk = 0 and equation (4.1.47) that lim
k→∞

∥xk − xk+1∥ = 0.

From the definition of uk, we have lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2) = 0. By



 

 

 
57

Lemma 5.5.15, xk → u = PEP (f,C)V (u). Theorem 4.1.19 is completed.

Setting V (x) = x0, ∀x ∈ H, then we obtain the following modified

Halpern inertial subgradient extragradient algorithm for EPs:

Algorithm 4.1.20 (Modified Halpern inertial subgradient extragradient

algorithm - MHISE)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {θk} ⊂ [0, 1

3
), {αk} ⊂

(0, 1) Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

yk = αkx0 + (1− αk)wk,

and

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − yk∥2},

Step 2. Choose ok ∈ ∂2f(yk, ·)(zk) such that there exists sk ∈ NC(zk) satisfying

sk = yk − λkok − zk,

and construct a half-space

Γk = {e ∈ H : ⟨yk − λkok − zk, e− zk⟩ ⩽ 0}.

Compute

ek = argmin
y∈Γk

{λkf(zk, y) +
1

2
∥y − yk∥2}.
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Step 3. Calculate:

xk+1 = (1− τ)yk + τek.

Replace k by k + 1 and return to Step1.

Remark 4.1.21 (i) The advantage of Algorithm 4.1.13 lies in its step size {λk},

which can be chosen within the interval (0, 1
2max{c1,c2}). This flexibility makes it

particularly suitable for data classification tasks in machine learning, especially

when the dataset has a finite number of features.

(ii) The algorithm by Yao et al. [124] features a fixed format for the step size {λk},

with a lower bound given by min
{

θµ
4max{c1,c2} , λ0

}
. This approach is practical

without knowing the Lipschitz constants and can be applied to image restoration

and signal recovery tasks involving sparse matrices.

4.2 Split equilibrium problems

Let C,E ⊂ H1, Q ⊂ H2 be nonempty, closed and convex subsets of real Hilbert

space H1 and H2, respectively. Assume that A : H1 → H2 is a bounded linear

operator. Let f : C×C → R, g : Q×Q → R be bifunction satisfying Assumption

3.1.41 and g is upper semi-continuous in the first argument. Let L be the spectral

radius of ATA and AT be the adjoint of A. Assume that V : H → H is contraction

with contraction constant α. Denote that ω = {x∗ ∈ EP (f) and Ax∗ ∈ EP (g)}

is the solution of SEP.

Condition 4.2.1 Assume that the following conditions hold:

(C1) {βk} ⊂ (0, 1
L
);

(C2)
∞∑
k=1

θk∥xk − xk−1∥ < +∞;

(C3) 0 < lim inf
k→∞

αk ⩽ lim sup
k→∞

αk < 1;

(C4) 0 < lim inf
k→∞

βk ⩽ lim sup
k→∞

βk <
1

L
.
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4.2.1 An inertial projective Mann algorithm for solving split equilib-

rium problems classification to Parkinson’s disease

Algorithm 4.2.2 (An inertial projective Mann algorithm)

Initialization: Select {αk} ⊂ (0, 1), {θk} ⊂ [0, 1
3
), {rk} ⊂ (0,∞), {βk} ⊂ (0, 1

L
)

Iterative step: Let x0, x1 ∈ C arbitrarily and start k = 0. Calculate xk+1 as

follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk,

Step 2. Calculate:

xk+1 = PE(αkwk + (1− αk)yk).

Replace k by k + 1 and return to Step1.

Theorem 4.2.3 Suppose that Condition 4.2.1 hold. Then the sequence {xk}

generated by Algorithm 4.2.2 converges weakly to x∗ ∈ ω ∩ E.

Proof. Since T g
rk
is firmly nonexpansive and I−T g

rk
is 1-inverse strongly monotone,

AT (I − T g
rk
)A is an 1

L
−inverse strongly and monotone mapping. Indeed,

∥AT (I − T g
rk
)Ax− AT (I − T g

rk
)Ay∥2

= ⟨AT (I − T g
rk
)(Ax− Ay), AT (I − T g

rk
)(Ax− Ay)⟩



 

 

 
60

= ⟨(I − T g
rk
)(Ax− Ay), AAT (I − T g

rk
)(Ax− Ay)⟩

⩽ L⟨(I − T g
rk
)(Ax− Ay), (I − T g

rk
)(Ax− Ay)⟩

= L∥(I − T g
rk
)(Ax− Ay)∥2

⩽ L⟨Ax− Ay, (I − T g
rk
)(Ax− Ay)⟩

= L⟨x− y, AT (I − T g
rk
)Ax− AT (I − T g

rk
)Ay⟩

for all x, y ∈ H1. This implies that AT (I − T g
rk
)A is an 1

L
−inverse strongly and

monotone mapping. As {βk} ⊂ (0, 1
L
), I − βkA

T (I − T g
rk
)A is nonexpansive by

Proposition 3.1.42.

Step 1. Show that {xk} is bounded.

Let x∗ ∈ ω ∩ E. Then x∗ = T f
rk
x∗ and (I − βkA

T (I − T g
rk
)A)x∗ = x∗ by Lemma

3.2.9. Since T f
rk

and PE are nonexpansive in a Hilbert space, we have

∥yk+1 − x∗∥ = ∥PE(αkwk + (1− αk)yk)− x∗∥

⩽ αk∥wk − x∗∥+ (1− αk)∥yk − x∗∥

⩽ ∥wk − x∗∥

⩽ ∥xk − x∗∥+ θk∥xk − xk−1∥.

From Lemma 3.2.7 and Condition 4.2.1 (C2), then we have lim
k→∞

∥xk − x∗∥ ex-

ists. This implies that {xk} is bounded. By the definition of {wk}, {wk} is also

bounded.

Step 2. Show that lim
k→∞

∥yk−wk∥ = 0. Since AT (I−T g
rk
)A is 1

L
−Lipchitz continu-

ous monotone, I−βkA
T (I−T g

rk
)A is nonexpansive and T f

rk
is firmly nonexpansive,

we have

∥yk+1 − x∗∥2 = ∥PE(αkwk + (1− αk)yk)− x∗∥2

⩽ ∥αk(wk − x∗) + (1− αk)(yk − x∗)∥2
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⩽ αk∥wk − x∗∥2 + (1− αk)∥yk − x∗∥2 − αk(1− αk)∥wk − yk∥2

⩽ ∥wk − x∗∥2 − αk(1− αk)∥wk − yk∥2

⩽ ∥xk + θk(xk − xk−1)− x∗∥2 − αk(1− αk)∥wk − yk∥2

⩽ ∥xk − x∗∥2 + 2⟨θk(xk − xk−1), wk − x∗⟩ − αk(1− αk)∥wk − yk∥2

⩽ ∥xk − x∗∥2 + 2θk∥xk − xk−1∥∥wk − x∗∥ − αk(1− αk)∥wk − yk∥2.

This implies that

αk(1− αk)∥wk − yk∥2 ⩽ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 2θk∥xk − xk−1∥∥wk − x∗∥

by Condition 4.2.1 (C2)-(C3) and lim
k→∞

∥xk − x∗∥ exists, we have

lim
k→∞

∥wk − yk∥ = 0. (4.2.1)

Step 3. Show that lim
k→∞

∥Awk−T g
rk
Awk∥ = 0. Again by T f

rk
is firmly nonexpnsive,

we have

∥yk − x∗∥2

= ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − x∗∥2

= ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk
x∗∥2

⩽ ∥wk − βkA
T (I − T g

rk
)Awk − x∗∥2

= ∥wk − x∗∥2 + β2
k∥AT (I − T g

rk
)Awk∥2 + 2βk⟨x∗ − wk, A

T (I − T g
rk
)Awk⟩

⩽ ∥wk − x∗∥2 + β2
k⟨Awk − T g

rk
Awk, AA

T (I − T g
rk
)Awk⟩

+ 2βk⟨x∗ − wk, A
T (I − T g

rk
)Awk⟩. (4.2.2)
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On the other hand, we have

β2
k⟨Awk − T g

rk
Awk, AA

T (I − T g
rk
)Awk⟩ ⩽ Lβ2

k⟨Awk − T g
rk
Awk, Awk − T g

rk
Awk⟩

= Lβ2
k∥Awk − T g

rk
Awk∥2 (4.2.3)

and

2βk⟨x∗ − wk, A
T (I − T g

rk
)Awk⟩

= 2βk⟨A(x∗ − wk), Awk − T g
rk
Awk⟩

= 2βk⟨A(x∗ − wk) + (Awk − T g
rk
Awk)− (Awk − T g

rk
Awk), Awk − T g

rk
Awk⟩

= 2βk{⟨Ax∗ − T g
rk
Awk, Awk − T g

rk
Awk⟩ − ∥Awk − T g

rk
Awk∥2}

⩽ 2βk{
1

2
∥Awk − T g

rk
Awk∥2 − ∥Awk − T g

rk
Awk∥2}

< −βk∥Awk − T g
rk
Awk∥2. (4.2.4)

Using (4.2.2), (4.2.3) and (4.2.4), we have

∥yk − x∗∥2 ⩽ ∥wk − x∗∥2 + Lβ2
k∥Awk − T g

rk
Awk∥2 − βk∥Awk − T g

rk
Awk∥2

= ∥wk − x∗∥2 + βk(Lβk − 1)∥Awk − T g
rk
Awk∥2. (4.2.5)

It follows that

∥yk+1 − x∗∥2

= ∥PE(αkwk + (1− αk)yk)− x∗∥2

⩽ αk∥wk − x∗∥2 + (1− αk)∥yk − x∗∥

= αk∥wk − x∗∥2 + (1− αk)(∥wk − x∗∥2 + βk(Lβk − 1)∥Awk − T g
rk
Awk∥2)

⩽ ∥wk − x∗∥2 + (1− αk)βk(Lβk − 1)∥Awk − T g
rk
Awk∥2

⩽ ∥xk − x∗∥2 + 2⟨θk(xk − xk−1), wk − x∗⟩+ (1− αk)βk(Lβk − 1)∥Awk − T g
rk
Awk∥2.
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Therefore, we have

(1− αk)βk(1− Lβk)∥Awk − T g
rk
Awk∥2

⩽ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 2⟨θk(xk − xk−1), wk − x∗⟩

Since Condition 4.2.1 (C3)-(C4) and lim
k→∞

∥xk − x∗∥ exists, we obtain

lim
k→∞

∥Awk − T g
rk
Awk∥ = 0. (4.2.6)

Step 4. Show that ∥yk − xk∥ → 0 as k → ∞.

We have

∥wk − xk∥ = ∥xk + θk(xk − xk−1)− xk∥

⩽ θk∥xk − xk−1∥ → 0 (4.2.7)

as k → ∞.

By combining (4.2.1) and (4.2.7), then we have

∥yk − xk∥ ⩽ ∥yk − wk∥+ ∥wk − xk∥ → 0 (4.2.8)

as k → ∞.

Step 5. Let ϱW (xk) = {x ∈ H : xki ⇀ x, {xki} ⊂ {xk}}. From the reflexiveness of

H, we have ϱW (xk) ̸= ∅. Let l ∈ ϱW (xk), there exists a subsequence {xki} ⊂ {xk}

converging weakly to l. Since {xk} is a sequence in E for all k ⩾ 2 and E is a

closed convex set, l ∈ E. From (4.2.8), it follows that yki ⇀ l as i → ∞.

Next we show that l ∈ EP (f). From yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk, we have

f(yk, y) +
1

rk
⟨y − yk, yk − wk − βkA

T (I − T g
rk
)Awk⟩ ⩾ 0
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for all y ∈ C, which implies that

f(yk, y) +
1

rk
⟨y − yk, yk − wk⟩ −

1

rk
⟨y − yk, βkA

T (I − T g
rk
)Awk⟩ ⩾ 0

for all y ∈ C. By Assumption 3.1.41 (1), we have

1

rki
⟨y − yki , yki − wki⟩ −

1

rki
⟨y − yki , βkiA

T (I − T g
rki
)Awki⟩ ⩾ f(y, yki)

for all y ∈ C. From lim inf
k→∞

rk > 0, from Assumption 3.1.41 (3), (4.2.1), and

(4.2.6), we gain

f(y, l) ⩽ 0

for all y ∈ C. For each 0 < c ⩽ 1 and y ∈ C, define yc = cy + (1− c)l. As y ∈ C

and l ∈ C, yc ∈ C, and therefore f(yc, l) ⩽ 0. By Assumption 3.1.41 (2), we have

0 = f(yc, yc) ⩽ cf(yc, y) + (1− c)f(yc, l) ⩽ cf(yc, y)

and hence f(yc, y) ⩾ 0. By Assumption 3.1.41 (4), f(l, y) ⩾ 0 for all y ∈ C and

therefore l ∈ EP (f). As A is a bounded linear operator, Axki ⇀ Al. Then from

(4.2.6), we have

T g
rki
Axki ⇀ Al (4.2.9)

as i → ∞. By the definition of T g
rki
Axki , we have

g(T g
rki
Axki , y) +

1

rki
⟨y − T g

rki
Axki , T

g
rki
Axki − Axki⟩ ⩾ 0

for all y ∈ C. By in the first argument of g is upper semi-continuous, it follows
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from (4.2.9) that

g(Al, y) ⩾ 0

for all y ∈ C. This shows that Al ∈ EP (g). Thus l ∈ ω ∩ E.

Step 6. We will show that {xk} and {yk} converge weakly to an element of

ω ∩ E. It is sufficient to show that ϱW (xk) is singleton. Let x∗, l ∈ ϱW (xk) and

{xkn}, {xkm} ⊂ {xk} be such that xkn ⇀ x∗ and xkm ⇀ l. From (4.2.8), we also

have ykn ⇀ x∗ and ykm ⇀ l. Using Lemma 3.2.5, we gain x∗ = l. This completes

the proof.

4.2.2 A new double relaxed inertial viscosity-type algorithm for solv-

ing split equilibrium problems application to osteoporosis de-

tection

Algorithm 4.2.4 (Double relaxed inertial viscosity-type algorithm)

Initialization: Select {θk}, {δk} ⊂ (−∞,∞), {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), {αk} ⊂

(0, 1). Iterative step: Let x−2, x−1, x0 ∈ C arbitrarily and calculate xk+1 as fol-

lows:

Step1. Compute:

wk = xk + θk(xk − xk−1) + δk(xk−1 − xk−2),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.



 

 

 
66

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.

Replace k by k + 1 and return to Step1.

Condition 4.2.5 Assume that the following conditions hold:

(C1) lim
k→∞

αk = 0;
∞∑
k=1

αk = ∞;
∞∑
k=0

|αk+1 − αk| < ∞;

(C2) lim inf
k→∞

rk > 0;
∞∑
k=0

|rk+1 − rk| < ∞;

(C3) 0 < lim inf
k→∞

βk ⩽ lim sup
k→∞

βk <
1

L
;

(C4) lim
k→∞

|θk|
αk

∥xk − xk−1∥ = 0; lim
k→∞

|δk|
αk

∥xk−1 − xk−2∥ = 0.

Theorem 4.2.6 Suppose that Condition 4.2.5 hold. Let {xk} be a sequence de-

fined by Algorithm 4.2.4. Then the sequence {xk} converges strongly to x∗ =

PωV (x∗), where ω = {x∗ ∈ EP (f) and Ax∗ ∈ EP (g)}.

Proof. Since T g
rk
is firmly nonexpansive and I−T g

rk
is 1-inverse strongly monotone,

AT (I − T g
rk
)A is an 1

L
−inverse strongly and monotone mapping. Indeed,

∥AT (I − T g
rk
)Ax− AT (I − T g

rk
)Ay∥2

= ⟨AT (I − T g
rk
)(Ax− Ay), AT (I − T g

rk
)(Ax− Ay)⟩

= ⟨(I − T g
rk
)(Ax− Ay), AAT (I − T g

rk
)(Ax− Ay)⟩

⩽ L⟨(I − T g
rk
)(Ax− Ay), (I − T g

rk
)(Ax− Ay)⟩

= L∥(I − T g
rk
)(Ax− Ay)∥2

⩽ L⟨Ax− Ay, (I − T g
rk
)(Ax− Ay)⟩

= L⟨x− y, AT (I − T g
rk
)Ax− AT (I − T g

rk
)Ay⟩

for all x, y ∈ H1. This implies that AT (I − T g
rk
)A is an 1

L
−inverse strongly and

monotone mapping. Since βk ∈ (0, 1
L
), I − βkA

T (I − T g
rk
)A is nonexpansive by
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Proposition 3.1.42.

Step 1. We will show that {xk} is bounded.

Let x∗ ∈ ω. Then x∗ = T f
rk
x∗ and (I − βkA

T (I − T g
rk
)A)x∗ = x∗ by Lemma 3.2.9.

∥yk − x∗∥ = ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk
(I − βkA

T (I − T g
rk
)A)x∗∥

⩽ ∥wk − x∗∥ (4.2.10)

for all k ∈ N. Then from (4.2.10), we have

∥xk+1 − x∗∥

= ∥αkV (xk) + (1− αk)yk − x∗∥

⩽ αk∥V (xk)− x∗∥+ (1− αk)∥yk − x∗∥

⩽ αk∥V (xk)− x∗∥+ (1− αk)∥wk − x∗∥

⩽ αk∥V (xk)− x∗∥+ (1− αk)∥xk − x∗∥+ αk

αk

(1− αk)|θk|∥xk − xk−1∥

+
αk

αk

(1− αk)|δk|∥xk−1 − xk−2∥

⩽ αk∥V (xk)− x∗∥+ (1− αk)∥xk − x∗∥

+ αk

{
|θk|
αk

∥xk − xk−1∥+
|δk|
αk

∥xk−1 − xk−2∥
}
.

By the Condition 4.2.5 (C4), let M = sup
k⩾0

{
|θk|
αk

∥xk−xk−1∥+
|δk|
αk

∥xk−1−xk−2∥
}
,

then we have

∥xk+1 − xk∥

⩽ αk∥V (xk)− x∗∥+ (1− αk)∥xk − x∗∥+ αkM

⩽ αk(∥V (xk)− V (x∗)∥+ ∥V (x∗)− x∗∥) + (1− αk)∥xk − x∗∥+ αkM

⩽ αkρ∥xk − x∗∥+ αk∥V (x∗)− x∗∥+ (1− αk)∥xk − x∗∥+ αkM

⩽ (1− αk(1− ρ))∥xk − x∗∥+ αk(1− ρ)

(
∥V (x∗)− x∗∥+M

(1− ρ)

)
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...

⩽ max

{
∥x1 − x∗∥, ∥V (x∗)− x∗∥+M

(1− ρ)

}
.

This implies that {xk} is bounded, and also {wk} and {yk} are bounded.

Step 2. We will show that lim
k→∞

∥xk+1 − xk∥ = 0.

∥xk+1 − xk∥

= ∥αkV (xk) + (1− αk)yk − αk−1V (xk−1)− (1− αk−1)yk−1∥

= ∥αkV (xk)− αkV (xk−1) + αkV (xk−1)− αk−1V (xk−1) + (1− αk)yk

− (1− αk)yk−1 + (1− αk)yk−1 − (1− αk−1)yk−1∥

= ∥αkV (xk)− αkV (xk−1) + αkV (xk−1)− αk−1V (xk−1) + (1− αk)yk

− (1− αk)yk−1 + yk−1 − αkyk−1 − yk−1 + αk−1yk−1∥

⩽ αkρ∥xk − xk−1∥+ |αk − αk−1|K + (1− αk)∥yk − yk−1∥

where K = sup{∥V (xk)∥+∥yk∥ : k ∈ N}. From yk = T f
rk
(I−βkA

T (I−T g
rk
)A)wk,

yk−1 = T f
rk−1

(I − βk−1A
T (I − T g

rk−1
)A)wk−1, and Lemma 3.2.8, we have

∥yk − yk−1∥

= ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk−1
(I − βk−1A

T (I − T g
rk−1

)A)wk−1∥

⩽ ∥wk − βkA
T (I − T g

rk
)Awk − wk−1 + βk−1A

T (I − T g
rk−1

)Awk−1∥

+

∣∣∣∣rk − rk−1

rk

∣∣∣∣∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − wk + βkA

T (I − T g
rk
)Awk∥

= ∥wk − wk−1 + βkA
T [(T g

rk
− I)Awk − (T g

rk−1
− I)Awk−1]

+

∣∣∣∣1− rk−1

rk

∣∣∣∣∥T f
rk
(wk − βkA

T (I − T g
rk
)Awk)− wk − βkA

T (T g
rk
− I)Awk∥

⩽ ∥wk − wk−1 − βkA
TA(wk − wk−1)∥+ βk∥AT∥∥T g

rk
Awk − T g

rk−1
Awk−1∥

+

∣∣∣∣1− rk−1

rk

∣∣∣∣γk−1
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⩽
{
∥wk − wk−1∥2 − 2∥wk − wk−1∥∥βkA

TA(wk − wk−1)∥+ ∥βkA
TA(wk − wk−1)∥2

} 1
2

+ βk∥A∥
{
∥Awk − Awk−1∥+

∣∣∣∣rk − rk−1

rk

∣∣∣∣∥T g
rk
Awk − wk∥

}
+

∣∣∣∣1− rk−1

rk

∣∣∣∣γk−1

⩽
(
1− 2βk∥A∥2 + β2

k∥A∥4
) 1

2

∥wk − wk−1∥+ βk∥A∥2∥wk − wk−1∥∣∣∣∣1− rk−1

rk

∣∣∣∣βk∥A∥∥T g
rk
Awk − wk∥+

∣∣∣∣1− rk−1

rk

∣∣∣∣γk−1

= (1− βk∥A∥2)∥wk − wk−1∥+ βk∥A∥2∥wk − wk−1∥+
∣∣∣∣1− rk−1

rk

∣∣∣∣(βk∥A∥ϵk−1 + γk−1

)
= ∥wk − wk−1∥+

∣∣∣∣1− rk−1

rk

∣∣∣∣(βk∥A∥ϵk−1 + γk−1

)

where γk−1 = ∥T f
rk
(wk − βkA

T (I − T g
rk
)Awk) − wk − βkA

T (T g
rk

− I)Awk∥ and

ϵk−1 = ∥T g
rk
Awk − wk∥.

From (4.2.10) and without loss of generality, let us assume that there exists a real

number b such that rk > b > 0 for all k ∈ N. Then we have

∥xk+1 − xk∥

⩽ αkρ∥xk − xk−1∥+ |αk − αk−1|K + (1− αk)∥yk − yk−1∥

⩽ αkρ∥xk − xk−1∥+ |αk − αk−1|K

+ (1− αk)

{
∥wk − wk−1∥+

∣∣∣∣1− rk−1

rk

∣∣∣∣(βk∥A∥ϵk−1 + γk−1

)}
⩽ αkρ∥xk − xk−1∥+ |αk − αk−1|K

+ (1− αk)

{
∥xk − xk−1∥+ ∥θk(xk − xk−1) + δk(xk−1 − xk−2)− θk−1(xk−1 − xk−2)

− δk−1(xk−2 − xk−3)

}
+ (1− αk)

∣∣∣∣1− rk−1

rk

∣∣∣∣(βk∥A∥ϵk−1 + γk−1

)
⩽ (1− αk + αkρ)∥xk − xk−1∥+ |αk − αk−1|K + (1− αk)|θk|∥xk − xk−1∥

+ (1− αk)|δk|∥xk−1 − xk−2∥+ (1− αk)|θk−1|∥xk−1 − xk−2∥

+ (1− αk)|δk−1|∥xk−2 − xk−3∥+ (1− αk)
1

rk
|rk − rk−1|

(
βk∥A∥ϵk−1 + γk−1

)
⩽ (1− (1− ρ)αk)∥xk − xk−1∥+ |αk − αk−1|K + (1− αk)|θk|∥xk − xk−1∥
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+ (1− αk)|δk|∥xk−1 − xk−2∥+ (1− αk)|θk−1|∥xk−1 − xk−2∥

+ (1− αk)|δk−1|∥xk−2 − xk−3∥+ (1− αk)
1

b
|rk − rk−1|

(
βk∥A∥ϵk−1 + γk−1

)
.

Using Lemma 3.2.10, we have lim
k→∞

∥xk+1 − xk∥ = 0.

Step 3. We will show that lim
k→∞

∥yk − wk∥ = 0. For x∗ ∈ ω, we have

∥yk − x∗∥2

= ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk
(I − βkA

T (I − T g
rk
)A)x∗∥2

⩽ ⟨T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk
(I − βkA

T (I − T g
rk
)A)x∗, wk − x∗⟩

= ⟨yk − x∗, wk − x∗⟩

=
1

2

(
∥yk − x∗∥2 − ∥yk − wk∥2 + ∥wk − x∗∥2

)

and hence

∥yk − x∗∥2 ⩽ ∥wk − x∗∥2 − ∥yk − wk∥2. (4.2.11)

Since AT (I − T g
rk
)A is 1

L
−Lipschitz contonuous monotone, I − βkA

T (I − T g
rk
)A is

nonexpansive, T g
rk

is firmly nonexpansive, by (4.2.11),

∥xk+1 − x∗∥2 = ∥αkV (xk) + (1− αk)yk − x∗∥2

⩽ αk∥V (xk)− x∗∥2 + ∥yk − x∗∥2

⩽ αk∥V (xk)− x∗∥2 + ∥wk − x∗∥2 − ∥yk − wk∥2.

From (4.2.10), we have

∥wk − yk∥2

⩽ αk∥V (xk)− x∗∥2 + ∥wk − x∗∥2 − ∥xk+1 − x∗∥2

⩽ αk∥V (xk)− x∗∥2 − ∥xk+1 − x∗∥2
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+ ∥xk − x∗∥2 + 2⟨θk(xk − xk−1) + δk(xk−1 − xk−2), wk − x∗⟩

⩽ αk∥V (xk)− x∗∥2 − ∥xk+1 − x∗∥2 + ∥xk − x∗∥2

+ 2

(
|θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥

)
∥wk − x∗∥

⩽ αk∥V (xk)− x∗∥2 − ∥xk+1 − x∗∥2 + ∥xk − x∗∥2

+ 2

(
|θk|
αk

∥xk − xk−1∥+
|δk|
αk

∥xk−1 − xk−2∥
)
∥wk − x∗∥.

By the Condition 4.2.5 (C1) and (C4), we obtain lim
k→∞

∥yk − wk∥ = 0.

Step 4. We will show that lim
k→∞

∥Awk − T g
rk
Awk∥ = 0.

Again since T f
rk

is firmly nonexpansive, we have

∥yk − x∗∥2

= ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − x∗∥2

⩽ ∥T f
rk
(I − βkA

T (I − T g
rk
)A)wk − T f

rk
x∗∥2

⩽ ∥wk − βkA
T (I − T g

rk
)Awk − x∗∥2

⩽ ∥wk − x∗∥2 + β2
k∥AT (I − T g

rk
)A)wk∥2 + 2βk⟨x∗ − wk, A

T (I − T g
rk
)A)wk⟩

⩽ ∥wk − x∗∥2 + β2
k⟨Awk − T g

rk
Awk, AA

T (I − T g
rk
)Awk⟩

+ 2βk⟨x∗ − wk, A
T (I − T g

rk
)Awk⟩. (4.2.12)

On the other hand, we have

β2
k⟨Awk − T g

rk
Awk, AA

T (I − T g
rk
)Awk⟩

⩽ Lβ2
k⟨Awk − T g

rk
Awk, Awk − T g

rk
Awk⟩

= Lβ2
k∥Awk − T g

rk
Awk∥2 (4.2.13)

and

2βk⟨x∗ − wk, A
T (I − T g

rk
)Awk⟩
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= 2βk⟨A(x∗ − wk), Awk − T g
rk
Awk⟩

= 2βk⟨A(x∗ − wk) + (Awk − T g
rk
Awk)− (Awk − T g

rk
Awk), Awk − T g

rk
Awk⟩

= 2βk

{
⟨Ax∗ − T g

rk
Awk, Awk − T g

rk
Awk⟩ − ∥Awk − T g

rk
Awk∥2

}
⩽ 2βk

{
1

2
∥Awk − T g

rk
Awk∥2 − ∥Awk − T g

rk
Awk∥2

}
< −βk∥Awk − T g

rk
Awk∥2. (4.2.14)

Using (4.2.12), (4.2.13) and (4.2.14), we have

∥yk − x∗∥2

⩽ ∥wk − x∗∥2 + Lβ2
k∥Awk − T g

rk
Awk∥2 − βk∥Awk − T g

rk
Awk∥2

⩽ ∥wk − x∗∥2 + βk(Lβk − 1)∥Awk − T g
rk
Awk∥2.

This implies that

∥xk+1 − x∗∥2

= ∥αkV (xk) + (1− αk)yk − x∗∥2

⩽ αk∥V (xk)− x∗∥2 + ∥yk − x∗∥2

⩽ αk∥V (xk)− x∗∥2 + ∥wk − x∗∥2 + βk(Lβk − 1)∥Awk − T g
rk
Awk∥2

⩽ αk∥V (xk)− x∗∥2 + ∥xk − x∗∥2 + βk(Lβk − 1)∥Awk − T g
rk
Awk∥2

and

βk(1− Lβk)∥Awk − T g
rk
Awk∥2 ⩽ αk∥V (xk)− x∗∥2 + ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

and so we obtain

lim
k→∞

∥Awk − T g
rk
Awk∥ = 0.



 

 

 
73

Step 5. We will show that lim sup
k→∞

⟨V (x∗) − x∗, wk − x∗⟩ ⩽ 0 where x∗ =

PωV (x∗). To show this inequality, we choose a subsequence {wki} of {wk} such

that lim
i→∞

⟨V (x∗) − x∗, wki − x∗⟩ = lim sup
k→∞

⟨V (x∗) − x∗, wk − x∗⟩. Since {yki} is

bounded, there exists a subsequence {ykij } of {yki} which converges weakly to η.

Without loss of generality in Hilbert space, we can assume that yki ⇀ η. From

∥wk − yk∥ → 0, we obtain wki ⇀ η.

Let us show η ∈ ω. By yki = T f
rki
(I − βkiA

T (I − T g
rki
)A)wki , we have

f(yki , y) +
1

rki
⟨y − yki , yki − (I − βkiA

T (I − T g
rki
)A)wki⟩ ⩾ 0,∀y ∈ C,

f(yki , y) +
1

rki
⟨y − yki , yki − wki⟩ −

1

rki
⟨y − yki , βkiA

T (T g
rki

− I)Awki⟩ ⩾ 0,∀y ∈ C.

From Assumption 3.1.41 (A2), we also have

− 1

rki
⟨y − yki , βkiA

T (T g
rki

− I)Awki⟩+
1

rki
⟨y − yki , yki − wki ⩾ f(y, yk)

and

− 1

rki
⟨y − yki , βkiA

T (T g
rki

− I)Awki⟩+ ⟨y − yki ,
yki − wki

rki
⩾ f(y, yki).

Since ∥yk − wk∥ → 0 and ∥Awk − T g
rk
Awk∥ → 0, from Assumption 3.1.41 (A4),

we have

0 ⩾ f(y, η), for all y ∈ C.

For c with 0 < c ⩽ 1 and y ∈ C, let yc = cy + (1− c)η. Since y ∈ C and η ∈ C,

we have yc ∈ C and hence f(yc, η) ⩽ 0. So, from Assumption 3.1.41 (A1) and

(A4) we have

0 = f(yc, yc)
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⩽ cf(yc, y) + (1− c)f(yc, η)

⩽ cf(yc, y)

and hence 0 ⩽ f(yc, y). From Assumption 3.1.41 (A3), we have 0 ⩽ f(η, y) for all

y ∈ C and hence η ∈ EP (f). Since A is a bounded linear operator, Awki ⇀ Aη.

Thus lim
k→∞

∥Awk − T g
rk
Awk∥ = 0, and so

T g
rki
Awki ⇀ Aη (4.2.15)

as i → ∞. By the definition of T g
rki
Awki , we have

g(T g
rki
Awki , y) +

1

rki
⟨y − T g

rki
Awki , T

g
rki
Awki − Awki⟩ ⩾ 0

for all y ∈ C. Since the first argument of g is upper semi-continuous, it follows

from (4.2.15) that g(Aη, y) ⩾ 0 for all y ∈ Q. This shows that Aη ∈ EP (g).

Thus η ∈ ω. Therefore η ∈ ω. Since x∗ = PωV (x∗), we have

lim sup
k→∞

⟨V (x∗)− x∗, wk − x∗⟩ = lim
i→∞

⟨V (x∗)− x∗, wki − x∗⟩

= ⟨V (x∗)− x∗, η − x∗⟩ ⩽ 0.

From xk+1 − x∗ = αk(V (xk)− x∗) + (1− αk)(yk − x∗), we have

(1− αk)
2∥yk − x∗∥2 ⩾ ∥xk+1 − x∗∥2 − 2αk⟨V (xk)− x∗, xk+1 − x∗⟩.

So, we have

∥xk+1 − x∗∥2

⩽ (1− αk)
2∥yk − x∗∥2 + 2αk⟨V (xk)− x∗, xk+1 − x∗⟩

⩽ (1− αk)
2∥yk − x∗∥2 + 2αk⟨V (xk)− V (x∗), xk+1 − x∗⟩
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+ 2αk⟨V (x∗)− x∗, xk+1 − x∗⟩

⩽ (1− αk)
2

(
∥xk − x∗ + θk(xk − xk−1) + δk(xk−1 − xk−2)∥2

)
+ 2αkρ∥xk − x∗∥∥xk+1 − x∗∥+ 2αk⟨V (x∗)− x∗, xk+1 − x∗⟩

⩽ (1− αk)
2

(
∥xk − x∗∥2 + 2⟨θk(xk − xk−1) + δk(xk−1 − xk−2), wk − x∗⟩

)
+ 2αkρ∥xk − x∗∥∥xk+1 − x∗∥+ 2αk⟨V (x∗)− x∗, xk+1 − x∗⟩

⩽ (1− αk)
2∥xk − x∗∥2 + αkρ{∥xk − x∗∥2 + ∥xk+1 − x∗∥2}

+ 2(1− αk)
2

(
|θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥

)(
∥wk − x∗∥

)
+ 2αk⟨V (x∗)− x∗, xk+1 − x∗⟩.

This implies that

∥xk+1 − x∗∥2

⩽
(
(1− αk)

2 + αkρ

(1− αkρ)

)
∥xk − x∗∥2 + 2αk

(1− αkρ)
⟨V (x∗)− x∗, xk+1 − x∗⟩

+
2(1− αk)

2

(1− αkρ)

(
|θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥

)(
∥wk − x∗∥

)
=

(1− 2αk + αkρ)

(1− αkρ)
∥xk − x∗∥2 + αk2

(1− αkρ)
∥xk − x∗∥2

+
2αk

(1− αkρ)
⟨V (x∗)− x∗, xk+1 − x∗⟩

+
2(1− αk)

2

(1− αkρ)

(
|θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥

)(
∥wk − x∗∥

)
⩽

(
1− 2(1− ρ)αk

(1− αkρ)

)
∥xk − x∗∥2 + 2(1− ρ)αk

(1− αkρ)

{
1

1− ρ
⟨V (x∗)− x∗, xk+1 − x∗⟩

+
αkM

2(1− ρ)
+

(1− αk)
2

(1− ρ)αk

(
|θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥

)(
∥wk − x∗∥

)}

where M = sup{∥xk − x∗∥2 : k ∈ N}. Put µk =
2(1−ρ)αk

(1−αkρ)
. Then, we have

∞∑
k=1

µk =

∞ and lim
k→∞

µk = 0. Thus lim
k→∞

∥xk−x∗∥ = 0. So, we conclude that {xk} converges

strongly to x∗ ∈ ω, where x∗ = PωV (x∗).
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From Algorithm 4.2.4, we see that if θk = 0, then the algorithm can

be reduced to new relaxed inertial viscosity-type algorithms. If θk = 0, δk =

0 in Algorithm 4.2.4, the algorithm can be reduced to standard viscosity-type

algorithms.

Algorithm 4.2.7 (Relaxed inertial viscosity-type algorithm)

Initialization: Select {δk} ⊂ (−∞,∞), {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), {αk} ⊂

(0, 1). Iterative step: Let x−2, x−1, x0 ∈ C arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = xk + δk(xk−1 − xk−2),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.

Replace k by k + 1 and return to Step1.

Algorithm 4.2.8 (Standard viscosity-type algorithm)

Initialization: Select {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), and {αk} ⊂ (0, 1).

Iterative step: Let x0 ∈ C arbitrarily and calculate xk+1 as follows:

Step1. Compute:

wk = xk,
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and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.

Replace k by k + 1 and return to Step1.

4.2.3 A double inertial Mann algorithm for split equilibrium problems

application to breast cancer screening

Algorithm 4.2.9 (Double relaxed inertial Mann algorithm)

Initialization: Select {αk} ⊂ (0, 1), {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), {θk}, {δk} ⊂

(−∞,∞). Iterative step: Let x0, y−1, y0 ∈ H1 arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = T f
rk
(I − βkA

T (I − T g
rk
)A)xk.

Step 2. Calculate:

yk+1 = (1− αk)xk + αkwk.

Step 3. Calculate:

xk+1 = yk+1 + θk(yk+1 − yk) + δk(yk − yk−1).
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Replace k by k + 1 and return to Step1.

Condition 4.2.10 Assume that the following conditions hold:

(C1) 0 < lim inf
k→∞

αk ⩽ lim sup
k→∞

αk < 1;

(C2) lim inf
k→∞

rk > 0;

(C3) 0 < lim inf
k→∞

βk ⩽ lim sup
k→∞

βk <
1

L
;

(C4)
∞∑
k=0

θk∥yk+1 − yk∥ < ∞;

(C5)
∞∑
k=0

δk∥yk − yk−1∥ < ∞.

Theorem 4.2.11 Suppose that Condition 4.2.10 hold. Let {xk} be a sequence

defined by Algorithm 4.2.9. Then the sequence {xk} converges weakly to x∗ ∈ ω.

Proof. First, we will show {xk} is bounded. Let x∗ ∈ ω. Then x∗ = T f
rk
x∗ and

(I − βkA
T (I − T g

rk
)A)x∗ = x∗ by Lemma 3.2.9. Since T f

rk
(I − βkA

T (I − T g
rk
)A) is

nonexpansive, we have

∥wk − x∗∥ = ∥T f
rk
(I − βkA

T (I − T g
rk
)A)xk − T f

rk
(I − βkA

T (I − T g
rk
)A)x∗∥

⩽ ∥xk − x∗∥. (4.2.16)

From inequality (4.2.16),

∥xk+1 − x∗∥

= ∥yk+1 + θk(yk+1 − yk) + δk(yk − yk−1)− x∗∥

⩽ ∥yk+1 − x∗∥+ |θk|∥yk+1 − yk∥+ |δk|∥yk − yk−1∥

= ∥(1− αk)xk + αkwk − x∗∥+ |θk|∥yk+1 − yk∥+ |δk|∥yk − yk−1∥

⩽ (1− αk)∥xk − x∗∥+ αk∥wk − x∗∥+ |θk|∥yk+1 − yk∥+ |δk|∥yk − yk−1∥

⩽ (1− αk)∥xk − x∗∥+ αk∥xk − x∗∥+ |θk|∥yk+1 − yk∥+ |δk|∥yk − yk−1∥

⩽ ∥xk − x∗∥+ |θk|∥yk+1 − yk∥+ |δk|∥yk − yk−1∥.
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By Condition 4.2.10 (C4)-(C5), it follows from Lemma 3.2.7, that lim
k→∞

∥xk − x∗∥

exists. This implies that {xk} is bounded. By the definition of {wk} and {yk+1},

{wk} and {yk+1} are also bounded.

Next, we will show that lim
k→∞

∥Axk − T g
rk
Axk∥ = 0 and lim

k→∞
∥wk − xk∥ = 0.

β2
k∥AT (I − T g

rk
)Axk∥2 ⩽ β2

k⟨Axk − T g
rk
Axk, AA

T (I − T g
rk
)Axk⟩

⩽ Lβ2
k⟨Axk − T g

rk
Axk, Axk − T g

rk
Axk⟩

= Lβ2
k∥Axk − T g

rk
Axk∥2 (4.2.17)

and

2βk⟨x∗ − xk, A
T (I − T g

rk
)Axk⟩

= 2βk⟨A(x∗ − xk), Axk − T g
rk
Axk⟩

= 2βk⟨A(x∗ − xk) + (Axk − T g
rk
Axk)− (Axk − T g

rk
Axk), Axk − T g

rk
Axk⟩

= 2βk

{
⟨Ax∗ − T g

rk
Axk, Axk − T g

rk
Axk⟩ − ∥Axk − T g

rk
Axk∥2

}
⩽ 2βk

{
1

2
∥Axk − T g

rk
Axk∥2 − ∥Axk − T g

rk
Axk∥2

}
< −βk∥Axk − T g

rk
Axk∥2. (4.2.18)

From T g
rk

is firmly nonexpansive, it follows from inequality (4.2.17) and (4.2.18),

that

∥xk+1 − x∗∥2

= ∥yk+1 + θk(yk+1 − yk) + δk(yk − yk−1)− x∗∥2

⩽ ∥yk+1 − x∗∥2

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), yk+1 + θk(yk+1 − yk) + δk(yk − yk−1)− x∗⟩

⩽ (1− αk)∥xk − x∗∥2 + αk∥wk − x∗∥2 − (1− αk)αk∥xk − wk∥2

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩
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⩽ (1− αk)∥xk − x∗∥2 + αk∥T f
rk
(I − βkA

T (I − T g
rk
)A)xk − T f

rk
x∗∥2

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩

⩽ (1− αk)∥xk − x∗∥2 + ∥xk − βkA
T (I − T g

rk
)Axk − x∗∥2

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩

= (1− αk)∥xk − x∗∥2 + 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩

+

{
∥xk − x∗∥2 + β2

k∥AT (I − T g
rk
)Axk∥2 + 2βk⟨x∗ − xk, A

T (I − T g
rk
)Axk⟩

}
⩽ ∥xk − x∗∥2 + β2

k∥AT (I − T g
rk
)Axk∥2 + 2βk⟨x∗ − xk, A

T (I − T g
rk
)Axk⟩

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩

= ∥xk − x∗∥2 + Lβ2
k∥Axk − T g

rk
Axk∥2 − βk∥Axk − T g

rk
Axk∥2

+ 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩,

this implies that

βk(1− Lβk)∥Axk − T g
rk
Axk∥2

⩽ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 2⟨θk(yk+1 − yk) + δk(yk − yk−1), xk+1 − x∗⟩.

(4.2.19)

By lim
k→∞

∥xk − x∗∥ exists, (4.2.19) and Conditions 4.2.10 (C3)-(C5), we have

lim
k→∞

∥Axk − T g
rk
Axk∥ = 0. (4.2.20)

Using (4.2.16), we have

∥yk+1 − x∗∥2

= ∥(1− αk)xk + αkwk − x∗∥2

⩽ (1− αk)∥xk − x∗∥2 + αk∥wk − x∗∥2 − αk(1− αk)∥wk − xk∥2.
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and

αk(1− αk)∥wk − xk∥2

⩽ (1− αk)∥xk − x∗∥2 + αk∥wk − x∗∥2 − ∥yk+1 − x∗∥2

⩽ (1− αk)∥xk − x∗∥2 + αk∥xk − x∗∥2 − ∥yk+1 − x∗∥2

⩽ ∥xk − x∗∥2 − ∥yk+1 − x∗∥2.

By the condition 0 < lim inf
k→∞

αk ⩽ lim sup
k→∞

αk < 1, we obtain

lim
k→∞

∥wk − xk∥ = 0. (4.2.21)

So,

∥yk+1 − xk∥ = ∥(1− αk)xk + αkwk − xk∥

⩽ (1− αk)∥xk − xk∥+ αk∥wk − xk∥

⩽ ∥wk − xk∥ → 0

as k → ∞. Next, let ϱW (xk) = {x ∈ H : xki ⇀ x, {xki} ⊂ {xk}}. From

the reflexiveness of H, we have ϱW (xk) ̸= ∅. Let l ∈ ϱW (xk), there exists a

subsequence {xki} ⊂ {xk} converging weakly to l. From (4.2.21), it follows that

wki ⇀ l as i → ∞.

Next show that l ∈ EP (f). From wk = T f
rk
(I − βkA

T (I − T g
rk
)A)xk, we have

f(wk, y) +
1

rk
⟨y − wk, wk − xk − βkA

T (I − T g
rk
)Axk⟩ ⩾ 0

for all y ∈ C, which implies that

f(wk, y) +
1

rk
⟨y − wk, wk − xk⟩ −

1

rk
⟨y − wk, βkA

T (I − T g
rk
)Axk⟩ ⩾ 0
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for all y ∈ C. By Assumption 3.1.41 (A2), we have

1

rki
⟨y − wki , wki − xki⟩ −

1

rki
⟨y − wki , βkiA

T (I − T g
rki
)Axki⟩ ⩾ f(y, wki)

for all y ∈ C. From lim inf
k→∞

rk > 0, from Assumption 3.1.41 (A4), (4.2.20), and

(4.2.21), we gain

f(y, l) ⩽ 0

for all y ∈ C. For each 0 < c ⩽ 1 and y ∈ C, define yc = cy + (1− c)l. As y ∈ C

and l ∈ C, yc ∈ C, and therefore f(yc, l) ⩽ 0. By Assumption 3.1.41(A1), we

have

0 = f(yc, yc) ⩽ cf(yc, y) + (1− c)f(yc, l) ⩽ cf(yc, y)

and hence f(yc, y) ⩾ 0. By Assumption 3.1.41 (A3), f(l, y) ⩾ 0 for all y ∈ C

and therefore l ∈ EP (f). As A is a bounded linear operator, Axki ⇀ Al. Then

it follows from (4.2.20), that

T g
rki
Axki ⇀ Al (4.2.22)

as i → ∞. By the definition of T g
rki
Axki , we have

g(T g
rki
Axki , y) +

1

rki
⟨y − T g

rki
Axki , T

g
rki
Axki − Axki⟩ ⩾ 0

for all y ∈ C. By in the first argument of g is upper semi-continuous, it follows

from (4.2.22) that

g(Al, y) ⩾ 0
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for all y ∈ C. This shows that Al ∈ EP (g). Thus l ∈ ω.

Step 6. We will show that {xk} and {wk} converge weakly to an element of ω. It

is sufficient to show that the set of weak sequential cluster point of {xk} (ϱW (xk))

is singleton. Let x∗, l ∈ ϱW (xk) and {xkn}, {xkm} ⊂ {xk} be such that xkn ⇀ x∗

and xkm ⇀ l. From (4.2.21), we also have wkn ⇀ x∗ and wkm ⇀ l. By Step 5,

we obtain x∗, l ∈ ω. Using Lemma 3.2.5, we gain x∗ = l. This completes the

proof.

4.3 Numerical example

We now give an example in infinitely dimensional spaces L2[0, 1] = {x(t) :∫ 1

0

x(t)dt < ∞}, where such that ∥ · ∥ is L2-norm defined by ∥x∥ =

√∫ 1

0

x(t)2dt

to support Theorem 4.1.9.

Example 4.3.1 Let V : L2[0, 1] → L2[0, 1] be defined by V (x(t)) = x(t)
2

where

x(t) ∈ L2[0, 1]. We can choose x0(t) = sin(t)
2

and x1(t) = sin(t). The stopping

criterion is defined by ∥xk − xk−1∥ < 10−2.

We set the following parameters for each algorithm, as seen in Table 1.

Table 1: Chosen parameters of each algorithm

Algorithm 4.1.2 Algorithm 4.1.10 Algorithm 4.1.11

λk 0.1 0.1 -

λ1 - - 0.12

θk 0.29 0.29 0.29

αk
1

100k+1
1

100k+1
1

100k+1

τk 0.15 0.1 0.15

µ - - 0.2

Next, we compare the performance of Algorithm 4.1.2, Algorithm 4.1.10,

and Algorithm 4.1.11. We obtain the results as seen in Table 2.
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Table 2: The performance of each algorithm

Algorithm 4.1.2 Algorithm 4.1.10 Algorithm 4.1.11

CPU Time 1.2626 1.2010 177.9459

Iter. No. 2 2 2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Number of iterations

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
rs

Algorithm 3.1

Algorithm 3.9

Algorithm 3.10

Figure 1: The Cauchy error and number of iterations

From Figure 1, we see that the performance of Algorithm 4.1.11 (Algorithm 3.10)

is better than Algorithm 4.1.2 (Algorithm 3.1) and Algorithm 4.1.10 (Algorithm

3.9).



 

 

 

CHAPTER 5

APPLICATIONS

Data Classification is the process of categorizing data to distinguish be-

tween types or groups, playing a crucial role in analysis and decision-making

across various domains such as disease diagnosis, fraud detection, and targeted

marketing. Commonly used methods include statistical techniques such as Lo-

gistic Regression [33] and Linear Discriminant Analysis (LDA) [66], along with

machine learning algorithms like Decision Trees [100], Support Vector Machines

(SVM) [19], and Random Forest [23]. Additionally, deep learning approaches

such as Neural Networks [85] and Convolutional Neural Networks (CNNs) [48] ef-

ficiently handle complex data like images and text. These methods collectively en-

able efficient and accurate data management, effectively addressing diverse needs

in the digital age. Data classification is the process of categorizing data into

predefined groups, which is essential in applications like medical diagnosis and

pattern recognition. Extreme Learning Machine (ELM), a type of feedforward

neural network with a single hidden layer, is highly efficient for this task due to

its fast learning speed and strong generalization. By utilizing randomly assigned

weights and biases, ELM eliminates the need for iterative tuning, making it ideal

for large-scale and complex classification problems.

We focus on extreme learning machine (ELM) proposed by Huang et al.

[65] for applying our algorithms to solve data classification problems. It is defined

as follows: Let E := {(xn, tn) : xn ∈ Rq, tn ∈ Rm, n = 1, 2, ..., P} be a training

set of P distinct samples where xn is an input training data and tn is a training

target. The output function of ELM for single-hidden layer feed forward neural
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networks (SLFNs) with M hidden nodes and activation function U is

On =
M∑
i=1

aiU(wixn + bi),

where wi and bi are parameters of weight and finally the bias, respectively and ai

is the optimal output weight at the i-th hidden node. The hidden layer output

matrix H is defined as follows:

H =


U(w1x1 + b1) . . . U(wMx1 + bM)

...
. . .

...

U(w1xP + b1) . . . U(wMxP + bM)



The goal of ELM is to find optimal output weight a = [aT1 , ..., a
T
M ]T such

that Ha = T , where T = [tT1 , ..., t
T
P ]

T is the training data. In some cases, finding

a = H†T , where H† is the Moore-Penrose generalized inverse of H. When H† is

difficult to calculate. The difficulty in calculating the Moore-Penrose inverse of a

matrix H arises when the matrix is not full rank or has a low rank. In such cases,

the matrix does not have a unique inverse, making the computation of the Moore-

Penrose inverse more complex. Additionally, for large matrices with incomplete

data or complex structures, calculating the Moore-Penrose inverse often requires

advanced numerical methods or approximations, which can be computationally

expensive and resource-intensive. So we can solve Ha = T by the following least

square problems as follows:

min
a∈RM

{∥Ha− T∥22}. (5.0.1)

In this work, the performance of machine learning techniques for all

classes is accurately measured. The accuracy is calculated by adding the total

number of correct predictions to the total number of predictions. The perfor-
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mance parameter calculation of precision and recall are measured. The formula-

tion of three measures [117] are defined as follow:

Precision(Pre) =
TP

TP + FP
× 100%.

Recall(Rec) =
TP

TP + FN
× 100%.

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
× 100%,

where a confusion matrix for original and predicted classes are shown in terms of

TP , TN , FP , and FN are the True Positive, True Negative, False Positives, and

False Negatives, respectively. Similarly, P and N are the Positive and Negative

population of Malignant and Benign cases, respectively. And we define F-Measure

as the harmonic mean value between recall and precision as follow:

F-Measure = 2

(
Precision× Recall

Precision + Recall

)
× 100%.

5.1 Diabetes mellitus

According to the International Diabetes Federation (IDF), there are ap-

proximately 463 million people with diabetes worldwide, and it is estimated that

by 2045 there will be 629 million people with diabetes. In Thailand, the inci-

dence of diabetes is continuously increasing. There are about 300,000 new cases

per year, and 3.2 million people with diabetes are registered in the Ministry of

Public Health’s registration system. They are causing huge losses in health care

costs. Only one disease of diabetes causes the average cost of treatment costs up

to 47,596 million baht per year. This has led to an ongoing campaign about the

dangers of the disease. Furthermore, diabetes mellitus makes additional noncom-

municable diseases that present a high risk for the patient, as they easily contact

and are susceptible to infectious diseases such as COVID-19 [121]. Because it is
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a chronic disease that cannot be cured. There is a chance that the risk of com-

plications spreading to the extent of the loss of vital organs of the body. By the

International Diabetes Federation and the World Health Organization (WHO)

has designated November 14 of each year as World Diabetes Day to recognize the

importance of this disease.

In this research, we used the PIMA Indians diabetes dataset which was

downloaded from Kaggle (https://www.kaggle.com/uciml/pima-indians-diabetes

database) and is available publicly on UCI repository for training processing

by our proposed algorithm. The dataset contains 768 pregnant female patients

which 500 were non-diabetics and 268 were diabetics. There were 9 variables

present inside the dataset; eight variables contain information about patients,

and the 9th variable is the class predicting the patients as diabetic and nondia-

betic. This dataset contains the various attributes that are Number of times preg-

nant; Plasma glucose concentration at 2 Hours in an oral glucose tolerance test

(GTIT); Diastolic Blood Pressure (mm Hg); Triceps skin fold thickness (mm);

2-Hour Serum insulin (lh/ml); Body mass index [weight in kg/(Height in m)];

Diabetes pedigree function; Age (years); Binary value indicating non-diabetic

/diabetic. For the implementation of machine learning algorithms, 614 were used

as a training dataset and 154 were used as a testing training dataset by using

5-fold cross-validation [75]. For benchmarking classifier, we consider the following

various methods which have been proposed to classify diabetes:
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Table 3: Classification accuracy of different methods with literature

Authors Methods Accuracy (%)

Li [77] Ensemble of SVM, ANN, and NB 58.3

Brahim-Belhouari and Bermak [22] NB, SVM, DT 76.30

Smith et al.[110] Neural ADAP algorithm 76

Quinlan [101] C4.5 Decision trees 71.10

Bozkurt et al.[21] Artificial neural network 76.0

Sahan et al.[102] Artificial immune System 75.87

Smith et al.[110] Ensemble of MLP and NB 64.1

Chatrati et al.[29] Linear discriminant analysis 72

Deng and Kasabov [37] Self-organizing maps 78.40

Deng and Kasabov [37] Self-organizing maps 78.40

Choubey et al. [31] Ensemble of RF and XB 78.9

Saxena et al. [105] Feature selection of KNN, RF, DT, MLP 79.8

Our Algorithm 4.1.2 Extreme learning machine 80.03

In this section, we process some experiments on the classification prob-

lem. This problem can be seen as the following convex minimization problem:

min
a∈C

{∥Ha− T∥22},

where C = {a ∈ RM : ∥a∥1 ≤ λ}. This problem is called the least absolute

shrinkage and selection operator (LASSO) [118]. Setting f(a, ζ) = ⟨HT (Ha −

T ), ζ − a⟩ and V (x) = cx where c is constant in (0, 1).

The binary cross-entropy loss function along with sigmoid activation

function for binary classification calculates the loss of an example by comput-

ing the following average:

Loss = − 1

K

K∑
j=1

yj log ŷj + (1− yj) log(1− ŷj)

where ŷj is the j-th scalar value in the model output, yj is the corresponding
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target value, and K is the number of scalar values in the model output.

For starting our computation, we set the activation function as sigmoid,

hidden nodes M = 160, regularization parameter λ = 1 × 10−5, θk = 0.3, αk =

1
k+1

, τ = 0.5, µ = 0.2 for Algorithm 4.1.2, 4.1.10, and 4.1.11 and c = 0.9999 for

Algorithm 4.1.2 and 4.1.11. The stopping criteria is the number of iteration 250.

We obtain the results of the different parameters S when λk =
S

max(eigenvalue(ATA))

for Algorithm 4.1.2, 4.1.10 and the different parameters λ1 for Algorithm 4.1.11

as seen in Table 4.

Table 4: Training and validation loss and training time of the different

parameter λk and λ1

Loss

S, λ1 Training Time Training Validation

0.2 0.4164 0.286963 0.275532

0.4 0.4337 0.283279 0.273650

Algorithm 4.1.2 0.6 0.4164 0.286963 0.275532

0.9 0.4459 0.278714 0.272924

0.99 0.4642 0.278144 0.272921

0.2 0.4283 0.291883 0.279878

0.4 0.5293 0.288831 0.277365

Algorithm 4.1.10 0.6 0.4246 0.286890 0.276099

0.9 0.4247 0.284851 0.275079

0.99 0.5096 0.284356 0.274879

0.2 1.3823 0.286963 0.275532

0.4 1.5652 0.283279 0.273650

Algorithm 4.1.11 0.6 1.4022 0.281060 0.273120

0.9 1.9170 0.278714 0.272924

0.99 1.3627 0.278144 0.272921

We can see that λk = λ1 = 0.99 greatly improves the performance of

Algorithm 4.1.2, Algorithm 4.1.10, and Algorithm 4.1.11. Therefore, we choose

it as the default inertial parameter for next computation.
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We next choose λk = 0.99
max(eigenvalue(ATA))

, αk = 1
k+1

, τ = 0.5 for Al-

gorithm 4.1.2 and Algorithm 4.1.10 and c = 0.9999 for Algorithm 4.1.2 with

λ1 = 0.99
max(eigenvalue(ATA))

, αk = 1
k+1

, τ = 0.5, c = 0.9999, and µ = 0.2 for Algo-

rithm 4.1.11. The stopping criteria is the number of iteration 250. We consider

the different initialization parameter θ where

θk =


θ

k2∥xk−xk−1∥
if xk ̸= xk−1 and k > N,

θ otherwise,

where N is a number of iterations that we want to stop. We obtain the numerical

results as seen in Table 5.

Table 5: Training and validation loss and training time of the different

parameter θ

Loss

θ Training Time Training Validation

0.1 0.4608 0.279629 0.272965

0.2 0.4515 0.278938 0.272931

Algorithm 4.1.2 0.3 0.4523 0.278144 0.272921

1
k 0.4591 0.280107 0.273004

1
∥xk−xk−1∥+k2 0.5003 0.280221 0.273015

0.1 0.4723 0.284808 0.274993

0.2 0.4641 0.284587 0.274935

Algorithm 4.1.10 0.3 0.4634 0.284356 0.274879

1
k 0.5297 0.285004 0.275049

1
∥xk−xk−1∥+k2 0.4825 0.285019 0.275053

0.1 1.4071 0.279629 0.272965

0.2 1.3505 0.278938 0.272931

Algorithm 4.1.11 0.3 1.4819 0.278144 0.272921

1
k 1.3276 0.280107 0.273004

1
∥xk−xk−1∥+k2 1.4228 0.280221 0.273015
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We can see that θ = 0.3 greatly improves the performance of Algorithm

4.1.2, Algorithm 4.1.10, and Algorithm 4.1.11. Therefore, we choose it as the

default inertial parameter for next computation.

We next set λk =
0.99

max(eigenvalue(ATA))
, θ = 0.3, τ = 0.5 for Algorithm 4.1.2

and Algorithm 4.1.10 and c = 0.9999 for Algorithm 4.1.2 with λ1 =
0.99

max(eigenvalue(ATA))
,

θk = 0.3, τ = 0.5, C = 0.9999, and µ = 0.2 for Algorithm 4.1.11. The stopping

criteria is the number of iteration 250. We consider the different initialization

parameter αk. The numerical results are shown in Table 6.

Table 6: Training and validation loss and training time of the different

parameter αk

Loss

αk Training Time Training Validation

1
k+1 0.4407 0.278144 0.272921

Algorithm 4.1.2 1
10k+1 0.4054 0.278143 0.272921

1
k2+1 0.4938 0.278143 0.272921

1
10k2+1 0.4876 0.278143 0.272921

1
k+1 0.4163 0.284356 0.274879

Algorithm 4.1.10 1
10k+1 0.4274 0.279201 0.273129

1
k2+1 0.5150 0.278294 0.272931

1
10k2+1 0.5960 0.278160 0.272922

1
k+1 1.4292 0.278144 0.272921

Algorithm 4.1.11 1
10k+1 1.3803 0.278143 0.272921

1
k2+1 1.2452 0.278143 0.272921

1
10k2+1 1.4100 0.278143 0.272921

We can see that αk = 1
10k+1

greatly improves the performance of Algo-

rithm 4.1.2, αk = 1
10k2+1

greatly improves the performance of Algorithm 4.1.10,

and αk =
1

k2+1
greatly improves the performance of Algorithm 4.1.11. Therefore,

we choose it as the default inertial parameter for next computation.
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We next calculate the numerical results by setting λk =
0.99

max(eigenvalue(ATA))
,

θ = 0.3, αk = 1
10k+1

and c = 0.9999 for Algorithm 4.1.2, λk = 0.99
max(eigenvalue(ATA))

,

θ = 0.3, αk = 1
10k2+1

for Algorithm 4.1.10 and λ1 = 0.99
max(eigenvalue(ATA))

, θ = 0.3,

c = 0.9999, αk = 1
k2+1

, and µ = 0.2 for Algorithm 4.1.11. The stopping criteria

is the number of iteration 250. We consider the different initialization parameter

τ . The numerical results are shown in Table 7.

Table 7: Training and validation loss and training time of the different

parameter τ

Loss

τ Training Time Training Validation

0.1 0.4278 0.300531 0.299144

Algorithm 4.1.2 0.3 0.4509 0.299074 0.293717

0.5 0.5239 0.278143 0.272921

k
2k+1 0.4708 0.282187 0.274017

0.1 0.4592 0.300531 0.299144

Algorithm 4.1.10 0.3 0.4900 0.299074 0.293717

0.5 0.4261 0.278160 0.272922

k
2k+1 0.5224 0.282191 0.274018

0.1 1.3401 0.300531 0.299144

Algorithm 4.1.11 0.3 1.3771 0.299074 0.293717

0.5 1.8681 0.278143 0.272921

k
2k+1 1.4671 0.282187 0.274017

We can see that τ = 0.5 greatly improves the performance of Algorithm 4.1.2,

Algorithm 4.1.10, and Algorithm 4.1.11. Therefore, we choose it as the default

inertial parameter for next computation.

We next calculate the numerical results by setting λk =
0.99

max(eigenvalue(ATA))
,

θ = 0.3, τ = 0.5 for Algorithm 4.1.2 and Algorithm 4.1.10 and αk =
1

10k+1
for Al-

gorithm 4.1.2 with αk =
1

10k2+1
for Algorithm 4.1.10 and λ1 =

0.99
max(eigenvalue(ATA))

,

θ = 0.3, αk = 1
k2+1

, τ = 0.5, and µ = 0.2 for Algorithm 4.1.11. The stopping
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criteria is the number of iteration 250. We obtain the results of the different

parameters c when V (x) = cx for Algorithm 4.1.2 and Algorithm 4.1.11 as seen

in Table 8.

Table 8: Training and validation loss and training time of the different

parameter c

Loss

c Training Time Training Validation

0.3 0.4796 0.278902 0.273066

0.5 0.4270 0.278695 0.273024

Algorithm 4.1.2 0.7 0.4190 0.278480 0.272982

0.9 0.4209 0.278257 0.272941

0.9999 0.4844 0.278143 0.272921

0.3 1.5886 0.278251 0.272928

0.5 1.6358 0.278222 0.272926

Algorithm 4.1.11 0.7 1.3808 0.278191 0.272924

0.9 1.5176 0.278159 0.272922

0.9999 1.4598 0.278143 0.272921

From Tables 4-8, we choose the parameters for Algorithm 4.1.2 to com-

pare the exist algorithms from the literature. The following Table 9 shows choos-

ing the necessary parameters of each algorithm.

Table 9: Chosen parameters of each algorithm
Algorithm in (2.1.2) Algorithm in (2.1.3) Algorithm in (2.1.5) Algorithm 4.1.2 Algorithm 4.1.10 Algorithm 4.1.11

µ - 0.3 0.3 - - 0.2

λ1 - 0.5
max(eig(AT A))

0.9999
max(eig(AT A))

- - 0.99
max(eig(AT A))

λk
0.5

max(eig(AT A))
- - 0.99

max(eig(AT A))
0.99

max(eig(AT A))
-

θ - - 0.3 0.3 0.3 0.3

αk
1

100k+1
1

100k+1
1

2k+1
1

10k+1
1

10k2+1
1

k2+1

τ - - 0.5 0.5 0.5 0.5

C - - - 0.9999 - 0.9999

For comparison, We set sigmoid as an activation function, hidden nodes

M = 160 and regularization parameter λ = 1× 10−5.



 

 

 
95

Table 10: The performance of each algorithm

Algorithm Iteration No. Training Time Pre Rec Acc (%)

Algorithm of Hieu (2.1.2) 25 0.0537 80.97 97.50 80.03

Algorithm of Muangchoo (2.1.3) 25 0.3132 80.97 97.50 80.03

Algorithm of Shehu (2.1.5) 30 0.1182 80.97 97.50 80.03

Algorithm 4.1.2 18 0.0375 80.97 97.50 80.03

Algorithm 4.1.10 18 0.0401 80.97 97.50 80.03

Algorithm 4.1.11 18 0.1045 80.97 97.50 80.03

Table 10 shows that Algorithm 4.1.2 has the highest efficiency in pre-

cision, recall, and accuracy. It also has the lowest number of iterations. It has

the highest probability of correctly classifying tumors compared to algorithms

examinations. We present the training and validation loss with the accuracy of

training to show that Algorithm 4.1.2 has no overfitting in the training dataset.
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Figure 2: Training and validation loss plots of Algorithm 4.1.2
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Figure 3: Training and validation accuracy plots of Algorithm 4.1.2
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From Figures 2-3, we see that our Algorithm 4.1.2 has good fit model this means

that our Algorithm 4.1.2 suitably learns the training dataset and generalizes well

to classification the PIMA Indians diabetes dataset.

5.2 Cardiovascular disease

Cardiovascular Diseases or Heart Diseases are a broader name of con-

ditions that cause abnormalities of the heart and blood vessels in various parts;

there are many forms, such as Coronary heart disease, Cerebrovascular disease,

Peripheral Arterial Disease, Rheumatic heart disease, Congenital heart disease,

Abnormal Heart Rhythms, Deep vein thrombosis, and pulmonary embolism. The

leading causes of cardiovascular disease are small lumps of fat gathering together

to become Plaque, embedded in the blood vessel wall, which blocks transport to

various body parts, such as the brain and heart. Cardiovascular diseases are one

of the leading causes of death both in Thailand and abroad. In some cases, symp-

toms may not be present or thought to be a symptom of another disease. This

causes the patient not to get the proper treatment and can lead to sudden death.

Two factors cause heart disease: those that cannot be controlled (such as genet-

ics, age, and gender) and those that can controlled by lifestyle behaviors (such as

smoking, eating high-fat foods, not exercising, and as a result of other diseases

for example, diabetes, and high blood pressure). Heart disease patients tend to

get tired quickly when performing various activities, chest pain as if pressed by

something, palpitations and shortness of breath, and swelling of the legs and feet

due to heart failure.

Cardiovascular disease is classified as a group of non-communicable dis-

eases (NCDs) that can be prevented by reducing risk factors for disease by chang-

ing health behaviors such as blood pressure, fat levels, high sugar levels, BMI,

smoking, etc. Cardiovascular disease (CVDs) is the world’s number one killer to-
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day. CVDs take the lives of nearly 18 million people every year, 31% of all global

deaths. Triggering these diseases - which manifest primarily as heart attacks and

strokes - are tobacco use, unhealthy diet, physical inactivity, and the harmful

use of alcohol. These, in turn, show up in people as raised blood pressure, ele-

vated blood glucose, and overweight and obesity, risks detrimental to good heart

health. From general information, it is found that most patients are at high risk

of developing coronary heart disease because they have aged over 60 years with

an average body mass index of 23.9 ± 4.6 kg/m2, which is a condition of being

overweight have atherosclerosis, heart disease with three coronary artery disease

is associated with hyperlipidemia and high blood pressure.

In this research, we use the Cardiovascular Disease dataset which was

downloaded from Kaggle (https://www.kaggle.com/datasets/sulianova/cardiovascular-

disease-dataset). The dataset comprise of 70,000 records of patients data, 1 target

and 11 features.

There are 3 types of input features:

- Objective: factual information;

- Examination: results of medical examination;

- Subjective: information given by the patient.
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Table 11: Data description

Features Types

1. Age Objective Feature age int (days)

2. Height Objective Feature height int (cm)

3. Weight Objective Feature weight float (kg)

4. Gender Objective Feature gender categorical code

5. Systolic blood pressure Examination Feature ap hi int

6. Diastolic blood pressure Examination Feature ap lo int

7. Cholesterol Examination Feature cholesterol 1: normal, 2: above normal,

3: well above normal

8. Glucose Examination Feature gluc 1: normal, 2: above normal,

3: well above normal

9. Smoking Subjective Feature smoke binary

10. Alcohol intake Subjective Feature alco binary

11. Physical activity Subjective Feature active binary

12. Presence or absence Target Variable cardio binary

of cardiovascular disease

We use the Data Cleaner in MATLAB and use smooth data technique for height,

weight, systolic blood pressure, and diastolic blood pressure. The followings are

the details of choosing smoothing factor of parameters.

Table 12: Choose smoothing method, smoothing parameter and smoothing

factor
Smoothing method Smoothing parameter Smoothing factor

Height Moving mean Smoothing factor 0.25

Weight Moving mean Smoothing factor 0.3

Systolic blood pressure (ap hi) Moving median Smoothing factor 0.65

Diastolic blood pressure (ap lo) Moving median Smoothing factor 0.85
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Table 13: The visualizations of all data after preprocessing

Features Minimum Maximum Mean Median Mode Standard Deviation

Height 105.50 209.00 164.36 164.50 165.00 5.79

Weight 37.00 144.50 74.21 73.00 70.00 10.34

Systolic blood pressure 80.00 210.00 126.13 120.00 120.00 11.95

Diastolic blood pressure 60.00 110.00 81.60 80.00 80.00 4.95

Table 11-13, show overview of data.

Table 14: Accuracy, Precision, Recall and F-Measure of methods in literature

and our algorithm

Methods Accuracy (%) Precision (%) Recall (%) F-Measure (%)

AdaBoost [15] 73.28 77.10 65.00 70.60

Artificial Neural Network [83] 65.10 63.70 71.80 66.90

Decision Tree [83] 73.10 71.90 76.80 73.90

k-Nearest Neighbors [83] 57.10 57.00 57.80 57.40

LightGBM [15] 74.11 76.30 68.90 72.40

Logistic Regression [83] 72.30 70.30 77.50 73.50

Naive Bayes [83] 59.10 55.50 90.80 68.90

Ontology [83] 75.70 79.30 82.30 80.70

Random Forest [15] 72.08 72.60 69.60 71.10

Support Vector Machine [83] 64.80 63.40 71.20 66.70

XGBoost [15] 74.07 76.30 68.80 72.40

Algorithm of Hieu [63] 74.87 67.99 94.00 78.91

Algorithm of Muangchoo [89] 74.84 67.96 94.03 78.90

Algorithm of Shehu [107] 74.93 68.06 94.00 78.95

Algorithm 4.1.2 77.25 71.36 91.06 80.02

Our Algorithm 4.1.13 77.50 71.87 90.41 80.08

From Table 14, we can see that our Algorithm 4.1.13 is high accuracy of another

methods.
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In this section, we process some experiments on the classification prob-

lem. This problem can be seen as the following the least square problems:

min
a∈RM

{∥Ha− T∥22},

Set f(a, ζ) = ⟨HT (Ha− T ), ζ − a⟩ and V (x) = cx where c is a constant in (0, 1).

The binary cross-entropy loss function along with sigmoid activation

function for binary classification calculates the loss of an example by comput-

ing the following average:

Loss = − 1

K

K∑
j=1

yj log ŷj + (1− yj) log(1− ŷj)

where ŷj is the j-th scalar value in the model output, yj is the corresponding

target value, and K is the number of scalar values in the model output.

In our calculation we set the activation function as sigmiod, hidden node

M = 90, N = 200, τ = 0.5, αk =
k

1.2k
, θ = 0.33, λ = 1× 10−5 for Algorithm 4.1.13

and Algorithm 4.1.20, c = 0.9999 for Algorithm 4.1.13. We gain the outcomes

of the different parameters S where λk =
S

max(eigenvalue(ATA))
for Algorithm 4.1.13

and Algorithm 4.1.20 as seen in Table 15.

When

θk =


θ

k2∥xk−xk−1∥
if xk ̸= xk−1 and k > N,

θ otherwise,

we require to stop with N , where N is an iteration number.
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Table 15: Training time and numerical results of both of training and validation

loss when λk is different

Loss

S Training Time Training Validation

0.2 1.9910 0.2893 0.2895

0.4 1.9914 0.2802 0.2807

Algorithm 4.1.13 0.6 1.9977 0.2731 0.2737

0.9 1.9954 0.2652 0.2660

0.999 1.9997 0.2632 0.2640

0.2 1.9982 0.2943 0.2945

0.4 1.9985 0.2885 0.2888

Algorithm 4.1.20 0.6 1.9961 0.2835 0.2839

0.9 1.9953 0.2771 0.2776

0.999 1.9933 0.2752 0.2758

We can see that λk = 0.999
max(eigenvalue(ATA))

greatly improves the performance of

Algorithm 4.1.13 and Algorithm 4.1.20.

We next select λk =
0.999

max(eigenvalue(ATA))
, αk =

k
1.2k

, τ = 0.5 for Algorithm

4.1.20 and c = 0.9999 for Algorithm 4.1.13 with λk =
0.999

max(eigenvalue(ATA))
, αk =

k
1.2k

and τ = 0.5. With N = 200, we investigate the different initialization parameter

θ as seen in Table 16.
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Table 16: Training time and numerical results of both of training and validation

loss when θ is different
Loss

θ Training Time Training Validation

0.1 1.9950 0.2639 0.2647

0.15 2.0127 0.2638 0.2646

Algorithm 4.1.13 0.2 1.9961 0.2636 0.2644

0.3 1.9957 0.2633 0.2641

0.33 1.9915 0.2632 0.2640

0.1 2.0010 0.2756 0.2762

0.15 2.0045 0.2755 0.2761

Algorithm 4.1.20 0.2 1.9990 0.2754 0.2760

0.3 1.9945 0.2753 0.2758

0.33 1.9962 0.2752 0.2758

We can see that θ = 0.33 greatly improves the performance of Algorithm 4.1.13

and Algorithm 4.1.20.

We next set λk = 0.999
max(eigenvalue(ATA))

, θ = 0.33, τ = 0.5 for Algorithm

4.1.20 and c = 0.9999 for Algorithm 4.1.13 with λk =
0.999

max(eigenvalue(ATA))
, θ = 0.33,

τ = 0.5. With N = 200, we investigate the different parameter αk. The numeric

outcomes are displayed in Table 17.
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Table 17: Training time and numerical results of both of training and validation

loss when αk is different

Loss

αk Training Time Training Validation

k
k+1 1.9948 0.2642 0.2649

k
k+2 1.9891 0.2640 0.2648

Algorithm 4.1.13 k
k+5 1.9950 0.2637 0.2645

k
1.1k 1.9910 0.2637 0.2645

k
1.2k 1.9969 0.2632 0.2640

k
k+1 1.9994 0.2770 0.2775

k
k+2 2.0049 0.2768 0.2773

Algorithm 4.1.20 k
k+5 1.9956 0.2761 0.2766

k
1.1k 1.9922 0.2762 0.2767

k
1.2k 1.9961 0.2752 0.2758

We can see that αk = k
1.2k

greatly reform the efficiency of Algorithm 4.1.13 and

αk =
k

1.2k
greatly reform the efficiency of Algorithm 4.1.20. As a result, we select

it as the default inertial parameter for next calculation.

We next computation the numerical outcomes by setting λk =
0.999

max(eigenvalue(ATA))
,

θ = 0.33, αk =
k

1.2k
and c = 0.9999 for Algorithm 4.1.13, λk =

0.999
max(eigenvalue(ATA))

,

θ = 0.33, αk = k
1.2k

for Algorithm 4.1.20. With N = 200, we investigate the

different parameter τ . The numeric outcomes are dispalyed in Table 18.



 

 

 
104

Table 18: Training time and numerical results of both of training and validation

loss when τ is different
Loss

τ Training Time Training Validation

0.1 1.9950 0.2894 0.2896

0.2 1.9946 0.2803 0.2808

Algorithm 4.1.13 0.3 1.9921 0.2732 0.2738

0.4 1.9934 0.2676 0.2683

0.5 1.9986 0.2632 0.2640

0.1 1.9967 0.2944 0.2945

0.2 2.0020 0.2886 0.2889

Algorithm 4.1.20 0.3 2.0053 0.2835 0.2839

0.4 1.9927 0.2791 0.2796

0.5 1.9995 0.2752 0.2758

We can see that τ = 0.5 greatly improves the performance of Algorithm 4.1.13

and Algorithm 4.1.20. As a result, we select it as the default parameter for next

calculation.

We calculated the numerical outcomes by setting λk =
0.999

max(eigenvalue(ATA))
,

θ = 0.33, τ = 0.5 and αk =
k

1.2k
for Algorithm 4.1.13 and Algorithm 4.1.20. With

N = 200, we gain the outcomes of the different parameters C when V (x) = cx

for Algorithm 4.1.13 as seen in Table 19.

Table 19: Training time and numerical results of both of training and validation

loss when c is different
Loss

C Training Time Training Validation

0.3 2.009 0.3005 0.3005

0.5 1.9867 0.3003 0.3003

Algorithm 4.1.13 0.7 1.9919 0.2998 0.2998

0.9 1.9978 0.2975 0.2975

0.9999 1.9980 0.2632 0.2640
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From Tables 15-19, we select the parameters for Algorithm 4.1.13 to collate the

existent algorithms from the introduction.

Table 20: Selected parameters of each algorithm
e λ1 λk θ αk τ c δ µ θ

Algorithm - - 0.999
2(max(eig(AT A)))

- k
1.2k

- - - - -

of Hieu [63]

Algorithm 0.999
max(eig(AT A))

0.999
2(max(eig(AT A)))

- - k
1.2k

- - - - -

of Muangchoo [89]

Algorithm 0.9 0.999
2(max(eig(AT A)))

- 0.33 k
1.2k

0.5 - - - -

of Shehu [107]

Algorithm - - 0.999
2(max(eig(AT A)))

0.33 k
1.2k

0.5 0.999 - - -

4.1.2

Algorithm - - 0.999
max(eig(AT A))

0.33 k
1.2k

0.5 0.999 - - -

4.1.13

Algorithm - - 0.999
max(eig(AT A))

0.33 k
1.2k

0.5 - - - -

4.1.20

Algorithm - 0.999
2(max(eig(AT A)))

- -0.1 - - -
√

5−1
2

0.1 0.1

of Yao et al. [124]

Table 20 displays select the essential parameters of each algorithm. For compar-

ing, we set the activation function as sigmiod ( 1
1+e−x ), hidden node M = 90 and

λ = 1× 10−5.

Table 21: Efficiency comparative of existing algorithms and our algorithms
Algorithms Iteration count Training Time Pre Rec Acc F-measure

Algorithm 52 0.5316 67.99 94.00 74.87 78.91

of Hieu [63]

Algorithm 52 3.1999 67.96 94.03 74.84 78.90

of Muangchoo [89]

Algorithm 52 1.6957 68.06 94.00 74.93 78.95

of Shehu [107]

Algorithm 4.1.2 52 0.5312 71.36 91.06 77.25 80.02

Algorithm 4.1.13 52 0.5341 71.87 90.41 77.50 80.08

Algorithm 4.1.20 52 0.5377 71.86 90.42 77.49 80.08

Algorithm of Yao et al. [124] 52 2.0370 67.53 94.30 74.47 78.70

Table 21 shows that the Algorithm 4.1.13 has the highest performance of precision

accuracy and F-measure by the number of iterations is 52. It is the highest

possibility of exactly classifying comparisons to algorithms investigations. Both of

training-validation loss and accuracy plots show that the model for Cardiovascular
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Disease dataset has a good fitting model when we use the Algorithm 4.1.13.
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Figure 4: On the left is the accuracy plots of training and validation of

algorithm 4.1.13 and on the right is the accuracy plots of training and

validation of Algorithm Yao et al. [124]
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Figure 5: On the left is the loss plots of training and validation of algorithm

4.1.13 and on the right is the loss plots of training and validation of Algorithm

Yao et al. [124]

From Figures 4-5, we see that our Algorithm 4.1.13 has a good fit model. This

means that our Algorithm 4.1.13 appropriately learns the training dataset and

generalizes well to classify the Cardiovascular disease dataset.
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5.3 Parkinson’s disease

Parkinson’s disease is the most common age-related neurodegenerative

disorder that primarily affects movement control by the loss of dopaminergic neu-

rons in the substantia nigra pars compacta and by an accumulation of misfolded

a-synuclein found in intra-cytoplasmic inclusions called Lewy bodies [17, 10].

While motor-related symptoms like bradykinesia (slow movement), tremors, and

rigidity are well-known, non-motor symptoms, e.g., vocal or speech impairments,

can also significantly impact the quality of life for individuals with PD. Vocal

problems in individuals with PD are often called “Parkinson’s speech disorder”

or “hypokinetic dysarthria,” which occur due to the degeneration of neurons in

the brain’s basal ganglia and related motor control pathways [36]. This motor

speech disorder is characterized by a reduced range of motion and muscle weak-

ness in the muscles responsible for speech production, leading to various issues

affecting speech and voice, e.g., reduced volume (hypophonia), monotone speech,

reduced articulation, imprecise consonants, stuttering or stammering, and de-

creased expressiveness [111]. A supportive method to diagnose or predict PD is

clinically helpful, for example, focusing on the early speech dysfunction observed

in people with PD [36], as the earliest stages of PD can be difficult to recognize,

as reflected by the long delay of an average of 10 years that typically separates

the timing of the diagnosis from the person’s first noticeable symptom [50].

We use database in UCI (https://archive.ics.uci.edu/dataset/301/parkin

son+speech+dataset +with+multiple+types+of+sound+recordings) that belongs

to 20 PWP (6 female, 14 male) and 20 healthy individuals (10 female, 10 male)

who appealed at the Department of Neurology in Cerrahpasa Faculty of Medicine,

Istanbul University. From all subjects, multiple types of sound recordings (26

voice samples including sustained vowels, numbers, words and short sentences)

are taken as follows, 1st to 3rd samples represent the sustained vowels /a/, /o/
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and /u/, respectively, 4th to 13th samples represent numbers from 1 to 10, 14th to

17th samples represent short sentences, 18th to 26th samples represent individual

words.

Table 22: Data description for Parkinson’s disease dataset in Microsoft Excel
Column 1 Subject id

Colum 2-27 Group: Frequency Parameters Features

1. Jitter (local)

2. Jitter (local, absolute)

3. Jitter (rap)

4. Jitter (ppq5)

5. Jitter (ddp)

Group: Amplitude Parameters Features

6. Shimmer (local)

7. Shimmer (local, dB)

8. Shimmer (apq3)

9. Shimmer (apq5)

10. Shimmer (apq11)

11. Shimmer (dda)

Group: Harmonicity Parameters Features

12. Autocorrelation

13. Noise to Harmonic

14. Harmonic to Noise

Group: Pitch Parameters Features

15. Median pitch

16. Mean pitch

17. Standard deviation

18. Minimum pitch

19. Maximum pitchh

Group: Pulse Parameters Features

20. Number of pulses

21. Number of periods

22. Mean period

23. Standard deviation of period

Group: Voicing Parameters Features

24. Fraction of locally unvoiced frames

25. Number of voice breaks

26. Degree of voice breaks

Column 28 UPDRS

Column 29 class information
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We have 1,040 observations with no missing data and 27 variables. Next, we use

training data of 70% and testing data of 30%, and the dataset has two classes. In

this thesis, we use Cross-validation, a crucial machine learning technique, to eval-

uate a model’s performance by splitting the data into multiple subsets for training

and testing. It helps prevent overfitting, ensures a more accurate assessment of

the model’s generalization ability, and allows for optimal model selection. We use

every observation for training and testing, so we organized into groups in Figure 6.

Figure 6: Groups of dataset

For applying our algorithm to solve the least square problems (5.0.1), we set

f(x, y) =

 0, ∀x, y ∈ C,

−1, otherwise

and

g(x, y) =

 0, ∀x, y ∈ Q,

−1, otherwise.
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Then, our algorithm can be reduced to solve split feasibility problem

(SFP) which was introduced by Censor and Elfving [26] as follows: finding a

point x∗ ∈ C such that

Ax∗ ∈ Q (5.3.1)

where C,Q be nonempty closed and convex subsets of RB and RD, respectively.

A is an B ×D real matrix.

We create 3 model for our Algorithm of split feasibility problem (5.3.1)

to obtain results in machine learning (5.0.1).

1. Least square model - (L)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = H1 and Q = {T}.

2. Least square on constraint set L1 - (LL1)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥1 ⩽ λ}, where λ > 0 and Q = {T}.

3. Least square on constraint set L2 - (LL2)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥22 ⩽ λ}, where λ > 0 and Q = {T}.
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The binary cross-entropy loss function along with sigmoid activation

function for binary classification calculates the loss of an example by comput-

ing the following average:

Loss = − 1

K

K∑
j=1

yj log ŷj + (1− yj) log(1− ŷj)

where ŷj is the j-th scalar value in the model output, yj is the corresponding

target value, and K is the number of scalar values in the model output.

In our calculation we beginning by set the activation function as sigmoid,

we stop the number of iteration N = 500, hidden nodes M = 150, regularization

parameter αk = 0.5, θk = 0.5 for Algorithm 4.2.2 L, Algorithm 4.2.2 LL1 and

Algorithm 4.2.2 LL2. We gain the outcomes of the different parameters S by λk =

S
max(eigenvalue(ATA))

for Algorithm 4.2.2 L, Algorithm 4.2.2 LL1 and Algorithm

4.2.2 LL2 as seen in Table 23. When

θk =


θ

k2∥xk−xk−1∥
if xk ̸= xk−1 and k > N,

θ otherwise,
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Table 23: Training Time and numerical results of both of training and

validation loss when λk is different

Loss

S Training Time Training Validation

0.15 0.4416 0.2721 0.2725

0.3 0.4411 0.2575 0.2536

Algorithm 4.2.2 L 0.45 0.4398 0.2477 0.2405

0.6 0.4409 0.2406 0.2312

0.85 0.4390 0.2327 0.2211

0.15 0.4394 0.2721 0.2725

0.3 0.4393 0.2575 0.2536

Algorithm 4.2.2 LL1 0.45 0.4337 0.2477 0.2405

0.6 0.4295 0.2406 0.2312

0.85 0.4261 0.2327 0.2211

0.15 0.6433 0.2721 0.2725

0.3 0.6320 0.2575 0.2536

Algorithm 4.2.2 LL2 0.45 0.6287 0.2477 0.2405

0.6 0.6345 0.2406 0.2312

0.85 0.5213 0.2327 0.2211

We can see that λk = 0.85 greatly improves the performance of Algorithm 4.2.2

L, Algorithm 4.2.2 LL1 and Algorithm 4.2.2 LL2. As a result, we select it as the

default inertial parameter for next calculation.

Next, we will select λk = 0.85
max(eigenvalue(ATA))

, αk = 0.5, θ = 0.5 for

Algorithm 4.2.2 L, Algorithm 4.2.2 LL1 and Algorithm 4.2.2 LL2. And we stop

number of iterations N = 500. We gain the numeric outcomes as seen in Table

24.
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Table 24: Training Time and numerical results of both of training and

validation loss when αk is different

Loss

αk Training Time Training Validation

0.5 0.4273 0.2327 0.2211

0.6 0.4378 0.2377 0.2274

Algorithm 4.2.2 L 0.7 0.4403 0.2446 0.2364

0.8 0.4338 0.2546 0.2496

0.9 0.4739 0.2698 0.2695

0.5 0.4420 0.2327 0.2211

0.6 0.4841 0.2377 0.2274

Algorithm 4.2.2 LL1 0.7 0.4521 0.2446 0.2364

0.8 0.5063 0.2546 0.2496

0.9 0.4437 0.2698 0.2695

0.5 0.5122 0.2327 0.2211

0.6 0.7036 0.2377 0.2274

Algorithm 4.2.2 LL2 0.7 0.6256 0.2446 0.2364

0.8 0.6271 0.2546 0.2496

0.9 0.6177 0.2698 0.2695

We can see that αk = 0.5 greatly improves the performance of Algorithm 4.2.2

L, Algorithm 4.2.2 LL1 and Algorithm 4.2.2 LL2. As a result, we select it as the

default inertial parameter for next calculation.

Next, we will select λk = 0.85
max(eigenvalue(ATA))

, αk = 0.5, θ = 0.5 for

Algorithm 4.2.2 L, Algorithm 4.2.2 LL1 and Algorithm 4.2.2 LL2. And we stop

number of iterations N = 500. We gain the numeric outcomes can see in Table

25.
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Table 25: Training Time and numerical results of both of training and

validation loss when θ is different
Loss

θ Training Time Training Validation

0.1 0.4282 0.2465 0.2389

0.3 0.4355 0.2403 0.2309

Algorithm 4.2.2 L 0.5 0.4244 0.2327 0.2211

1
k 0.4342 0.2487 0.2419

1
10k+2 0.4293 0.2490 0.2423

0.1 0.4390 0.2465 0.2389

0.3 0.4334 0.2403 0.2309

Algorithm 4.2.2 LL1 0.5 0.4313 0.2327 0.2211

1
k 0.4714 0.2487 0.2419

1
10k+2 0.4352 0.2490 0.2423

0.1 0.6094 0.2465 0.2389

0.3 0.6133 0.2403 0.2309

Algorithm 4.2.2 LL2 0.5 0.5149 0.2327 0.2211

1
k 0.6099 0.2487 0.2419

1
10k+2 0.5218 0.2490 0.2423

We can see that θ = 0.5 greatly improves the performance of Algorithm 4.2.2 L,

Algorithm 4.2.2 LL1 and Algorithm 4.2.2 LL2. Table 26 shows accuracy of other

medthods.
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Table 26: Accuracy of another methods and our algorithm

Authors Methods Accuracy (%)

Sakar et al. [103] KNN+SVM 55.00

Eskidere et al. [41] Random Subspace Classifier Ensemble 74.17

Celik et al. [25] LR 76.03

Celik et al. [25] SVM 75.49

Benba et al. [14] MFCC+SVM 82.50

Li et al. [78] Ensemble learning algorithm 86.50

Algorithm 4.2.2 L 90.38

Algorithm 4.2.2 LL1 90.38

Algorithm 4.2.2 LL2 90.38

For comparing, We set activation function is sigmoid function and hidden nodes

M = 150 in Table 27.

Table 27: Efficiency comparative of existing algorithms and our algorithms
Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Test box 1

Algorithm 4.2.2 L 227 0.2046 79.57 94.87 86.55 85.26

Algorithm 4.2.2 LL1 227 0.2062 79.57 94.87 86.55 85.26

Algorithm 4.2.2 LL2 227 0.2419 79.57 94.87 86.55 85.26

Algorithm of Suantai L [114] 227 0.2039 79.10 89.74 84.08 83.01

Algorithm of Suantai LL1 [114] 227 0.2042 79.10 89.74 84.08 83.01

Algorithm of Suantai LL2 [114] 227 0.2337 79.10 89.74 84.08 83.01

Test box 2

Algorithm 4.2.2 L 782 0.6618 86.21 96.15 90.91 90.38

Algorithm 4.2.2 LL1 782 0.6879 86.21 96.15 90.91 90.38

Algorithm 4.2.2 LL2 782 0.8087 86.21 96.15 90.91 90.38

Algorithm of Suantai L [114] 782 0.6741 83.62 94.87 88.89 83.01

Algorithm of Suantai LL1 [114] 782 0.6659 83.62 94.87 88.89 83.01

Algorithm of Suantai LL2 [114] 782 0.7850 83.62 94.87 88.89 83.01

Test box 3

Algorithm 4.2.2 L 175 0.1691 85.80 96.79 90.96 90.38

Algorithm 4.2.2 LL1 175 0.1637 85.80 96.79 90.96 90.38

Algorithm 4.2.2 LL2 175 0.1925 85.80 96.79 90.96 90.38

Algorithm of Suantai L [114] 175 0.1617 86.50 90.38 88.40 88.14

Algorithm of Suantai LL1 [114] 175 0.1627 86.50 90.38 88.40 88.14

Algorithm of Suantai LL2 [114] 175 0.1873 86.50 90.38 88.40 88.14
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Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Test box 4

Algorithm 4.2.2 L 487 0.4272 83.70 98.72 90.59 89.74

Algorithm 4.2.2 LL1 487 0.4348 83.70 98.72 90.59 89.74

Algorithm 4.2.2 LL2 487 0.5091 83.70 98.72 90.59 89.74

Algorithm of Suantai L [114] 487 0.4179 83.15 98.08 90.00 89.10

Algorithm of Suantai LL1 [114] 487 0.4267 83.15 98.08 90.00 89.10

Algorithm of Suantai LL2 [114] 487 0.5964 83.15 98.08 90.00 89.10

Test box 5

Algorithm 4.2.2 L 464 0.4136 72.56 100.00 84.10 81.09

Algorithm 4.2.2 LL1 464 0.4108 72.56 100.00 84.10 81.09

Algorithm 4.2.2 LL2 464 0.4876 72.56 100.00 84.10 81.09

Algorithm of Suantai L [114] 464 0.4029 71.76 99.36 83.33 80.13

Algorithm of Suantai LL1 [114] 464 0.4014 71.76 99.36 83.33 80.13

Algorithm of Suantai LL2 [114] 464 0.4657 71.76 99.36 83.33 80.13

Test box 6

Algorithm 4.2.2 L 571 0.5063 75.61 99.36 85.87 83.65

Algorithm 4.2.2 LL1 571 0.5009 75.61 99.36 85.87 83.65

Algorithm 4.2.2 LL2 571 0.5829 75.61 99.36 85.87 83.65

Algorithm of Suantai L [114] 571 0.4912 73.56 98.08 84.07 81.41

Algorithm of Suantai LL1 [114] 571 0.4957 73.56 98.08 84.07 81.41

Algorithm of Suantai LL2 [114] 571 0.5688 73.56 98.08 84.07 81.41

Test box 7

Algorithm 4.2.2 L 350 0.3092 71.50 98.08 82.70 79.49

Algorithm 4.2.2 LL1 350 0.3143 71.50 98.08 82.70 79.49

Algorithm 4.2.2 LL2 350 0.3629 71.50 98.08 82.70 79.49

Algorithm of Suantai L [114] 350 0.3069 69.95 95.51 80.76 77.24

Algorithm of Suantai LL1 [114] 350 0.3067 69.95 95.51 80.76 77.24

Algorithm of Suantai LL2 [114] 350 0.3591 69.95 95.51 80.76 77.24

Test box 8

Algorithm 4.2.2 L 1477 1.2572 83.71 95.51 89.22 88.46

Algorithm 4.2.2 LL1 1477 1.2445 83.71 95.51 89.22 88.46

Algorithm 4.2.2 LL2 1477 1.4572 83.71 95.51 89.22 88.46

Algorithm of Suantai L [114] 1477 1.2581 82.58 94.23 88.02 87.18

Algorithm of Suantai LL1 [114] 1477 1.2520 82.58 94.23 88.02 87.18

Algorithm of Suantai LL2 [114] 1477 1.4630 82.58 94.23 88.02 87.18

Table 27 shows that our Algorithm 4.2.2 L, Algorithm 4.2.2 LL1 and Algorithm

4.2.2 LL2 in Test box 3 are highly performance of accuracy, F1-score, and recall

by the number of iteration is 175 and Algorithm 4.2.2 L use low of training

time. It is the highest possibility of exactly classifying comparison to algorithms
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investigations. Both of training-validation loss and accuracy plots show that our

algorithm has good fitting model for Parkinson’s disease dataset.
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Figure 7: The accuracy plots of training and validation of Algorithm 4.2.2 L
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Figure 8: The loss plots of training and validation of Algorithm 4.2.2 L

From Figures 7-8, we see that Algorithm 4.2.2 L has a good fit model. This means

that Algorithm 4.2.2 L appropriate learns the training dataset and generalizes well

to classification the Parkinson’s disease dataset.
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5.4 Osteoporosis

Osteoporosis is becoming a significant public health problem in aging

society. So, early detection is essential for preventing fracture. Apply this paper

that uses six factors: gender, age, height, weight, smoking, and drinking alcohol.

When people are aware that they are in a risk group, they can take care of them-

selves by exercising to strengthen their bones and muscles. They can consult a

doctor to take medication, adjust their lifestyle, control weight, eat a balanced

diet rich in calcium and vitamin D, take supplements, and avoid smoking and ex-

cessive alcohol consumption to promote bone density. In the case of fall history,

early detection can help people recognize that they should prevent falls by early

intervention for rehabilitation to improve mobility. The benefit of the country

is that early detection can increase awareness and education for people to pre-

vent fractures. The government can reduce the need for expensive treatments,

surgeries, and long-term care, leading to significant healthcare savings.

The most impactful aspect of early detection is that it can increase the

individual’s awareness of their bone health, leading to better adherence to treat-

ment plans and lifestyle changes that support bone strength. The long-term

benefit of early detection and treatment of osteoporosis can lead to better long-

term health outcomes, including a lower risk of severe fractures and the associated

complications that can arise, ultimately extending life expectancy and improving

life quality.

We use dataset in Harvard Dataverse (https://dataverse.harvard.edu/data

set.xhtml?persistentId=doi:10.7910/DVN/UDZIJS), this data set is the original

data of the original paper ”Nonlinear Association between Serum Uric Acid levels

and risk of Osteoporosis: A Retrospective Study”, including clinical baseline data,

and dual-energy X-ray measurement results. Dataset can called ”Bone mineral

density”, that belongs to 40 variables and 1,537 observations.
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Table 28: Data description for Bone mineral density dataset in Microsoft Excel

Column Column

1 Gender 21 P

2 Age 22 Mg

3 Height 23 Calsium

4 Weight 24 Calcitriol

5 BMI 25 Bisphosphonate

6 L1-4 26 Calcitonin

7 L1.4T 27 HTN

8 FN 28 COPD

9 FNT 29 DM

10 TL 30 Hyperlipidaemia

11 TLT 31 Hyperuricemia

12 ALT 32 AS

13 AST 33 VT

14 BUN 34 VD

15 CREA 35 OP

16 URIC 36 CAD

17 FBG 37 CKD

18 HDL-C 38 Fracture

19 LDL-C 39 Smoking

20 Ca 40 Drinking

Table 28 is overview of dataset that we use in machine learning and from Table

29 we use classification of Bone mineral density dataset by WHO.

Table 29: WHO definition of osteoporosis by BMD

Classification T-score

Normal ⩾ −1.0

Low bone mass (Osteopenia) -1.0 to -2.5

Osteoporosis ⩽ −2.5

Severe or established osteoporosis ⩽ −2.5 with fragility fracture
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We have 1,537 observations of dataset but we have found 36 missing data.

Thus we clean data by Data Cleaner in MATLAB. So we use 1,501 observations

and 6 variables (Gender, Age, Height, Weight, Smoking, and Drinking). Next

we use training data at 80% and testing data at 20%. From Table 29 we have 4

classes of dataset. And we try to use every observations for traning and testing.

We organize into groups by Figure 9.

Figure 9: Groups of dataset

For applying our algorithm to solve the least sqare problems (5.0.1), we set

f(x, y) =

 0, ∀x, y ∈ C,

−1, otherwise

and

g(x, y) =

 0, ∀x, y ∈ Q,

−1, otherwise.

Then, our algorithm can be reduced to solve split feasibility problem (SFP) which

was introduced by Censor and Elfving [26] as follows: finding a point x∗ ∈ C such
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that

Ax∗ ∈ Q (5.4.1)

where C,Q be nonempty closed and convex subsets of RB and RD, respectively.

A is an B ×D real matrix.

We create 3 model for our Algorithm of split feasibility problem (5.4.1)

to obtain results in machine learning (5.0.1).

1. Least square model - (L)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = H1 and Q = {T}.

2. Least square on constraint set L1 - (LL1)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥1 ⩽ λ}, where λ > 0 and Q = {T}.

3. Least square on constraint set L2 - (LL2)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥22 ⩽ λ}, where λ > 0 and Q = {T}.

The multi-class cross-entropy loss function (H(y, p)), where W is the

number of classes, yk is the true label for class k, pk is the predicted probability

for class k, and the formula as follows:

H(y, p) = −
W∑
k=1

yk · log(pk)
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We set the activation function as sigmoid, number of iteration for stop

calculation is N = 500, hidden nodes M = 300, regularization parameter αk =

0.9, θk = 0.2 and δk = 10,

when

θk =


1

k2∥xk−xk−1∥
if xk ̸= xk−1 and k > N,

θ otherwise,

and

δk =


1

k2∥xk−1−xk−2∥
if xk−1 ̸= xk−2 and k > N,

δ otherwise,

with V (x) = cx such that c = 0.9999 for Algorithm 4.2.4, Algorithm 4.2.7, and

Algorithm 4.2.8 with L, LL1, LL2 models. We gain the outcomes of the different

parameters S by λk = S
max(eigenvalue(ATA))

for Algorithm 4.2.4 L, Algorithm 4.2.4

LL1 and Algorithm 4.2.4 LL2 as seen in Table 30.
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Table 30: Training Time and numerical results of both of training and

validation loss when λk is different

Loss

S Training Time Training Validation

0.2 2.4424 0.2956 0.2954

0.5 2.3664 0.2941 0.2999

Algorithm 4.2.4 L 0.7 2.7160 0.2790 0.2962

0.9 2.3700 0.2783 0.2977

0.999 2.3653 0.2746 0.2930

0.2 2.4234 0.2956 0.2954

0.5 2.4101 0.3080 0.3056

Algorithm 4.2.4 LL1 0.7 2.8112 0.3016 0.3004

0.9 2.3877 0.2907 0.2920

0.999 2.3826 0.2870 0.2894

0.2 2.5404 0.2956 0.2954

0.5 2.9564 0.3080 0.3056

Algorithm 4.2.4 LL2 0.7 2.5449 0.3016 0.3004

0.9 2.5999 0.2907 0.2920

0.999 2.5159 0.2870 0.2894

We can see that the least loss and training time of training and validation is

obtained when S = 0.999 for each Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and

Algorithm 4.2.4 LL2. Thus, we choose S = 0.999 for next experiment.

Next, we select λk = 0.999
max(eigenvalue(ATA))

and set δ = 10, αk = 0.9, c =

0.9999 for Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and Algorithm 4.2.4 LL2. We

stop number of iterations N = 500 and hidden nodes M = 300. We gain the

numeric outcomes as seen in Table 31.
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Table 31: Training Time and numerical results of both of training and

validation loss when θ is different
Loss

θ Training Time Training Validation

-0.2 2.3909 0.2896 0.2910

-0.1 2.4000 0.2896 0.2910

0 2.3760 0.2868 0.2847

Algorithm 4.2.4 L 0.1 2.4346 0.2889 0.2905

0.15 2.4328 0.2882 0.2901

0.2 2.3888 0.2870 0.2894

-0.2 2.4403 0.2896 0.2910

-0.1 2.4384 0.2896 0.2910

0 2.4037 0.2868 0.2847

Algorithm 4.2.4 LL1 0.1 2.4249 0.2889 0.2905

0.15 2.4234 0.2882 0.2901

0.2 2.4228 0.2870 0.2894

-0.2 2.5388 0.2896 0.2910

-0.1 2.5296 0.2896 0.2910

0 2.3708 0.2868 0.2847

Algorithm 4.2.4 LL2 0.1 2.5492 0.2889 0.2905

0.15 2.5894 0.2882 0.2901

0.2 2.5288 0.2870 0.2894

We can see that the least loss and training time of training and validation is

obtained when θ = 0.2 for each Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and

Algorithm 4.2.4 LL2. Thus, we choose θ = 0.2 for next experiment.

Next, we select λk = 0.999
max(eigenvalue(ATA))

, θ = 0.2 and set αk = 0.9, c =

0.9999 for Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and Algorithm 4.2.4 LL2. We

stop number of iterations N = 500 and hidden nodes M = 300. We gain the

numeric outcomes as seen in Table 32.



 

 

 
125

Table 32: Training Time and numerical results of both of training and

validation loss when δ is different
Loss

δ Training Time Training Validation

-5 2.3982 0.2912 0.2921

-1 2.3955 0.2909 0.2918

0 2.4045 0.2910 0.2905

Algorithm 4.2.4 L 1 2.5578 0.2907 0.2917

5 2.4448 0.2901 0.2913

10 2.3826 0.2870 0.2894

-5 2.4599 0.2912 0.2921

-1 2.4898 0.2909 0.2918

0 2.3853 0.2910 0.2905

Algorithm 4.2.4 LL1 1 2.4322 0.2907 0.2917

5 2.3893 0.2901 0.2913

10 2.3837 0.2870 0.2894

-5 2.5302 0.2912 0.2921

-1 2.5280 0.2909 0.2918

0 2.5363 0.2910 0.2905

Algorithm 4.2.4 LL2 1 2.5032 0.2907 0.2917

5 2.5047 0.2901 0.2913

10 2.5003 0.2870 0.2894

We can see that the least loss and training time of training and validation is

obtained when δ = 10 for each Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and

Algorithm 4.2.4 LL2. Thus, we choose δk = 10 for next experiment.

Next, we select λk = 0.999
max(eigenvalue(ATA))

, θ = 0.2, δ = 10 and set c =

0.9999 for Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and Algorithm 4.2.4 LL2. We

stop number of iterations N = 500 and hidden nodes M = 300. We gain the

numeric outcomes as seen in Table 33.
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Table 33: Training Time and numerical results of both of training and

validation loss when αk is different

Loss

αk Training Time Training Validation

0.90 2.3770 0.2870 0.2894

0.93 2.4233 0.2904 0.2915

Algorithm 4.2.4 L 0.95 2.4378 0.2912 0.2920

0.97 2.4566 0.2919 0.2925

0.99 2.4440 0.2926 0.2931

0.90 2.4332 0.2870 0.2894

0.93 2.4466 0.2904 0.2915

Algorithm 4.2.4 LL1 0.95 2.4377 0.2912 0.2920

0.97 2.4483 0.2919 0.2925

0.99 2.4490 0.2926 0.2931

0.90 2.5154 0.2870 0.2894

0.93 2.5305 0.2904 0.2915

Algorithm 4.2.4 LL2 0.95 2.5760 0.2912 0.2920

0.97 2.5322 0.2919 0.2925

0.99 2.5236 0.2926 0.2931

We can see that the least loss and training time of training and validation is

obtained when αk = 0.9 for each Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and

Algorithm 4.2.4 LL2. Thus, we choose αk = 0.9 for next experiment.

Next, we select λk = 0.999
max(eigenvalue(ATA))

, θ = 0.2, δ = 10, αk = 0.9 for

Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and Algorithm 4.2.4 LL2. We stop

number of iterations N = 500 and hidden nodes M = 300. We gain the numeric

outcomes as seen in Table 34.
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Table 34: Training Time and numerical results of both of training and

validation loss when c is different
Loss

c Training Time Training Validation

0.89 2.4357 0.2952 0.2955

0.91 2.4206 0.2950 0.2953

Algorithm 4.2.4 L 0.95 2.4431 0.2939 0.2943

0.97 2.4101 0.2931 0.2936

0.9999 2.3783 0.2746 0.2930

0.89 2.4794 0.2952 0.2955

0.91 2.4471 0.2950 0.2953

Algorithm 4.2.4 LL1 0.95 2.4192 0.2939 0.2943

0.97 2.4392 0.2931 0.2936

0.9999 2.4185 0.2874 0.2879

0.89 2.6007 0.2952 0.2955

0.91 2.5925 0.2950 0.2953

Algorithm 4.2.4 LL2 0.95 2.5695 0.2939 0.2943

0.97 2.5780 0.2931 0.2936

0.9999 2.5399 0.2746 0.2930

We can see that the least loss and training time of training and validation is

obtained when c = 0.9999 for each Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and

Algorithm 4.2.4 LL2. Table 30-34 show selecting every parameters, that is λk =

0.999
max(eigenvalue(ATA))

, θ = 0.2, δ = 10, αk = 0.9 and c = 0.9999.

For comparing, we set number of iteration is 187, and hidden nodes

M = 300 in Table 35.
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Table 35: Efficiency comparative of existing algorithms and our algorithms
Test box 1 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 174 0.8478 NaN 75.00 NaN 79.97

Algorithm of Suantai LL1 [114] 174 0.8346 NaN 75.00 NaN 79.97

Algorithm of Suantai LL2 [114] 174 0.9004 NaN 75.00 NaN 79.97

Algorithm 4.2.4 L 174 0.8391 77.98 76.73 77.35 78.31

Algorithm 4.2.4 LL1 174 0.8313 77.98 76.73 77.35 78.31

Algorithm 4.2.4 LL2 174 0.8903 77.98 76.73 77.35 78.31

Algorithm 4.2.7 L 174 0.8386 89.99 75.39 82.04 80.13

Algorithm 4.2.7 LL1 174 0.8522 89.99 75.39 82.04 80.13

Algorithm 4.2.7 LL2 174 0.8924 89.99 75.39 82.04 80.13

Algorithm 4.2.8 L 174 0.8534 NaN 75.00 NaN 79.97

Algorithm 4.2.8 LL1 174 0.8352 NaN 75.00 NaN 79.97

Algorithm 4.2.8 LL2 174 0.8769 NaN 75.00 NaN 79.97

Test box 2 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 174 0.8378 NaN 75.00 NaN 79.97

Algorithm of Suantai LL1 [114] 174 0.9761 NaN 75.00 NaN 79.97

Algorithm of Suantai LL2 [114] 174 0.8822 NaN 75.00 NaN 79.97

Algorithm 4.2.4 L 174 0.8469 75.87 75.21 75.54 76.99

Algorithm 4.2.4 LL1 174 0.8472 75.87 75.21 75.54 76.99

Algorithm 4.2.4 LL2 174 0.9007 75.87 75.21 75.54 76.99

Algorithm 4.2.7 L 174 0.8325 64.96 74.88 69.57 79.80

Algorithm 4.2.7 LL1 174 0.8857 64.96 74.88 69.57 79.80

Algorithm 4.2.7 LL2 174 0.9006 64.96 74.88 69.57 79.80

Algorithm 4.2.8 L 174 0.8346 NaN 75.00 NaN 79.97

Algorithm 4.2.8 LL1 174 0.8502 NaN 75.00 NaN 79.97

Algorithm 4.2.8 LL2 174 0.8917 NaN 75.00 NaN 79.97

Test box 3 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 392 1.9425 NaN 75.00 NaN 80.07

Algorithm of Suantai LL1 [114] 392 1.8938 NaN 75.00 NaN 80.07

Algorithm of Suantai LL2 [114] 392 2.0126 NaN 75.00 NaN 80.07

Algorithm 4.2.4 L 392 1.8668 86.77 78.77 82.58 82.06

Algorithm 4.2.4 LL1 392 1.9306 85.74 77.22 81.25 80.90

Algorithm 4.2.4 LL2 392 2.0011 86.77 78.77 82.58 82.06

Algorithm 4.2.7 L 392 1.8760 NaN 75.00 NaN 80.07

Algorithm 4.2.7 LL1 392 1.8696 NaN 75.00 NaN 80.07

Algorithm 4.2.7 LL2 392 1.9938 NaN 75.00 NaN 80.07

Algorithm 4.2.8 L 392 1.8882 NaN 75.00 NaN 80.07

Algorithm 4.2.8 LL1 392 1.8785 NaN 75.00 NaN 80.07

Algorithm 4.2.8 LL2 392 1.9973 NaN 75.00 NaN 80.07
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Test box 4 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 384 1.8451 NaN 75.00 NaN 80.17

Algorithm of Suantai LL1 [114] 384 1.8382 NaN 75.00 NaN 80.17

Algorithm of Suantai LL2 [114] 384 1.9368 NaN 75.00 NaN 80.17

Algorithm 4.2.4 L 384 1.8431 85.09 76.57 80.60 80.67

Algorithm 4.2.4 LL1 384 1.8578 84.71 75.92 80.07 80.33

Algorithm 4.2.4 LL2 384 1.9290 85.09 76.57 80.60 80.67

Algorithm 4.2.7 L 384 1.8329 NaN 75.00 NaN 80.17

Algorithm 4.2.7 LL1 384 1.8517 NaN 75.00 NaN 80.17

Algorithm 4.2.7 LL2 384 1.9435 NaN 75.00 NaN 80.17

Algorithm 4.2.8 L 384 1.8355 NaN 75.00 NaN 80.17

Algorithm 4.2.8 LL1 384 1.8331 NaN 75.00 NaN 80.17

Algorithm 4.2.8 LL2 384 1.9677 NaN 75.00 NaN 80.17

Test box 5 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 211 1.0199 NaN 75.00 NaN 80.10

Algorithm of Suantai LL1 [114] 211 1.0082 NaN 75.00 NaN 80.10

Algorithm of Suantai LL2 [114] 211 1.0669 NaN 75.00 NaN 80.10

Algorithm 4.2.4 L 211 1.0218 83.02 75.58 79.12 80.27

Algorithm 4.2.4 LL1 211 1.0222 83.02 75.58 79.12 80.27

Algorithm 4.2.4 LL2 211 1.0663 83.02 75.58 79.12 80.27

Algorithm 4.2.7 L 211 1.0125 90.03 75.09 81.88 80.10

Algorithm 4.2.7 LL1 211 1.0224 90.03 75.09 81.88 80.10

Algorithm 4.2.7 LL2 211 1.0633 90.03 75.09 81.88 80.10

Algorithm 4.2.8 L 211 1.0043 NaN 75.00 NaN 80.10

Algorithm 4.2.8 LL1 211 1.0241 NaN 75.00 NaN 80.10

Algorithm 4.2.8 LL2 211 1.0722 NaN 75.00 NaN 80.10

Table 35 shows that our Algorithm 4.2.4 L, Algorithm 4.2.4 LL1 and Algorithm

4.2.4 LL2 in test box 3 are highly performance of accuracy, F1-score, recall and

precision by the number of iteration is 392 and all of matrics are better than

Algorithm of Suantai [114] with (L)− (LL2) models. It is the highest possibility

of exactly classifying comparison to algorithms investigations. Both of training-

validation loss and accuracy plots show that our algorithm has good fitting model

for Osteoporosis dataset. The NaN result for recall and precision of Suantai’s

algorithm [114] are obtained in the case of imbalance dataset which can be solved

by many directions such as resampling, recrossvalidation, etc., in this research

only deleting missing data is our data preprocessing.



 

 

 
130

Figure 10: The accuracy plots of training and validation of Algorithm 4.2.4 L

Figure 11: The loss plots of training and validation of Algorithm 4.2.4 L

From Figures 10-11, we saw that our Algorithm 4.2.4 L has a good fit model,

which means that it appropriately learns the training dataset and generalizes

well to classify the Osteoporosis dataset.
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5.5 Breast cancer

In 2020, breast cancer was the most diagnosed cancer worldwide, more

than lung and prostate cancer. The incidence of breast cancer is increasing

throughout the world [79],[81]. In the United States, it is expected that 364,000

people will be diagnosed with this disease in 2040. The reason that it is becoming

more common is the improvement in diagnosing this disease in developing coun-

tries. Moreover, women these day have different lifestyles from the past, such as

delaying childbearing, not having children, exposure to hormonal therapy, obe-

sity and alcohol drinking. The mortality rates have varied significantly from area

to area, especially, in areas with low socio-economic status. This reflects a lack

of resources or opportunities to access medical facilities for early diagnosis and

timely treatment. Even in developed countries, discrepancies were also found

between black and white women [84].

In Thailand, breast cancer was found to have the highest incidence among

cancers in Thai women in 2012. Epidemiological studies indicate that the inci-

dence is likely to continue increasing, from three to seven percent per year. Data

from interviews and expert group meetings found that breast self-examination

is the main method of breast cancer screening in Thailand [69]. According to

the scantness of accessing standard screening with mammography and ultra-

sound. Although mammography and ultrasound are considered to be standard

screening tests for diagnosing breast cancer in women aged 40 years and older

[39],[40],[55],[79]. At the general policy level, Thailand has guidelines to encour-

age women to self-examine their breasts and be examined by a doctor/public

health personnel if abnormalities are found [69]. Currently, computer-aided di-

agnosis (CAD) is being used increasingly for helping in the diagnosis of breast

cancer [70],[108]. It is believed that this will help reduce the number of false neg-

atives from obscure lesions or complex structure of the breast. To reassure the
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non-experienced radiologists in diagnosing breast cancer from mammography im-

ages [38],[67],[82]. It also decreases the rate of unnecessary biopsies [40],[56],[68].

However, the accuracy of using artificial intelligence (AI) or CAD in diagnosing

breast cancer from mammography remains unclear. Particularly, if acting in place

of a radiologist. More studies may need to be done to conclude this fact [46],[76].

This research aimed to study the accuracy of a new machine learning

algorithm for predicting the interpretation of mammography images using real

data from Phayao Hospital. The work has done by collecting BI-RADS data

on patient age, mass shape, margin, and density of the mass (Table 36). Then

analyzed the proposed algorithm in comparison with other algorithms for breast

cancer screening, including the development of Data-preprocessing pipeline. De-

scribe each data for using data classification as below:

1. BI-RADS assessment: 0 to 6 (ordinal)

2. Age: patient’s age in years (integer)

3. Shape: mass shape: round=1 oval=2 lobular=3 irregular=4 (nominal)

4. Margin: mass margin: circumscribed=1 microlobulated=2 obscured=3 ill-

defined=4 spiculated=5 (nominal)

5. Density: mass density: high=1 iso=2 low=3 fat-containing=4 (ordinal)

6. Severity: benign=0 or malignant=1 (binominal).

Figure 12: Mammography of 64-year-old woman
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Table 36: Mammography data collection of 64-year-old woman

BI-RADS Age Shape Margin Density Severity Pathology

assessment

4 64 3 1 1 1 invasive ductal carcinoma

From figure 12, example of mammography; right craniocaudal (CC) and medi-

olateral oblique (MLO) views of a 64-year-old woman, shows a lobulate-shaped,

circumscribed high density mass at right inner-upper region. The BI-RADS as-

sessment = 4. The pathological proven to be invasive ductal carcinoma.

Figure 13: Mammography of 46-year-old woman

Table 37: Mammography data collection of 46-year-old woman

BI-RADS Age Shape Margin Density Severity Pathology

assessment

2 46 1 1 1 0 N/A

From figure 13, example of mammography; right craniocaudal (CC) and mediolat-

eral oblique (MLO) views of a 46-year-old woman, shows multiple round-shaped,

circumscribed high density masses scattering in right breast. The BI-RADS as-

sessment = 2. The ultrasonography proven to be multiple cysts.

The dataset from UCI is used to compare the efficiency of the proposed

algorithm with our real dataset. For more efficiency, we thus consider three

datasets as follows:
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Data 1 = 829 observations and 6 classes of BI-RADS (0,2,3,4,5,6).

This data set is the Discrimination of benign and malignant mammographic

masses based on BI-RADS attributes and the patient’s age that belongs to 961

observations and 6 variables (Age, Shape, Margin, Density, Severity are Features

and BI-RADS is target) from UCI website (https://archive.ics.

uci.edu/dataset/161/mammographic+mass). 132 missing data were deleted by

Data Cleaner in MATLAB R2023a.

Data 2 = 171 observations and 5 classes of BI-RADS (2,3,4,5,6).

This datasets are corrected by the experts in Phayao Hospital.

Data 3 = 176 observations and 6 classes of BI-RADS (0,2,3,4,5,6).

This datasets are combined from 171 observations of Phayao Hospital (Data 2)

and 5 observations of 0 BI-RAD from UCI.

Next we use training data is 75% and testing data is 25%. And we try to

use every observations for traning and testing, we organize into groups by Figure

14.

Figure 14: Groups of dataset
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For applying our algorithm to solve the least sqare problems (5.0.1), we set

f(x, y) =

 0, ∀x, y ∈ C,

−1, otherwise

and

g(x, y) =

 0, ∀x, y ∈ Q,

−1, otherwise.

Then, our algorithm can be reduced to solve split feasibility problem (SFP) which

was introduced by Censor and Elfving [26] as follows: finding a point x∗ ∈ C such

that

Ax∗ ∈ Q (5.5.1)

where C,Q be nonempty closed and convex subsets of RB and RD, respectively.

A is an B ×D real matrix.

We create 3 model for our Algorithm of split feasibility problem (5.5.1)

to obtain results in machine learning (5.0.1).

1. Least square model - (L)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = H1 and Q = {T}.

2. Least square on constraint set L1 - (LL1)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥1 ⩽ λ}, where λ > 0 and Q = {T}.
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3. Least square on constraint set L2 - (LL2)

min
a∈C

1

2
∥PQHa−Ha∥22

Setting A = H,C = {a ∈ H1 : ∥a∥22 ⩽ λ}, where λ > 0 and Q = {T}.

The multi-class cross-entropy loss function (H(y, p)), where W is the

number of classes, yk is the true label for class k, pk is the predicted probability

for class k, and the formula as follows:

H(y, p) = −
W∑
k=1

yk · log(pk)

We use test box 2 for Data 1 and set the activation function as sigmoid, number

of iteration for stop calculation is 2000, hidden nodes M = 350, regularization

parameter αk = 0.6, δk = 0.9, θk = 0 for Algorithm 4.2.9 L, Algorithm 4.2.9

LL1 and Algorithm 4.2.9 LL2. We gain the outcomes of the different parameters

S by λk = S
max(eigenvalue(ATA))

for Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2 as seen in Table 38. When

θk =


1

k2∥xk−xk−1∥
if xk ̸= xk−1 and k > N,

θ otherwise,

and

δk =


1

k2∥xk−1−xk−2∥
if xk−1 ̸= xk−2 and k > N,

δ otherwise,
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Table 38: Training Time and numerical results of both of training and

validation loss when λk is different

Loss

S Training Time Training Validation

0.1 0.0292 0.102302 0.100949

0.65 0.0269 0.099504 0.098042

Algorithm 4.2.9 L 0.7 0.0247 0.099391 0.097922

0.75 0.0271 0.099285 0.097810

0.8 0.0253 0.099187 0.097704

0.9 0.0245 0.099010 0.097511

0.1 0.0252 0.102302 0.100949

0.65 0.0249 0.101715 0.100416

Algorithm 4.2.9 LL1 0.7 0.0280 0.101715 0.100416

0.75 0.0251 0.101715 0.100415

0.8 0.0260 0.101715 0.100414

0.9 0.0229 0.101715 0.100413

0.1 0.0254 0.102302 0.100949

0.65 0.0256 0.099504 0.098042

Algorithm 4.2.9 LL2 0.7 0.0271 0.099391 0.097922

0.75 0.0261 0.099285 0.097810

0.8 0.0288 0.099187 0.097704

0.9 0.0242 0.099010 0.097511

We can see that the least loss and training time of training and validation is

obtained when S = 0.9 for each Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2. Thus, we choose S = 0.9 for next experiment. Next, we

select λk = 0.9
max(eigenvalue(ATA))

and set δ = 0.9, θ = 0 for Algorithm 4.2.9 L,

Algorithm 4.2.9 LL1 and Algorithm 4.2.9 LL2. We gain the numeric outcomes

as seen in Table 39.
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Table 39: Training Time and numerical results of both of training and

validation loss when αk is different

Loss

αk Training Time Training Validation

0.4 0.0302 0.099626 0.098169

0.45 0.0276 0.099446 0.097981

Algorithm 4.2.9 L 0.5 0.0261 0.099285 0.097810

0.55 0.0269 0.099141 0.097654

0.59 0.0287 0.099035 0.097539

0.6 0.0257 0.099010 0.097511

0.4 0.0266 0.101715 0.100416

0.45 0.0300 0.101715 0.100416

Algorithm 4.2.9 LL1 0.5 0.0274 0.101715 0.100415

0.55 0.0230 0.101715 0.100414

0.59 0.0308 0.101715 0.100413

0.6 0.0242 0.101715 0.100413

0.4 0.0275 0.099626 0.098169

0.45 0.0276 0.099446 0.097981

Algorithm 4.2.9 LL2 0.5 0.0259 0.099285 0.097810

0.55 0.0324 0.099141 0.097654

0.59 0.0352 0.099035 0.097539

0.6 0.0248 0.099010 0.097511

We can see that the least loss and training time of training and validation is

obtained when αk = 0.6 for each Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2. Thus, we choose αk = 0.6 for next experiment. Next, we

select λk = 0.9
max(eigenvalue(ATA))

, αk = 0.6 and set θ = 0 for Algorithm 4.2.9 L,

Algorithm 4.2.9 LL1 and Algorithm 4.2.9 LL2. We gain the numeric outcomes

as seen in Table 40.
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Table 40: Training Time and numerical results of both of training and

validation loss when δ is different
Loss

δ Training Time Training Validation

-0.9 0.0272 0.104091 0.103027

-0.5 0.0259 0.103463 0.102291

Algorithm 4.2.9 L 0 0.0271 0.102522 0.101202

0.1 0.0271 0.102311 0.100962

0.3 0.0258 0.101858 0.100457

0.9 0.0246 0.099010 0.097511

-0.9 0.0287 0.104091 0.103027

-0.5 0.0293 0.103463 0.102291

Algorithm 4.2.9 LL1 0 0.0237 0.102522 0.101202

0.1 0.0265 0.102311 0.100962

0.3 0.0279 0.101858 0.100457

0.9 0.0235 0.101715 0.100413

-0.9 0.0271 0.104091 0.103027

-0.5 0.0279 0.103463 0.102291

Algorithm 4.2.9 LL2 0 0.0262 0.102522 0.101202

0.1 0.0329 0.102311 0.100962

0.3 0.0326 0.101858 0.100457

0.9 0.0255 0.099010 0.097511

We can see that the least loss and training time of training and validation is

obtained when δ = 0.9 for each Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2. Thus, we choose δ = 0.9 for next experiment. Next, we

select λk = 0.9
max(eigenvalue(ATA))

, αk = 0.6, and δ = 0.9 for Algorithm 4.2.9 L,

Algorithm 4.2.9 LL1 and Algorithm 4.2.9 LL2. We gain the numeric outcomes

as seen in Table 41.
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Table 41: Training Time and numerical results of both of training and

validation loss when θ is different
Loss

θ Training Time Training Validation

-0.11 0.0250 0.130646 0.133783

-0.04 0.0288 0.099520 0.098058

Algorithm 4.2.9 L -0.03 0.0260 0.099407 0.097939

-0.02 0.0236 0.099285 0.097809

-0.01 0.0265 0.099153 0.097667

0 0.0225 0.099010 0.097511

-0.11 0.0286 0.115907 0.116904

-0.04 0.0286 0.101715 0.100416

Algorithm 4.2.9 LL1 -0.03 0.0283 0.101715 0.100416

-0.02 0.0313 0.101715 0.100415

-0.01 0.0275 0.101715 0.100414

0 0.0251 0.101715 0.100413

-0.11 0.0292 0.130646 0.133783

-0.04 0.0298 0.099520 0.098058

Algorithm 4.2.9 LL2 -0.03 0.0253 0.099407 0.097939

-0.02 0.0251 0.099285 0.097809

-0.01 0.0256 0.099153 0.097667

0 0.0234 0.099010 0.097511

We can see that the least loss and training time of training and validation is

obtained when θ = 0 for each Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and Al-

gorithm 4.2.9 LL2. From Table 38-41 shows select every parameters, that is

λk =
0.9

max(eigenvalue(ATA))
, αk = 0.6, δ = 0.9 and θ = 0.
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Table 42: Data 1 (829 observations) - Efficiency comparative of existing

algorithms and our algorithms
Test box 1 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 113 0.4003 NaN 83.33 NaN 85.51

Algorithm of Suantai LL1 [114] 113 0.4133 NaN 83.33 NaN 85.51

Algorithm of Suantai LL2 [114] 113 0.4969 NaN 83.33 NaN 85.51

Algorithm 4.2.9 L 113 0.3985 92.82 92.64 92.73 91.79

Algorithm 4.2.9 LL1 113 0.4033 92.82 92.64 92.73 91.79

Algorithm 4.2.9 LL2 113 0.4532 92.82 92.64 92.73 91.79

Test box 2 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 202 0.7060 NaN 83.33 NaN 85.51

Algorithm of Suantai LL1 [114] 202 0.7056 NaN 83.33 NaN 85.51

Algorithm of Suantai LL2 [114] 202 0.8289 NaN 83.33 NaN 85.51

Algorithm 4.2.9 L 202 0.7073 92.87 92.63 92.75 92.11

Algorithm 4.2.9 LL1 202 0.7014 92.87 92.63 92.75 92.11

Algorithm 4.2.9 LL2 202 0.7873 92.87 92.63 92.75 92.11

Test box 3 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 216 0.7521 NaN 83.33 NaN 85.51

Algorithm of Suantai LL1 [114] 216 0.7469 NaN 83.33 NaN 85.51

Algorithm of Suantai LL2 [114] 216 0.8517 NaN 83.33 NaN 85.51

Algorithm 4.2.9 L 216 0.7533 92.53 92.31 92.42 91.79

Algorithm 4.2.9 LL1 216 0.7546 92.53 92.31 92.42 91.79

Algorithm 4.2.9 LL2 216 0.8436 92.53 92.31 92.42 91.79

Test box 4 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 87 0.3186 NaN 83.33 NaN 85.51

Algorithm of Suantai LL1 [114] 87 0.3141 NaN 83.33 NaN 85.51

Algorithm of Suantai LL2 [114] 87 0.3424 NaN 83.33 NaN 85.51

Algorithm 4.2.9 L 87 0.3083 90.08 89.85 89.96 89.21

Algorithm 4.2.9 LL1 87 0.3107 90.08 89.85 89.96 89.21

Algorithm 4.2.9 LL2 87 0.3592 90.08 89.85 89.96 89.21

From table 42 we can see that Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2 in test box 2 are high of accuracy, precision and F1-score.
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Table 43: Data 2 (171 observations) - Efficiency comparative of existing

algorithms and our algorithms
Test box 1 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 115 0.1460 NaN 80.00 NaN 79.53

Algorithm of Suantai LL1 [114] 115 0.1682 NaN 80.00 NaN 79.53

Algorithm of Suantai LL2 [114] 115 0.2392 NaN 80.00 NaN 79.53

Algorithm 4.2.9 L 115 0.1262 91.41 87.53 89.43 86.05

Algorithm 4.2.9 LL1 115 0.1384 91.41 87.53 89.43 86.05

Algorithm 4.2.9 LL2 115 0.1621 91.41 87.53 89.43 86.05

Test box 2 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 130 0.1302 NaN 80.00 NaN 79.53

Algorithm of Suantai LL1 [114] 130 0.1345 NaN 80.00 NaN 79.53

Algorithm of Suantai LL2 [114] 130 0.1583 NaN 80.00 NaN 79.53

Algorithm 4.2.9 L 130 0.1258 87.96 83.51 85.67 82.33

Algorithm 4.2.9 LL1 130 0.1248 87.96 83.51 85.67 82.33

Algorithm 4.2.9 LL2 130 0.1601 87.96 83.51 85.67 82.33

Test box 3 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 132 0.1381 NaN 80.00 NaN 79.53

Algorithm of Suantai LL1 [114] 132 0.1432 NaN 80.00 NaN 79.53

Algorithm of Suantai LL2 [114] 132 0.1856 NaN 80.00 NaN 79.53

Algorithm 4.2.9 L 132 0.1459 89.41 87.92 88.66 86.05

Algorithm 4.2.9 LL1 132 0.1392 89.41 87.92 88.66 86.05

Algorithm 4.2.9 LL2 132 0.1875 89.41 87.92 88.66 86.05

Test box 4 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 183 0.2216 NaN 80.00 NaN 79.53

Algorithm of Suantai LL1 [114] 183 0.1788 NaN 80.00 NaN 79.53

Algorithm of Suantai LL2 [114] 183 0.2417 NaN 80.00 NaN 79.53

Algorithm 4.2.9 L 183 0.1860 89.78 87.92 88.84 86.05

Algorithm 4.2.9 LL1 183 0.1857 89.78 87.92 88.84 86.05

Algorithm 4.2.9 LL2 183 0.2468 89.78 87.92 88.84 86.05

From Table 43 we can see that Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2 in test box 1 are high of accuracy, precision and F1-score.
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Table 44: Data 3 (176 observations) - Efficiency comparative of existing

algorithms and our algorithms
Test box 1 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 115 0.1358 NaN 83.33 NaN 82.58

Algorithm of Suantai LL1 [114] 115 0.1407 NaN 83.33 NaN 82.58

Algorithm of Suantai LL2 [114] 115 0.1711 NaN 83.33 NaN 82.58

Algorithm 4.2.9 L 115 0.1322 92.67 89.31 90.96 87.88

Algorithm 4.2.9 LL1 115 0.1380 92.67 89.31 90.96 87.88

Algorithm 4.2.9 LL2 115 0.1718 92.67 89.31 90.96 87.88

Test box 2 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 140 0.1498 NaN 83.33 NaN 82.58

Algorithm of Suantai LL1 [114] 140 0.1586 NaN 83.33 NaN 82.58

Algorithm of Suantai LL2 [114] 140 0.2051 NaN 83.33 NaN 82.58

Algorithm 4.2.9 L 140 0.1600 91.41 88.28 89.82 87.12

Algorithm 4.2.9 LL1 140 0.1778 91.41 88.28 89.82 87.12

Algorithm 4.2.9 LL2 140 0.2052 91.41 88.28 89.82 87.12

Test box 3 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 203 0.2110 NaN 83.33 NaN 82.58

Algorithm of Suantai LL1 [114] 203 0.2551 NaN 83.33 NaN 82.58

Algorithm of Suantai LL2 [114] 203 0.2804 NaN 83.33 NaN 82.58

Algorithm 4.2.9 L 203 0.2128 91.00 89.76 90.38 87.88

Algorithm 4.2.9 LL1 203 0.2209 91.00 89.76 90.38 87.88

Algorithm 4.2.9 LL2 203 0.2802 91.00 89.76 90.38 87.88

Test box 4 Iter Time Pre (%) Rec (%) F1 (%) Acc (%)

Algorithm of Suantai L [114] 184 0.1898 NaN 83.33 NaN 82.58

Algorithm of Suantai LL1 [114] 184 0.1935 NaN 83.33 NaN 82.58

Algorithm of Suantai LL2 [114] 184 0.2588 NaN 83.33 NaN 82.58

Algorithm 4.2.9 L 184 0.1929 91.31 89.61 90.45 87.88

Algorithm 4.2.9 LL1 184 0.2030 91.31 89.61 90.45 87.88

Algorithm 4.2.9 LL2 184 0.2611 91.31 89.61 90.45 87.88

From Table 44 we can see that Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2 in text box 1 are high of accuracy, precision and F1-score.

Tables 42-44 show that Algorithm 4.2.9 L, Algorithm 4.2.9 LL1 and

Algorithm 4.2.9 LL2 have highly performance of accuracy, F1-score, recall and

precision. And all of matrics of Algorithm 4.2.9 (L) − (LL2) are better than

Algorithm of Suantai [114] with (L)− (LL2) models. It is the highest possibility

of exactly classifying comparison to algorithms investigations. Both of training-
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validation loss and accuracy plots show that our algorithm has good fitting model

for Mammographic dataset.
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Figure 15: On the left is the accuracy plots of training and validation and on

the right is the loss plots of training and validation of Algorithm 4.2.9 L, that

use test box 2 in Data 1
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Figure 16: On the left is the accuracy plots of training and validation and on

the right is the loss plots of training and validation of Algorithm 4.2.9 L, that

use test box 1 in Data 2
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Figure 17: On the left is the accuracy plots of training and validation and on

the right is the loss plots of training and validation of Algorithm 4.2.9 L , that

use test box 1 in Data 3

From Figures 15-17, we saw that ours Algorithm 4.2.9 L has good fit model this

means that our Algorithm 4.2.9 L appropriate learns the training dataset and

generalizes well to classification the Mammographic dataset.



 

 

 

CHAPTER 6

CONCLUSIONS

Algorithm 5.5.1 (Modified viscosity type inertial extragradient algo-

rithm for EP)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {αk} ⊂ (0, 1), and

{θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = αkV (xk) + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.

Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

Replace k by k + 1 and return to Step1.

Lemma 5.5.2 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 5.5.1. Then there exists N > 0 such that

∥xk+1 − u∥2 ⩽ ∥wk − u∥2 − ∥xk+1 − wk∥2, ∀u ∈ EP (f, C), k ⩾ N.
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Lemma 5.5.3 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 5.5.1. Then, for all u ∈ EP (f, C),

−2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ αk+1∥V (xk)− xk+1∥2 − αk∥xk − V (xk)∥2 − θk∥xk − u∥2

+ θk−1∥xk−1 − u∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2.

Lemma 5.5.4 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then

{xk} generated by Algorithm 5.5.1 is bounded.

Lemma 5.5.5 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 5.5.1. For each k ⩾ 1, define

uk = ∥xk − u∥2 − θk−1∥xk−1 − u∥2 + 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2.

Then uk ⩾ 0.

Lemma 5.5.6 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be generated by Algorithm 5.5.1. Suppose

lim
k→∞

∥xk+1 − xk∥ = 0,

and

lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2) = 0.

Then {xk} converges strongly to u ∈ EP (f, C).

Theorem 5.5.7 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then

{xk} generated by Algorithm 5.5.1 strongly converges to the solution u = PEP (f,C)V (u).
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Algorithm 5.5.8 Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {αk} ⊂

(0, 1), and {θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrarily and calculate

xk+1 as follows:

Step1. Compute:

wk = αkx0 + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.

Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

Replace k by k + 1 and return to Step1.

Algorithm 5.5.9 Initialization: Select λk ∈ (0, 1
2max{c1,c2}), τ ∈ (0, 1

2
], µ ∈

(0, 1), {αk} ⊂ (0, 1), and {θk} ⊂ [0, 1
3
). Iterative step: Let x0, x1 ∈ H arbitrar-

ily and calculate xk+1 as follows:

Step1. Compute:

wk = αkV (xk) + (1− αk)xk + θk(xk − xk−1),

and

yk = argmin
y∈C

{λkf(wk, y) +
1

2
∥y − wk∥2}.
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Step 2. Calculate:

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − wk∥2}.

Step 3. Calculate the next iteration via:

xk+1 = (1− τ)wk + τzk.

and

λk+1 =


min{µ

2
∥wk−yk∥2+∥zk−yk∥2

f(wk,zk)−f(wk,yk)−f(yk,zk)
, λk}, if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, otherwise.

Replace k by k + 1 and return to Step1.

Algorithm 5.5.10 (Modified viscosity type inertial subgradient extra-

gradient algorithm - MVISE)

Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {θk} ⊂ [0, 1

3
), {αk} ⊂

(0, 1) Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1 as follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

yk = αkV (xk) + (1− αk)wk,

and

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − yk∥2},

Step 2. Choose ok ∈ ∂2f(yk, ·)(zk) such thata there exists sk ∈ NC(zk) satisfying

sk = yk − λkok − zk,
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and construct a half-space

Γk = {e ∈ H : ⟨yk − λkok − zk, e− zk⟩ ⩽ 0}.

Compute

ek = argmin
y∈Γk

{λkf(zk, y) +
1

2
∥y − yk∥2},

Step 3. Calculate:

xk+1 = (1− τ)yk + τek.

Replace k by k + 1 and return to Step1.

Lemma 5.5.11 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 5.5.10. Then, for all u ∈ EP (g, C), there

exists N > 0 such that

∥xk+1 − u∥2 ⩽ ∥yk − u∥2 − ∥xk+1 − yk∥2, k ⩾ N.

Lemma 5.5.12 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 5.5.10. Then, for all u ∈ EP (g, C),

− 2αk⟨xk − u, xk − V (xk)⟩

⩾ ∥xk+1 − u∥2 − ∥xk − u∥2 + 2θk+1∥xk+1 − xk∥2 − 2θk∥xk − xk−1∥2

+ (1− αk)θk−1∥xk−1 − u∥2 − θk∥xk − u∥2 + αk+1∥V (xk)− xk+1∥2

− αk∥xk − V (xk)∥2 + (1− 3θk+1 − αk)∥xk − xk+1∥2.

Lemma 5.5.13 Assume that Condition 4.1.1 and Condition 4.1.3 hold. Then,

{xk} generated by Algorithm 5.5.10 is bounded.
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Lemma 5.5.14 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 5.5.10. For each k ⩾ 1, define

uk = ∥xk − u∥2 − θk−1∥xk−1 − u∥2 + 2θk∥xk − xk−1∥2 + αk∥xk − V (xk)∥2.

Then uk ⩾ 0.

Lemma 5.5.15 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Let {xk}

be a sequence generated by Algorithm 5.5.10. Suppose

lim
k→∞

∥xk+1 − xk∥ = 0,

and

lim
k→∞

(∥xk+1 − u∥2 − θk∥xk − u∥2) = 0.

Then {xk} converges strongly to u ∈ EP (f, C).

Theorem 5.5.16 Suppose that Condition 4.1.1 and Condition 4.1.3 hold. Then,

{xk} generated by Algorithm 5.5.10 strongly converges to the solution u = PEP (f,C)V (u).

Algorithm 5.5.17 Initialization: Select 0 < λk ⩽ λ < 1
2max{c1,c2} , τ ∈ (0, 1

2
], {θk} ⊂

[0, 1
3
), {αk} ⊂ (0, 1) Iterative step: Let x0, x1 ∈ H arbitrarily and calculate xk+1

as follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

yk = αkx0 + (1− αk)wk,

and

zk = argmin
y∈C

{λkf(yk, y) +
1

2
∥y − yk∥2},
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Step 2. Choose ok ∈ ∂2f(yk, ·)(zk) such thata there exists sk ∈ NC(zk) satisfying

sk = yk − λkok − zk,

and construct a half-space

Γk = {e ∈ H : ⟨yk − λkok − zk, e− zk⟩ ⩽ 0}.

Compute

ek = argmin
y∈Γk

{λkf(zk, y) +
1

2
∥y − yk∥2},

Step 3. Calculate:

xk+1 = (1− τ)yk + τek.

Replace k by k + 1 and return to Step1.

Algorithm 5.5.18 (An inertial projective Mann algorithm)

Initialization: Select {αk} ⊂ (0, 1), {θk} ⊂ [0, 1
3
), {rk} ⊂ (0,∞), {βk} ⊂ (0, 1

L
)

and {αk} ⊂ (0, 1). Iterative step: Let x0, x1 ∈ C arbitrarily and start k = 0.

Calculate xk+1 as follows:

Step1. Compute:

wk = xk + θk(xk − xk−1),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk,
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Step 2. Calculate:

xk+1 = PE(αkwk + (1− αk)yk).

Replace k by k + 1 and return to Step1.

Theorem 5.5.19 Suppose that Condition 4.2.1 hold. Then the sequence {xk}

generated by Algorithm 5.5.18 converges weakly to x∗ ∈ ω ∩ E.

Algorithm 5.5.20 (Double relaxed inertial viscosity-type algorithm)

Initialization: Select {θk}, {δk} ⊂ (−∞,∞), {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), {αk} ⊂

(0, 1). Iterative step: Let x−2, x−1, x0 ∈ C arbitrarily and calculate xk+1 as fol-

lows:

Step1. Compute:

wk = xk + θk(xk − xk−1) + δk(xk−1 − xk−2),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.

Replace k by k + 1 and return to Step1.

Theorem 5.5.21 Suppose that Condition 4.2.5 hold. Let {xk} be a sequence

defined by Algorithm 5.5.20. Then the sequence {xk} converges strongly to x∗ =

PωV (x∗).
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Algorithm 5.5.22 Initialization: Select {δk} ⊂ (−∞,∞), {βk} ⊂ (0, 1
L
), {rk} ⊂

(0,∞), {αk} ⊂ (0, 1). Iterative step: Let x−2, x−1, x0 ∈ C arbitrarily and cal-

culate xk+1 as follows:

Step1. Compute:

wk = xk + δk(xk−1 − xk−2),

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.

Replace k by k + 1 and return to Step1.

Algorithm 5.5.23 Initialization: Select {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), and

{αk} ⊂ (0, 1). Iterative step: Let x0 ∈ C arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = xk,

and

yk = T f
rk
(I − βkA

T (I − T g
rk
)A)wk.

Step 2. Calculate:

xk+1 = αkV (xk) + (1− αk)yk.
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Replace k by k + 1 and return to Step1.

Algorithm 5.5.24 (Double inertial Mann algorithm)

Initialization: Select {αk} ⊂ (0, 1), {βk} ⊂ (0, 1
L
), {rk} ⊂ (0,∞), {θk}, {δk} ⊂

(−∞,∞). Iterative step: Let x0, y−1, y0 ∈ H1 arbitrarily and calculate xk+1 as

follows:

Step1. Compute:

wk = T f
rk
(I − βkA

T (I − T g
rk
)A)xk.

Step 2. Calculate:

yk+1 = (1− αk)xk + αkwk.

Step 3. Calculate:

xk+1 = yk+1 + θk(yk+1 − yk) + δk(yk − yk−1).

Replace k by k + 1 and return to Step1.

Theorem 5.5.25 Suppose that Condition 4.2.10 hold. Let {xk} be a sequence

defined by Algorithm 5.5.24. Then the sequence {xk} converges weakly to x∗ ∈ ω.
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